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Abstract. We propose an action-conditional human motion generation
method using variational implicit neural representations (INR). The vari-
ational formalism enables action-conditional distributions of INRs, from
which one can easily sample representations to generate novel human mo-
tion sequences. Our method offers variable-length sequence generation by
construction because a part of INR is optimized for a whole sequence of
arbitrary length with temporal embeddings. In contrast, previous works
reported difficulties with modeling variable-length sequences. We con-
firm that our method with a Transformer decoder outperforms all rel-
evant methods on HumanAct12, NTU-RGBD, and UESTC datasets in
terms of realism and diversity of generated motions. Surprisingly, even
our method with an MLP decoder consistently outperforms the state-
of-the-art Transformer-based auto-encoder. In particular, we show that
variable-length motions generated by our method are better than fixed-
length motions generated by the state-of-the-art method in terms of real-
ism and diversity. Code at https://github.com/PACerv/ImplicitMotion.
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1 Introduction

Generative models of human motion serve as a basis for human motion prediction
[2,3,12,6,15,5], human animation [37,36], and data augmentation for downstream
recognition tasks [23,38,9,34]. There has been intensive research on generative
models for realistic and diverse human motions [39,13,19] and in particular meth-
ods that can generate motions while controlling some semantic factors such as
emotion [13], rhythm [19] or action class [31,10]. For tasks such as rare action
recognition, data-efficient action-conditional motion generation has great poten-
tial, since it may provide data augmentation even for rare actions.

For motion generation, the quality of generations is evaluated by their realism
and diversity. Models need the ability to sample novel and rich representations to
generate high-quality motions. A suitable generative model yields distributions
of representations in a latent space, where a simple distance measure corresponds
to semantic similarity between motions so that interpolations provide novel and
high-quality motions. A common generative modeling approach is Variational
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Auto-Encoders (VAE) [17,11,10,31], which employ an encoder to infer a distribu-
tion from which representations of motions can be sampled and a decoder which
reconstructs the data from the representation. The reconstruction loss provides
strong supervision, while the variational approach results in a representation
space, which allows sampling of novel data with high realism and diversity.

Since human motions naturally vary in length depending on persons or action,
it is important to consider variable lengths in motion generation. For example, we
would like the representations of quick (short) and slow (long) sitting motions to
be different but closer to each other than the representation of a walking motion.
In RNN-based VAEs [10], representations are updated each time-step; thus, it is
not obvious how to sample a particular action such as quick sitting. Also, their
recursive generation may accumulate error when generating long sequences. In
contrast, ACTOR, a Transformer VAE [31], should conceptually provide time-
independent representations and generate variable-length motions without accu-
mulating error. Nevertheless, [31] reports directly training with variable-length
motions results in almost static motions, and accordingly ACTOR requires an
additional fine-tuning scheme to enable variable-length motion generation. It
remains unclear what causes such issues with the Transformer architecture.

A recently proposed generative modeling approach is Implicit Neural Rep-
resentations (INR), which have been shown to be highly efficient in modeling
complex data such as 3D scenes [24,26,27]. INRs are representations that encode
information without an explicit encoder, but through an optimization procedure
as shown in Fig. 1. INRs are usually constructed with respect to a decoder that
takes a target coordinate and the representation of a target sample as input and
returns the signal of the target sample at the target coordinate. Such representa-
tions are optimized individually for each sample with respect to the reconstruc-
tion loss at all coordinates. For a time-series, an INR is a time-independent,
optimal representation that represents one whole sequence, regardless of the se-
quence length. Since human motions are naturally variable-length, INRs are a
very promising modeling approach. However, to the best of our knowledge, there
is no INR-based motion generation method that serves as a strong baseline.

To construct distributions from which one can sample a representation to gen-
erate a novel and high-quality motion, we propose variational INRs. Compared to
VAEs which infer variational distributions with an encoder, our variational INR
framework models each sequence by a distribution with optimized parameters,
e.g., mean and covariance, in the representation space. We further decompose
INRs into an action-wise part and sequence-wise part. The action-wise part,
whose distribution parameters are optimized for all sequences within the same
action class, provides generalized components of an action. The sequence-wise
part, whose distribution parameters are optimized for an individual sequence,
adds fine details of a specific sequence on top of the generalized components.

