
Learning Object Placement via Dual-path Graph
Completion

Siyuan Zhou , Liu Liu , Li Niu , and Liqing Zhang

MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, China
{ssluvble,Shirlley,ustcnewly}@sjtu.edu.cn, zhang-lq@cs.sjtu.edu.cn

Abstract. Object placement aims to place a foreground object over
a background image with a suitable location and size. In this work,
we treat object placement as a graph completion problem and propose
a novel graph completion module (GCM). The background scene is
represented by a graph with multiple nodes at different spatial locations
with various receptive fields. The foreground object is encoded as a special
node that should be inserted at a reasonable place in this graph. We
also design a dual-path framework upon the structure of GCM to fully
exploit annotated composite images. With extensive experiments on OPA
dataset, our method proves to significantly outperform existing methods
in generating plausible object placement without loss of diversity.

1 Introduction

Image composition [2,35,24] refers to the task of producing a realistic composite
image based on a background image and a foreground object, which can benefit a
wide range of applications of entertainment, virtual reality, and artistic creation.
The main concerns of this task include both appearance compatibility (e.g.,
shading, lighting), geometric compatibility (e.g., object size, camera viewpoint),
and semantic compatibility (e.g., semantic context) between foreground and back-
ground [2,20]. In this work, we deal with the object placement problem [18,31,38],
which is a sub-task of image composition and aims to generate reasonable loca-
tions and sizes to place foreground over background. Object placement can be
applied in various conditions. For example, during artistic creation, this technique
could provide designers with feedback and make recommendation for them when
they are placing objects. Another application is automatic advertising, which
aims to help advertisers with the product insertion in the background scene [41].
Object placement is a challenging problem, partially due to the lack of anno-
tated composite images. Recently, the first object placement assessment (OPA)
dataset [22] was released, which contains composite images and their binary
rationality labels indicating whether they are reasonable (positive sample) or not
(negative sample) in terms of foreground object placement.

As far as we know, only few works focus on general object placement learning,
like TERSE [31] and PlaceNet [38]. Both of them adopt adversarial training to
learn the reasonable distribution from real images, and predict a set of parameters
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Fig. 1. Illustration of our graph completion module (GCM). Background nodes are
extracted from different positions with different receptive fields. The unique foreground
node lacks location and size information. GCM infers the missing information of the
foreground node to complete the graph

to indicate locations and sizes for placing foreground objects during inference. The
drawbacks of these methods mainly come from two aspects. Firstly, they did not
explicitly consider the relation between the foreground object and the background
scene, which is of great importance in object placement. Secondly, they did not
fully exploit the annotated composite images. Based on these considerations, we
design our method to generate more plausible and diverse object placements.

To better exploit the relationship between the foreground object and the
background scene, we treat object placement learning as a graph completion
problem, as shown in Figure 1. On the one hand, the background image can
be considered as a graph with multiple nodes. Each node pays attention to
a local region on the background feature map with a specific spatial position
and receptive field. Multiple background nodes work together to form a graph,
enabling the model to discover a variety of plausible solutions on the background.
On the other hand, the foreground image can be seen as a special node that
should be inserted into the graph with suitable location and size. Note that the
background nodes have both feature information and location/size information,
whereas the foreground node only has feature information. We need to infer the
missing location/size information for the foreground node to complete the graph
and obtain a reasonable composite layout.

To complete the graph, we propose a novel graph completion module (GCM)
with two components: node extraction head (NEH) and placement seeking net-
work (PSN). NEH aims to transform foreground and background into a node
graph. We incorporate one foreground NEH to extract a foreground node and
another background NEH to extract multiple background nodes from different
positions and scales. PSN contains an attention layer and a regression block. The
attention layer attends relevant information from different background regions
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for the foreground object and produces an attended feature vector, which will
be transmitted to the regression block to predict transformation parameters for
object placement. Note that object placement is a multi-modal problem, that is,
the reasonable placement has many possible solutions given a pair of foreground
and background. This guides us to incorporate a random vector in the regression
block to generate diversified transformation parameters for object placement.

To take full advantage of annotated composite images, we design a dual-path
framework upon the structure of GCM, including an unsupervised path and a
supervised path. The whole framework follows an adversarial learning paradigm,
which is composed by a GCM (functioning as a generator) and a discriminator.
Transformation parameters produced by GCM are applied to predict reasonable
object placements, which are then pushed to the discriminator so as to check
the plausibility of the generated composite images. The distinction between two
paths lies in the provided data. The unsupervised path only utilizes pairs of
foreground and background as input, while the supervised path have additional
annotated composite images. Recall that GCM contains a random vector in
the regression block. In our implementation, two paths choose different types
of random vectors. In the unsupervised path, random vectors are sampled from
unit Gaussian distribution. In the supervised path, random vectors (also called
latent vectors) are encoded from composite images with positive annotation
via a VAE [15] encoder. We expect the generator to reconstruct the ground-
truth transformation parameters of each positive composite image from its
corresponding latent vector. Under this design, we establish a bijection between
the latent vector and the predicted object placement. This can avoid mode
collapse [43] and bring multifarious generation results. Since two paths share
weights in the generator and the discriminator, we hope that the supervised path
could gradually guide the unsupervised path to generate reasonable composite
images. During inference, by sampling random vectors in the unsupervised path,
we can obtain diverse solutions for object placement. Since the key idea of this
work is Graph completion, we name our network GracoNet.

