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In this supplementary file, we first introduce more implementation details of our
GracoNet in Section 1. Then, we conduct extensive ablation studies in Section 2.
We also provide additional visualizations to verify our method in Section 3.
Finally, we discuss the limitations in Section 4.

1 Implementation Details

1.1 Image Pre-processing

All images are resized to 256 × 256 and normalized before they are fed into
the network, i.e., H = 256 and W = 256. Note that we maintain the relative
aspect ratio between foreground and background before and after they are resized.
For example, we use (fgw, fgh) and (bgw, bgh) to represent the original sizes
of foreground and background, respectively. If fgw/fgh > bgw/bgh, we first
resize foreground to (256, (256 · fgh · bgw)/(fgw · bgh)), and then zero-pads it to
(256, 256) on the top side and bottom side evenly. If fgw/fgh ⩽ bgw/bgh, we first
resize foreground to ((256 · fgw · bgh)/(fgh · bgw), 256), and then zero-pads it to
(256, 256) on the left side and right side evenly. Meanwhile, background images
and annotated composite images are directly resized to (256, 256).

1.2 Transformation Function Ft with Parameter t

In our problem, we consider transformation parameters t = [tr, tx, ty] ∈ R3 with
three degrees of freedom. We first define tr ∈ (0, 1) to represent the scaling
ratio for the foreground object. After scaling, the height and the width of the
new foreground region are h = trH and w = trW . Since we do not change the
aspect ratio of foreground after transformation, w and h are not independent.
The scaled foreground object will be placed at a reasonable location (x, y) over
the background, where (x, y) represents the background coordinate for the left
top pixel point of the foreground region. We then define tx = x

W−w ∈ (0, 1)
and ty = y

H−h ∈ (0, 1) to indicate the relative vertical and horizontal locations
that the foreground object should be placed over the background scene. For the
accessibility of back propagation for both tu and ts in our dual-path framework,
we follow Spatial Transformer Network (STN) [2] to apply an affine transformation
A with parameter Θ to transform the foreground region. With a simple derivation,
the parameter Θ in our problem should be a function of t:

Θ(t) =

(
1/tr 0 (1− 2tx)(1/tr − 1)
0 1/tr (1− 2ty)(1/tr − 1)

)
. (1)
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By applying affine transformation to foreground image Ifg and foreground mask
Mfg, we obtain a transformed foreground image Îfg = A(Ifg;Θ) with a new
mask Mc = A(Mfg;Θ). The predicted composite image Ic is then calculated by
Ic = Mc ∗ Îfg + (1−Mc) ∗ Ibg, in which ∗ means element-wise product. Since Θ is
a function of t, we could also describe Ic and Mc in function forms f I and fM

conditioned on t:

Ic = f I(Ibg, Ifg,Mfg; t),

Mc = fM (Mfg; t).
(2)

Finally, our transformation function Ft is defined by

Ft(I
bg, Ifg,Mfg) ≜ ( f I(Ibg, Ifg,Mfg; t), fM (Mfg; t) ). (3)

As discussed in Section 3.2 in the main paper, given a labeled positive
composite image Icpos with object mask Mc

pos, we should calculate its ground-
truth transformation parameters tgt = [trgt, t

x
gt, t

y
gt] for calculating reconstruction

loss Lrec
s . The procedure of obtaining tgt from annotation derives from the

definition of transformation parameters, as described in the following. We first
obtain the bounding box of the foreground region on Icpos/M

c
pos, denoted by

(xgt, ygt, wgt, hgt). Then, the ground-truth transformation parameters tgt are

calculated by trgt = max(
wgt

W ,
hgt

H ), txgt =
xgt

W−wgt
, and tygt =

ygt

H−hgt
.