The average of the sequence distributions within an action class in the rep-
resentation space serves as the action-specific generative model together with an
appropriately trained decoder. In our method, we further split the averaged dis-
tribution into several distributions depending on different intervals of sequence
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Fig. 1. Comparison between a Variational Auto-Encoder (VAE) baseline (top) and
our variational implicit neural representation approach (bottom). In VAEs the encoder
weights are optimized with respect to a full dataset and no guarantee of optimal rep-
resentations for each individual sequence. In contrast, our sequence representations
are directly optimized for each individual sequence and by construction offer variable-
length sequence generation because a part of each INR is optimized for a whole sequence
of arbitrary length. In this figure, we drop the temporal embeddings for simplicity.

lengths. This allows sampling of novel sequences with a target action and a
target length. To parameterize the action and sequence-length conditional dis-
tribution, we employ Gaussian Mixture Models (GMM). Note that existing high-
performing methods are unable to control sequence length. This often results in
poor motion generation with sequences ending before the action completes.

However, when fitting a GMM with a high degree of freedom to the represen-
tation space we risk simply reproducing training samples. Previous evaluation
metrics such as the Fréchet Inception Distance (FID) and Diversity are not sen-
sitive to this problematic model behavior, because they assign a high value to
generated motions with a similar distribution as the training set. In this regard,
we propose a novel metric, the Mean Maximum Similarity (MMS), to measure
such reproducing behavior. By using this metric we confirm that our and previ-
ous studies successfully generate motions distinct from the training sequences.

We find that our proposed approach outperforms the current SOTA for
action-conditional motion generation, ACTOR [31], in terms of realism and
diversity. By employing an identical decoder architecture as ACTOR [31], we
conduct a fair comparison between our INR-approach and a VAE-approach and
find that our INR approach improves motion generation. Furthermore, since
Transformer models can be difficult and expensive to train and we also explore
the use of an MLP decoder and find that even such a simple, lightweight (6x
fewer parameters) model can reach the SOTA performance.

Our key contributions are summarized as follows:

– We propose a variational INR framework for motion generation, which gives
time-independent, optimal representations for variable-length sequences dis-
tributed such that representations for novel motions can be easily sampled.

– To improve action-conditional motion generation, we propose INRs that are
decomposed into action-wise and sequence-wise INRs. The action-wise INR
generalizes to features across an action-class and helps generating realistic
and novel motions for a target action class.
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– We show in experiments that our method outperforms SOTA (ACTOR [31])
on the HumanAct12, NTU13 and UESTC datasets in term of realism and di-
versity, and confirm that it generates high-quality variable-length sequences.
For example on HumanAct12 we generate sequences with lengths between 8 -
470 time-steps and find that our motions generated with variable-length even
outperform fixed-length motions generated by previous works (ACTOR[31],
Action2Motion[10]) in terms of realism and diversity.

2 Related Works

In the following we review the context of our work first regarding human motion
modeling and then regarding implicit neural representations.

Human Motion Modeling: The modeling of human motions is important for
understanding and predicting human behavior. Most modern approaches regard
a human motion as a time-series of either skeleton poses or full 3D body shapes
[22,29] and previous works have proposed methods to estimate motions from
videos, predicting future motions based on past motions and generating such
motions conditional on signals such as emotion [13] and rhythm [19]. Our work
is similar to [31,10], which generate motions conditional on the action class.

Previous works for motion generation are mostly based on Variational Auto-
Encoders (VAE) [17,11,10,31], which employs an encoder to infer a variational
distribution from which representations of motions can be sampled and a decoder
which reconstructs data from a representation. This encoder is optimized with
respect to a reconstruction loss for a whole dataset, without a guarantee that
the representation for each individual sequence is optimal. The encoder may
focus on the most common features in the dataset and become insensitive to rare
features. In contrast, Implicit Neural Representations (INR), which optimize the
representation of each sample directly, can be sensitive even to unique features.

A similarity of all sequence modeling approaches is the use of model archi-
tectures such as RNNs or Transformers. RNN are typically formulated as an
auto-regressive model [2,10,13], which generates motions by recursively predict-
ing the pose at time-step t based on the prediction of the pose at time-step
t− 1. This recursive nature of RNNs means that their sequence-representations
are time-dependent and representations of variable-length sequences can not be
easily compared. Furthermore, the recursive generation procedure accumulates
error and may result in poor performance when generating long sequences.

Petrovich et al. [31] proposes ACTOR, a Transformer VAE, which yields
a single fixed-length representation for a variable-length sequence through a
Transformer encoder. This representation is decoded by a Transformer decoder,
which receives the representation and the temporal embedding of the target
time-steps as input and generates the target sequence in one forward-pass. Since
such a Transformer VAE should conceptually handle variable-length sequences
well, we choose this work as our main baseline. However, [31] reports that even
for ACTOR a fine-tuning scheme is needed to enable good performance for
variable-length sequences.
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Implicit Neural Representations: INR as proposed in [27,26,7] are encoder-free
models which instead optimize their parameters to represent and fit a single sam-
ple. They have been popularized particularly in 3D modeling and have shown
great performance on tasks such as inverse graphics [24,40], image synthesis
[16,33] or scene generation [25,8]. While this work is, to the best of our knowl-
edge, the first to explore implicit neural representations in the context of motion
modeling, previous works have considered other time-series [20,26,35].

Previous works for data synthesis using INR use a GAN-like approach [16,1,33]
for image synthesis. Such approaches don’t optimize the INR, but sample rep-
resentations from a predetermined distribution. These representations are then
used by a generator to generate images, which can fool a discriminator. However,
for our task the amount of training data required by GANs is problematic.

Another approach that takes inspiration from VAEs are variational INR
[27,4]. Most similar to ours is [4], however, this work doesn’t optimize the INRs
but rather approximates the optimal INR using an empirical Bayes. Further-
more, they predict a variational distribution from the INR and then apply a
regularizing loss to this intermediate representation instead of directly regu-
larizing the INR. Instead we directly optimize the mean and variance of the
variational distribution as persistent parameters per sample. The approach in
[27] optimizes point-estimates of the representations of a sample and regularizes
the distribution of these estimates, but doesn’t sample stochastically from this
distribution during training. Our work instead optimizes a distribution for each
sample and samples stochastically from it during training.

With this work we would like to show that INR are not only powerful for
high dimensional data such as dense 3D point clouds, but that their flexibility
is also useful for other domains.

3 Methodology

In this section, we will first describe how to apply INRs to model human motions
and decompose the INR into sequence-wise and action-wise representations (3.1).
Then we will introduce the proposed variational INRs (3.2), before we discuss
how we fit a conditional Gaussian Mixture Model (GMM) to the representation
space and how we sample novel sequence-wise representations from it (3.3).
Finally we will describe the Mean Maximum Similarity (MMS) as a measure
to detect models that only reproduce training samples (3.4).

3.1 Implicit Neural Representations for Motion Modeling

We consider a human motion as a sequence of poses represented by a low-
dimensional skeleton. Formally, we denote a skeleton pose of sequence i at time
t as xi

t ∈ RP×B where P is the number of joints and B is the dimensionality
of the joint representation. The i-th motion (a sequence of poses) is denoted as

xi = {xi
t}T

i

t=1 with the sequence length T i.
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Fig. 2. Overview of Implicit Motion Modeling. Each representation is composed of two
components, the action representation α and the sequence representation β. Instead of
inferring these representations from an encoder, we directly optimize the parameters
of a posterior normal distribution for both the action representation (µα, Σα) shared
by all sequences with the same action class and sequence representation (µβ , Σβ). The
representation, together with a temporal embedding (PE) τt of time t is then input to
an MLP, which predicts the pose at time t.