1.3 Reconstruction Loss Lrec
s

Since we expect the supervised path to reconstruct (Ics,M
c
s), the reconstruction

loss Lrec
s is designed to force ts to be close to the ground-truth tgt. We define

Lrec
s as a weighted mean squared error (i.e., Weighted MSE) between ts and tgt:

Lrec
s =

αr(trs − trgt)
2 + αx(txs − txgt)

2 + αy(tys − tygt)
2

3
(4)

with weight α = [αr, αx, αy]. Specifically, we adopt dynamic weight in our
implementation, where α can be described as a set of functions determined by
variable trs, that is, α

r = fr(trs), α
x = fx(trs), and αy = fy(trs). f

r(trs) should be
a monotonically increasing function and fx(trs), f

y(trs) should be monotonically
decreasing functions when trs ∈ (0, 1). The reason for this design is intuitive.
When trs is small and close to 0, we pay more attention to where the foreground
object should be placed, instead of the scale of the foreground region. Conversely,
when trs is large and close to 1, the relative vertical and horizontal location txs
and tys become less important and now the scale of foreground object becomes
our main concern. Concretely, we define α in the form of trigonometric functions:
αr = sin(π2 t

r
s), α

x = cos(π2 t
r
s), and αy = cos(π2 t

r
s). We have also explored other

variants of reconstruction loss and compared them with our choice in Section 2.3.
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1.4 Evaluation Metrics

As introduced in Section 4.1 in the main paper, we adopt user study, accuracy,
and FID [1] to evaluate generation plausibility, and adopt LPIPS [6] to evaluate
generation diversity during inference. In the following, we will discuss about more
details in these four metrics.

User Study. The user study is conducted with 20 voluntary participants. We
compare the object placement generation results of TERSE, PlaceNet, and our
proposed method. For a given pair of foreground and background during inference
(i.e., a test sample), each method produces one composite image. Then, each
participant chooses the most reasonable one from these three composite images.
Each method is then scored by the proportion of participants who choose it
(w.r.t. this test sample). Finally, we average the score among all test samples to
obtain the user study score for each method.

Accuracy. We extend SimOPA [3] model to check the accuracy of object placement
generation results. We omit the details of extended model here. The extended
model functions as a binary classifier that distinguishes between reasonable and
unreasonable object placements. We define accuracy as the proportion of the
generated composite images that are classified as positive by the binary classifier
during inference. We have released the code and model of binary classifier for
evaluation.

FID. Fréchet Inception Distance (FID) [1] is a measure of similarity between
two datasets of images. It was shown to correlate well with human judgement
of visual quality and is most often used to evaluate the quality of samples of
Generative Adversarial Networks. We calculate FID score between one set of
composite images generated by the network and another set of ground-truth
positive composite images in the OPA test set.

LPIPS. In Generative Adversarial Networks, LPIPS [6] is commonly used to
measure the perceptual similarity between two images. In this work, we adopt
LPIPS to measure the generation diversity of models. For a given pair of fore-
ground and background during inference (i.e., a test sample), we generate 10
different composite images by sampling the random vector for 10 times. We first
compute LPIPS for all pairs of composite images among 10 generation results for
each test sample, and then calculate the averaged LPIPS among all test samples.
Since LPIPS reveals the difference between two images, a larger LPIPS score
corresponds to a better generation diversity.

2 Ablation Studies

2.1 Degree of Annotation.

Table 1 shows an ablation study on the degree of annotation we use. Without the
supervised path, the model witnesses a sharp decrease in performance and falls
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Table 1. Ablation study on degree of annotation

Annotation Degree
Plausibility Diversity

acc.↑ FID↓ LPIPS↑
Pu 0.637 68.17 0

Pu + Lcls
s 0.754 34.80 0.130

Pu + Ps 0.847 27.75 0.206

Table 2. Ablation study on using negative training samples

Method Pos Neg
Plausibility Diversity

acc.↑ FID↓ LPIPS↑

TERSE [4]
✓ 0.588 49.35 0
✓ ✓ 0.679 46.94 0

PlaceNet [5]
✓ 0.619 32.50 0.101
✓ ✓ 0.683 36.69 0.160

GracoNet
✓ 0.808 27.15 0.206
✓ ✓ 0.847 27.75 0.206

into mode collapse. After we add the classification loss Lcls
s to assist with the

discriminator, the model works better in plausibility and relieves mode collapse.
Adopting the complete supervised path brings another performance jump in
all metrics. These experiments prove that fully exploiting supervision is crucial
in object placement learning. Our supervised path is just designed under this
guidance. By constructing a bijection between the latent vector and the predicted
composite image, the model could effectively overcome the mode collapse problem.
The supervised path successfully guides the unsupervised path to generate more
reasonable and diversified object placements.