For each sequence i, we construct an Implicit Neural Representation (INR)
ci and a decoder Dθ (shared among all sequences) that predicts a pose x̂i

t of
sequence i from the INR ci and a temporal embedding τt of time t

x̂i
t = Dθ(c

i, τt). (1)

Note that depending on the decoder architecture, the decoder may process
all time-steps of a sequence independently (MLP) or multiple time-steps si-
multaneously (Transformer). We obtain an INR ci, shared by all time steps
(t ∈ {1, 2, ..., Ti}), by minimizing the reconstruction loss Li

rec. Thus, INRs can
represent a sequence of any sequence-length T i. Also, for a given INR, the de-
coder can interpolate between time-steps (e.g. t = 0.5) or extrapolate (t > Ti).

To generalize INRs to all features of the same action class, we decompose
the INR and introduce an action representation shared across all samples of
the same action class. Formally, we divide each INR ci into a sequence-wise
representation βi ∈ RS with in i ∈ M with a set of motions M and an action-
wise representation αz ∈ RA shared by all sequences with the same action label
z ∈ Z. Here Z is the set of action classes (e.g. αz ∈ {αsit, αwalk, αrun . . . }) and
S and A denote the size of each representation respectively.

3.2 Variational Implicit Neural Representations

Note that each INR ci is optimized to reconstruct a single sample with an over-
parameterized decoder Dθ. This can make the distribution of INRs complex
and result in a representation space where a simple distance measure doesn’t
correspond to semantic similarity. Accordingly, interpolations between represen-
tations in this space may not be meaningful. To avoid such a complex repre-
sentation space, we introduce a variational approach as regularization [17,11].
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We formulate each INR as a normal distribution, whose mean µi and covari-
ance matrix Σi are optimized and from which we sample an instance with the
re-parameterization trick during training. This makes the representation space
smoother so that close representations are semantically similar. We summarize
the sequence-wise and action-wise variational representations as

ci ∼ N (µi, Σi) with

µi = concat(µz
α, µ

i
β),

Σi =

[
Σz

α 0A×S

0S×A Σi
β

]
,

(2)

where concat denotes the concatenation operation.
Furthermore, by assuming a standard normal distribution as the prior of each

INR ci, we further encourage a simple and compact representation space. We
then use the Kullback-Leibler (KL) Divergence Li

KL as a regularizing loss

Li
KL = DKL(N (µi, Σi)∥N (0, I)). (3)

The sequence wise training objective of our method is thus

Li = Li
rec + λLi

KL, (4)

where Li
rec is the reconstruction term

Li
rec = −Eci∼N (µi,Σi)

T i∑
t=1

log p(xi
t|ci, θ), (5)

log p(xi
t|ci, θ) ∝ ∥xi

t −Dθ(τt, α
z, βi)∥2 + const.,

and Li
KL is the regularizing KL divergence moderated by a weight λ.

We define the optimization problem for the model parameters as:

θ⋆ = argmin
θ

Z∑
z=1

min
µz
α,Σz

α,

∑
i∈Mz

min
µi
β ,Σ

i
β

Li

︸ ︷︷ ︸
sequence-wise minimum︸ ︷︷ ︸

action-wise minimum︸ ︷︷ ︸
dataset-wise minimum

, (6)

where Mz denotes a set of sequence indices within action class z. We optimize
action-wise parameters µα, Σα for each action z:

(µz⋆
α , Σz⋆

α ) = argmin
µz
α,Σz

α

∑
i∈Mz

min
µi
β ,Σ

i
β

Li. (7)

Likewise, for the sequence-wise parameters we define the optimization problem
for each sequence i as:

(µi⋆
β , Σi⋆

β ) = argmin
µi
β ,Σ

i
β

Li. (8)
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3.3 Conditional GMM of Representation Space

To generate new sequences for a target action class, we need novel samples
from the distribution of sequence-wise representations. In the distribution of
sequence-wise representations obtained during training, semantic factors such as
sequence-lengths and action classes may be entangled. Accordingly, the action-
conditional distribution of sequence-wise representations may differ from the
standard normal distribution. To control sequence-length and action class for
motion generation, we fit a conditional Gaussian Mixture Model (GMM) to the
sequence-wise representations βi sampled 50 times from the variational distri-
butions βi ∼ N (µi⋆

β , Σi⋆
β ) for each training sequence.

We fit such a conditional GMM by first constructing subsets of sequence-wise
representations that have the same action class z and a sequence-length within
the range [T, T +∆T ]. We choose the size of the sequence-length range ∆T to
ensure a minimum number of samples in each subset and then fit an independent
GMM to each subset of sequence-wise representations. The details for how we
select such a set of sequence-length ranges are provided in Appendix A.2. Finally,
we obtain the GMM of p(β|z, [T, T +∆T ]).

To sample new sequence representations and generate corresponding novel
motion sequences, we need to provide a target action class and sequence length.
We sample a new sequence representation βnew

βnew ∼ p(β|z, [T, T +∆T ]), (9)

by sampling from the GMM corresponding to the target action class and se-
quence length. With a new sequence representation we generate a new motion

xnew = {Dθ⋆(αz⋆, βnew, τt)}T
′

t=t0
(10)

with the target action code αz⋆ (obtained during the training stage) and the
target sequence length T ′ ∈ [T, T +∆T ].

3.4 Mean Maximum Similarity

By increasing the number of components of the GMM, it can better fit the
training distribution, which improves the realism of generated motions. However,
we also risk fitting a GMM which only reproduces motions in the training set.
Previous metrics such as the Fréchet Inception Distance (FID) or the Diversity
compute the feature distribution of training and generated motions and compare
these distributions. Generated motions that have a similar distribution (FID)
or variance (Diversity) as real motions are considered high-quality. Generated
motions identical to the training set would be considered best by such metrics.

To detect models that just reproduce training samples, we introduce the
Mean Maximum Similarity (MMS) as a complementary metric. Similarly to
previous metrics we extract the features from all training sample and generated
motions. Then for each generated motion, we find the training sample with the
smallest feature distance (most similar) to it. The mean distance over a large
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set of generated motions should be small for models that reproduce training
samples and large for models that generate novel motions. Formally we denote
the features of a motion as f and the sets of generated and training motion
sequences Mgen and Mtrain respectively, and compute the MMS as

DMMS(Mgen,Mtrain) =
1

|Mgen|
∑

i∈Mgen

min
j∈Mtrain

(∥fi − fj∥2). (11)

We estimate the MMS of model that only reproduces motions as baseline by
computing DMMS(Mtrain,Mtrain) of the set of training motions Mtrain against
itself. A large gap between DMMS(Mgen,Mtrain) and DMMS(Mtrain,Mtrain)
indicates novel generated motions distinct from the training set.

4 Experiments

To verify the quality of motions generated by variational INR we perform exper-
iments with a Transformer and an MLP decoder. The Transformers is a pow-
erful, but costly and difficult to train modeling tool, while the MLP is simple
and comparatively light-weight. The comparison should highlight the efficiency
of the variational INR framework independent of decoder architecture. In this
section we will first explain the implementation details of our models (4.1) and
the datasets for our experiments (4.2). Then we will describe how we quantify
the realism, diversity and novelty of generated motions (4.3). Finally we will
discuss the quantitative (4.4) and qualitative (4.5) results.

4.1 Implementation

Skeleton representation: We represent the human body as a kinematic tree de-
fined by joint rotations, bone-lengths and the root joint. More specifically, we
use the SMPL model [22] with pose parameters consisting of 23 joint rotations,
1 global rotation and 1 root trajectory. During training we only predict the pose
parameters, which are independent of the body shape and can be used to animate
any body at test time. We represent rotations with a 6D rotation parameteri-
zation as proposed by [41] which means the full body pose has 147 dimensions
(24×6+3). We use a reconstruction loss composed of a loss on the pose parame-
ters (joint rotations and root joint locations) as well as the vertices of the SMLP
model since [31]’s findings suggest the best performance for this configuration.
On the NTU13 dataset, where at the time of writing the SMPL data was no
longer available we represent the pose with a 6D rotation parameterization, but
use a reconstruction loss on the joint locations (through forward-kinematics) as
proposed by [10] and find similarly high performance with our method.