2.2 Using Negative Samples for Training

As introduced in Section 1 in the main paper, OPA dataset [3] is the first object
placement assessment dataset that contains composite images and their binary
rationality labels indicating whether they are reasonable (positive sample) or
not (negative sample) in terms of foreground object placement. As discussed
in Section 4.2 in the main paper, baseline TERSE [4] and PlaceNet [5] did not
include negative samples in their method because they had been proposed before
OPA dataset was released. For most experiments on OPA dataset, we fairly
use positive samples and negative samples together for both baselines and our
method (e.g., experiments in Section 4.2 in the main paper). In this section, we
aim to investigate whether introducing negative samples is necessary or not.

Table 2 shows an ablation study on whether to use negative training samples
for different methods in the training stage. As illustrated, accuracy drops without
the assistance of negative samples in all methods. It is because simultaneously
using positive samples and negative samples balances the process of adversarial
training and enables the discriminator to learn from a wider range of data
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Table 3. Ablation study on different reconstruction losses

Type αr αx & αy Plausibility Diversity
acc.↑ FID↓ LPIPS↑

L1 1 1 0.820 29.38 0.063
L2 1 1 0.833 29.27 0.069
L2 trs 1− trs 0.836 27.92 0.190

L2 sin(π
2
trs) cos(π

2
trs) 0.847 27.75 0.206

distribution. By comparing different methods, we find that removing negative
samples from training process has the largest impact on TERSE (about 0.09
accuracy drop) and the smallest impact on our method (about 0.04 accuracy
drop). This proves the robustness of our method because only our method still
performs reasonably with the absence of negative samples.

2.3 Different Types of Reconstruction Losses

As discussed in Section 1.3, we use a weighted MSE with trigonometric dynamic
weights as the reconstruction loss Lrec

s between ts and tgt. In Table 3, we explore
different types of reconstruction losses, including L1-loss, L2-loss, L2-loss with
linear dynamic weights, and L2-loss with trigonometric dynamic weights (our
method). L1-loss and L2-loss both perform badly in generation diversity, because
the model can not pay more attention to learning location (resp., size) information
when trs is small (resp., large). L2-loss with linear/trigonometric dynamic weights
overcomes this weakness and dynamically changes its attention during training.
Comparably, trigonometric weights work slightly better than linear weights, so
the former type becomes our final choice.

2.4 Advantages Against Baselines

TERSE, PlaceNet, and our method all adopt an adversarial training strategy. The
generator functions to produce transformation parameters that reasonably places
the foreground object over the background scene to form a composite image. The
discriminator works by distinguishing between reasonable composite images and
unreasonable composite images. The most important difference between baselines
and our method lies in two aspects: the generator design and the usage of positive
composite images.

Generator Design. TERSE uses a shared backbone followed by two separate
branches to encode heterogeneous features for foreground and background. Then
these two kinds of features are concatenated and regressed to predict transforma-
tion parameters. PlaceNet uses two independent encoders to extract features for
foreground and background, respectively. Foreground and background features are
concatenated with different random vectors to predict various object placements
via a shared decoder network. Meanwhile, a diversity loss is designed to preserve
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TERSE

PlaceNet

GracoNet

Fig. 1. Visualization of object placement results for different foreground objects and
background scenes on OPA test set. Foreground is outlined in red