Model Architecture: We implement our MLP decoder with ELU activations and
5 hidden layers (1000, 500, 500, 200, 100). The input are temporal embeddings
with 256 dimensions and sequence-wise representations/action-wise representa-
tions, which are both 128 dimensions respectively, and the decoder outputs 147
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dimensional pose parameters. This results in a network with 1,399,147 parame-
ters. Due to the larger dataset size of UESTC we also implement a larger model
(2000, 2000, 1000, 1000, 200, 100) with 8,265,147 parameters which is only used
on UESTC. We also implement a Transformer-decoder (same as ACTOR [31])
with 8 layers, 4 attention heads, a dropout rate of 0.1 and a feedforward network
of 1024 dimensions. With temporal embeddings with 256 dimensions and the
same pose parameterization this results in a network with 8,465,299 parameters
(6× more than the MLP model). More details are provided in Appendix A.1.

Note that the Transformer-decoder is sensitive to the initialization of the
implicit representations. If the variance parameters are initialized with a high
variance the Transformer-decoder may fail to converge, while the MLP decoder
is not sensitive to this phenomenon. We explore this more in Appendix B.1.

The Transformer-based decoder has an identical structure to ACTOR [31]
and thus allows us a direct comparison between an auto-encoder and an implicit
framework. The MLP decoder is simpler to train than the Transformer decoder
and doesn’t rely on self-attention. The comparison of these decoders allows us to
determine if the choice of decoder architecture is critical for good performance.

4.2 Datasets

To evaluate the quality of action-conditional human motion generation, we used
the UESTC, NTU-RGBD and HumanAct12 dataset curated by [10]. 3

HumanAct12 [10]: This dataset is based on PHSPD [42] and consists of 1191
motion clips and 90099 frames in total. Action labels for 12 actions are provided
with at least 47 and at most 218 samples per label. Sequence-lengths range from
8 to 470. We follow the procedure by [31] to align the poses to frontal view.

NTU13 [21]: The NTU-RGBD dataset originally contains pose annotations from
a MS Kinect sensor and label annotations for 120 actions. [10] re-estimated the
data of a subset of 13 action, which we denote NTU13, with a state-of-the-art
pose estimation method [18] to reduce noise. In this refined subset each action
label has between 286 - 309 samples. The refined poses have 18 body joints and
the sequence lengths range from 20 - 201. 4

UESTC [14]: This dataset with 40 action classes, 40 subjects and 25K samples
is the largest dataset we perform experiments on and the only dataset with a
train/test split. We use the SMPL sequences provided by [31] and apply the
same pre-proprocessing, namely we rotate all sequences to frontal view. Using
the same cross-subject testing protocol we have a training split with between
225 - 345 samples per action class and sequence lengths between 24 and 2891
time steps (on average 300 time steps).

3 We considered the CMU Mocap dataset, but manual inspection found the label
annotations for some actions such as “Wash” and “Step” to be extremely noisy.

4 Due to the release agreement of NTU RGBD, this subset can no longer be dis-
tributed. We report results to provide a complete comparison to previous studies.
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4.3 Evaluation Metrics

We use the same evaluation metrics as [10,31] (Fréchet Inception Distance (FID),
action recognition accuracy, diversity and multimodality) to measure the real-
ism and diversity of generated motions. Also, we measure the proposed Mean
Maximum Similarity (Section 3.4) to detect models that reproduce training
samples. We report a 95% confidence interval computed of 20 evaluations.

The features for these evaluation metrics are extracted from motions of a pre-
determined length (60 time-steps) by an RNN-based action recognition model
(weights provided by [10]) for the NTU13 and HumanAct12 dataset and by
an ST-GCN-based action recognition model (weights provided by [31]) for the
UESTC dataset. However, since the real training data is variable-length, we
follow [10]’s procedure for feature extraction during evaluation. This procedure
adjust all sequences to a target length, by repeating the last pose of short se-
quences and by sampling random sub-sequence from longer sequences.

Such stochastic feature extraction means the MMS may not be zero, even for
sets of identical motions. Thus we first compute a baseline MMS for identical
real motions and then evaluate the MMS between real motions and generated
motions. If the MMS for generated motions is larger than that of real motions
only, we conclude that the generated motions are distinct from the real motions.

We find that there is a difference in the evaluation procedure of previous
works in the sampling frequency of different action classes for generation. The
approach by [10] generates motions uniformly for all action classes. On datasets
with an action imbalance, this creates an inflated FID score. We follow [31]’s
approach which generates motions according to the frequency of the action class
in the training dataset, since this leads to more consistent results.

Our GMM samples novel representations conditional on the sequence-length.
For model evaluation we sample sequence-lengths according to their distribution
in the training dataset. We then sample corresponding representations and gen-
erate motions with the corresponding sequence-length. We perform the same
feature extraction as for the variable-length real motions. More details can be
found in the Appendix A.7

4.4 Quantitative Results

We compare our method to an RNN [10] and a Transformer [31] baseline and
present some ablations for the proposed novel components of our model on Hu-
manAct12 and NTU13 in Table 1 and UESTC in Table 2. Furthermore, we
present a new state-of-the-art with the results for our Transformer-based and
MLP-based models. We also investigate the contribution of variational INR by
comparing them to a non-variational version and the contribution of the de-
composed representations by comparing to a version with no action code. Note
that by construction our motion generation procedure can generate high-quality
motions for arbitrarily specified sequence lengths (as in Table 1) within the varia-
tion of training sequence lengths, whereas previous works reported a performance
drop for variable-length generation.
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Table 1. Comparison on HumanAct12 and NTU13 (The best in bold, the second best
underlined). Non-variational uses action codes and no action code uses the variational
approach. (± indicates 95% confidence interval, → closer to real is better)

Method
HumanAct12

FID ↓ Accuracy ↑ Diversity → Multimod. →

Real 0.020±.010 0.997±.001 6.850±.050 2.450±.040

Action2Motion [10] 0.338±.015 0.917±.003 6.879±.066 2.511±.023

ACTOR [31] 0.12±.00 0.955±.008 6.84±.03 2.53±.02

INR (Transformer) 0.088±.004 0.973±.001 6.881±.048 2.569±.040

INR (MLP) 0.114±.001 0.970±.001 6.786±.057 2.507±.034

- (Non-variational) 0.551±.005 0.795±.002 6.800±.046 3.700±.032

- (No action code) 0.146±.003 0.955±.001 6.797±.066 2.769±.045

NTU13

Real 0.031±.004 0.999±.001 7.108±.048 2.194±.025

Action2Motion [10] 0.351±.011 0.949±.001 7.116±.037 2.186±.033

ACTOR [31] 0.11±.00 0.971±.002 7.08±.04 2.08±.01

INR (Transformer) 0.097±..001 0.977±..001 7.060±.040 2.108±.025

INR (MLP) 0.113±.001 0.976±.001 7.070±.052 2.070±.043

- (Non-variational) 0.646±.003 0.849±.001 6.905±.056 3.244±.049

- (No action code) 0.202±.002 0.912±.001 7.025±.050 2.648±.043

The results show that our proposed method improves over both Action2Motion
[10] and ACTOR[31] especially on the FID and accuracy metric. We show that
our optimized INR outperforms methods with representations produced by an
optimized encoder. This is most apparent when comparing our implicit Trans-
former model and ACTOR, since both models use the same decoder architecture.

Furthermore, we show high performance even with a simple MLP decoder.
This shows that the self-attention mechanism is not necessary. We argue, that the
common property of the Transformer-based models and our implicit MLP-based
model, namely time-independent sequence-wise representations, are critical for
motion generation performance. Such representations can avoid the error accu-
mulation of current RNN-based models and represent variable-length sequences.

Comparing the non-variational and variational approach, we find that the
realism and diversity is improved with the variational approach (see (Non-
variational) in Table 1). This finding suggests that the variational approach
strongly regularizes the latent space and improves sampling of new motions.
However, both approaches for implicit representations are able to reach similar
reconstruction performance for training samples and learn effective representa-
tions that allow high quality reconstruction.