TERSE

PlaceNet

GracoNet

Fig. 2. Visualization of object placement results for the same background scene with
different foreground objects on OPA test set. Foreground objects are outlined in red

the pairwise distance between the predicted placements and the corresponding
random vectors. Compared with generators in these baselines, our proposed
generator contains a novel GCM module that treats the object placement task
as a graph completion problem. The background is considered as different nodes
with different locations/sizes, whereas the foreground is considered as unique
node lacking for location/size. GCM aims to reasonably place the foreground
node among different background nodes to complete the graph. As introduced
in Section 3.1 in the main paper, GCM mainly consists of Node Extraction
Head (NEH) and Placement Seeking Network (PSN). We have investigated the
functionality of NEH and PSN via an ablation study in Table 4 in the main paper,
which shows that both NEH and PSN are crucial in GCM. Besides, according
to Table 1, without using the supervised path, our simplified version Pu + Lcls

s

containing GCM can already beat TERSE and PlaceNet in generation plausibility,
which proves the advantage of our GCM design.
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TERSE

PlaceNet

GracoNet

Fig. 3. Visualization of object placement results for the same foreground object with
different background scenes on OPA test set. Foreground objects are outlined in red

PlaceNet

GracoNet

PlaceNet

GracoNet

Fig. 4. Visualization of object placement diversity on OPA test set by sampling different
random vectors. Foreground objects are outlined in red

Usage of Positive Composite Images. Baseline methods simply use positive com-
posite images to train the discriminator, which wastes a lot of useful information.
In contrast, we introduce a dual-path framework to effectively investigate the
positive composite images. As introduced in Section 3.2 in the main paper, we
establish a bijection between the latent vector and the predicted object placement
in the supervised path. Specifically, we draw information from positive composite
images to predict the latent vector, which is then utilized to reconstruct the posi-
tive composite image via a regression block and a transformation function. Since
the two paths share weights in most network layers, the supervised path could
gradually guide the unsupervised path in the training stage. Under this design,
our model successfully discovers the underlined object placement knowledge and
produces satisfactory composite images during inference. By comparing Pu+Lcls

s

and Pu+Ps in Table 1, we can see that both generation plausibility and diversity
are greatly enhanced after adding the supervised path, which demonstrates the
power of supervised path in utilizing the positive composite images.
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Fig. 5. Failure cases in terms of occlusion between foreground and background

3 Visualization of Object Placement

Figure 1, Figure 2, Figure 3, and Figure 4 visualize more object placement results
for different methods on OPA test set, which supplement Figure 3 in the main
paper. On the one hand, Figure 1, Figure 2 and Figure 3 focus on generation
plausibility of TERSE [4], PlaceNet [5], and our method. Figure 1 displays
the object placement results from different foreground objects and different
background scenes. Figure 2 displays the combination of an identical background
scene with different foreground objects. Figure 3 displays the combination of an
identical foreground object with different background scenes. From these three
figures, we find that our method not only adapts better to different foreground
objects with reasonable locations and sizes conditioned on a given background,
but also predicts more robust foreground objects under diverse background scenes.

On the other hand, Figure 4 shows the generation diversity of PlaceNet [5] and
our method by sampling different random vectors conditioned on the same pair
of foreground and background. Our method outperforms PlaceNet by discovering
more possible reasonable locations on the background, as well as changing spatial
sizes of foreground correspondingly. In contrast, PlaceNet tends to meet mode
collapse problems in some situations. These visualized examples effectively prove
that our method simultaneously achieves better generation plausibility and
diversity, and reaches a satisfactory balance between these two aspects.

4 Discussion on Limitation

In object placement, an important concern is occlusion between foreground and
background. The generated composite images of a satisfactory object placement
model should be reasonable when the foreground object is placed over the back-
ground scene. In TERSE and PlaceNet, we find that the foreground sometimes
covers a counterintuitive background region, e.g., a sandwich wrongly covers the
hand in row 2 and column 5 of Figure 3. In our method, this phenomenon has
been alleviated, but it still exists in some generated composite images, as shown
in Figure 5. This is probably because our model lacks a module that explicitly
detects the occlusion relationship between foreground and background. GCM
leverages the graph completion strategy to deal with the occlusion problem in an
implicit way, which makes it surpass the baseline methods. However, incorpo-
rating a more explicit module to specifically address this problem may lead to
better results. This provides a guiding direction for the optimization of future
models on object placement.
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