Comparing the approach with an action-wise and sequence-wise representa-
tion to an approach only with a sequence-wise representation, we find a clear ad-
vantage from using a decomposed action representation. Even the approach with
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Table 2. Baseline comparison with UESTC. (± indicates 95% confidence interval, →
closer to real is better

Method FIDtrain ↓ FIDtest ↓ Accuracy ↑ Diversity → Multimod. →

Real 2.92±.26 2.79±.29 0.988±.001 33.34±.320 14.16±.06

ACTOR [31] 20.49±2.31 23.43±2.20 0.911±.003 31.96±.33 14.52±.09

Ours (MLP) 9.55±.06 15.00±.09 0.941±.001 31.59±.19 14.68±.07

Table 3. Mean Maximum Similarity as a sanity check to detect overfitting.

Method HumanAct12 NTU13 UESTC

Real 0.329±.003 0.209±.002 4.925±.007

Action2Motion[10] 0.945±.006 0.667±.006 —

ACTOR[31] 0.921±.001 0.701±.001 8.645±0.008

INR (MLP) 0.941±.005 0.620±.001 7.113±0.006

INR (Transformer) 0.778±.003 0.570±.002 —

only sequence-wise representations performs comparable to the RNN-baseline
(See (No action code) in Table 1) However, a decomposition representation is
needed to outperform the Transformer baseline.

For further ablation studies we refer to Appendix B, where we investigate
various modeling choices. Among others, we investigate the effect of the number
of components in the GMM and show in Appendix B.2 high performance, on-par
with Action2Motion[10], even when using GMMs with a single component.

Finally we perform a sanity check to see if any model is reproducing training
samples by checking the proposed Mean Maximum Similarity between real and
generated sequences defined by Eq. (11) and show the results in Table 3. We
interpret the gap between this baseline of real motions and all other models
as an indication that no model is just reproducing training samples. Note that
while the INR (Transformer) model has a lower MMS than other models, the
gap to the baseline is significant. This suggests that it generates motions that
are more similar to training motions than other models yet distinct from them.

4.5 Qualitative Results

We manually inspect the quality of the generated motions and find that our
methods consistently generates high-quality motions even over a long time range.
In particular we observe, that the RNN-based Action2Motion[10] shows a slow-
down effect when predicting long sequences, which neither our methods nor the
Transformer-based ACTOR[31] suffer from.

Also, we observe that we reliably generate complete actions, due to our
model’s ability to model the sequence-length. In contrast, both Action2Motion
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Fig. 3. Motions generated by our MLP model trained on HumanAct predicted with
40 time-steps (each third frame shown) for the actions throw, sit and jump.

as well as ACTOR tend to generate incomplete actions, particularly when gen-
erating short sequences. As shown in Fig. 3, even for short sequences and actions
with a clear start and end our generated actions are complete. For more quali-
tative results, we refer to supplementary videos and Appendix C.

5 Limitations and Future Work

While our implicit sequence representations are parameter-efficient, the effort
to train sequence-wise parameters scales linearly with the size of the training
dataset. Furthermore, we observe a sensitivity to the ratio of parameter up-
dates between the sequence-wise parameters and the decoder parameters. If the
decoder parameters are updated significantly more often than sequence-wise pa-
rameters, our implicit models might perform poorly.

6 Conclusion

We present an MLP-based model for action-conditional human motion genera-
tion. The proposed approach improves over previous RNN-based and Transformer-
based baselines by employing variational implicit neural representations. We ar-
gue that the likely reason for the success of our method is implicit neural repre-
sentations, which are optimized representations that can represent full variable-
length sequences and we supported this hypothesis experimentally by reaching
state-of-the-art performance on commonly used metrics for motion generation.
While the results of our work may improve technologies for animation and action
recognition, there is the potential for malicious use such a deep fakes as well.
For more detailed discussions about such potential negative societal impacts and
personal data of human subjects we refer to Appendices A.5 and A.6.
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