In summary, the main contributions of this paper are: 1) We formulate object
placement as a graph completion problem and propose a novel graph completion
module (GCM). 2) We design a dual-path framework upon GCM to fully exploit
annotated composite images and overcome mode collapse issue. 3) Experiments on
OPA dataset demonstrate the superiority of our method in generation plausibility
and diversity when compared with existing works.

2 Related Work

2.1 Image Composition

The main challenges of image composition [24,29,16,37,17,3] lie in appearance
compatibility, geometric compatibility, and semantic compatibility between fore-
ground and background. Up to now, this task has been explored from a variety
of perspectives. For example, [42] refined composite images by distinguishing
them from natural photographs via a simple CNN model. [14] incorporated scene
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graphs to explicitly learn relationships between objects and generate images
from a computed scene layout. [2] introduced a new GAN architecture to explore
geometric and color correction at the same time. [35] pointed out the drawback of
cutting-edge methods and addressed it by a spatially-adaptive mechanism. [36,39]
explored the image blending field and achieved seamless connection between
foreground and background via blending boundary regions. [21,13] generated
realistic shadows w.r.t foreground objects over background scenes. [32,6,4,5]
proposed image harmonization to deal with color and lighting inconsistency in
composite images. Additionally, object placement has been studied to realize
geometric compatibility, which will be introduced next.

2.2 Object Placement

Learning object placement has attracted wide attention in recent years. Several
early methods [26,10] attempted to design explicit rules to place foreground
objects. The followers went a step further to automatically exploit reasonable
placement [30,20,18,31,19,38,41,1]. For example, [20] employed spatial trans-
former networks to learn geometric corrections that warp composite images for
appropriate layouts. [18] designed a two-step strategy to find where to place ob-
jects and what categories to place. [19] used VAE [15] to predict 3D locations and
poses of humans. [1] achieved self-consistency in training a composition network
by decomposing composite images back into individual objects. Compared with
existing works, we offer a new perspective by treating object placement as a graph
completion problem. Our dual-path framework could effectively boost generation
plausibility and diversity by discovering placement clues from supervisions.

3 Methodology

Suppose we have a background image Ibg ∈ R3×H×W and a foreground image
Ifg ∈ R3×H×W together with a binary object mask Mfg ∈ R1×H×W delineating
the foreground object, where H and W represent image height and width. Our
objective is to output transformation parameters t that transform foreground
and places it over background to obtain a composite image Ic ∈ R3×H×W with
a composite foreground mask Mc ∈ R1×H×W . By using Ft to represent the
transformation function with parameters t, we have

(Ic,Mc) = Ft(I
bg, Ifg,Mfg). (1)

The detailed definitions of t and Ft are left to supplementary. In the following
paragraphs, we will first introduce how GCM works to generate transformation
parameters t in Section 3.1. Then, we will introduce the GCM-based dual-path
framework that reasonably makes use of supervised information in Section 3.2.

3.1 Graph Completion Module (GCM)

The core module in our network is Graph Completion Module (GCM), which
takes in a pair of foreground and background as well as a random vector to
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Fig. 2. Our GracoNet has an unsupervised path and a supervised path built upon Graph
Completion Module (GCM). GCM consists of backbone network E , node extraction
head H, and placement seeking network S (a multi-head cross-attention layer and a
regression block). Loss functions are marked in red. More details are left to Section 3

produce reasonable placement (transformation parameter) for the foreground
object. GCM consists of three components: 1) backbone network E , 2) node
extraction head H, and 3) placement seeking network S. The backbone network
extracts general feature maps for the input images. The node extraction head
encodes graph nodes from the feature maps. After that, the placement seeking
network finds the relationships between the foreground node and the background
nodes, and finally outputs transformation parameters t that reasonably places
the foreground node to complete the graph.

Backbone Network. Our backbone network E takes in the concatenation
of a three-channel image and a one-channel mask to produce a feature map
F ∈ RC′×H′×W ′

. We use object masks Mfg for foreground images Ifg and apply all-
zero masks 0bg to background images Ibg. Formally, foreground and background
features are extracted by Ffg = E(Ifg,Mfg) and Fbg = E(Ibg,0bg).

Node Extraction Head (NEH). Given a feature map F as input and a
positive integer array n = [n1, n2, · · · , nL] as parameter, a node extraction head
Hn consists of L node extraction layers named G1,G2, · · · ,GL. The l-th layer Gl

evenly divides the feature map F into nl ×nl cells and sequentially encodes them
into a stack of n2

l nodes with dimension C, denoted by f (l) ∈ Rn2
l ×C . Each node

accounts for a spatial resolution of H′

nl
× W ′

nl
on the feature map. Hn gathers

the outputs from all L layers, and produces f = [f (1), f (2), · · · , f (L)] ∈ RN×C

with totally N =
∑L

l=1 n
2
l nodes. Formally, the workflow of Hn is denoted by

f = H(F;n). More implementation details of NEH can be found in Section 4.1.
In GCM, we incorporate a foreground head and a background head, as illus-

trated in Figure 2. The foreground head Hfg
n=[1] encodes a global foreground node

f fg ∈ R1×C from the foreground feature map Ffg, i.e., f fg = Hfg(Ffg; [1]). Mean-

while, the background head Hbg
n=[2,4,8] produces N = 84 local background nodes
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fbg ∈ R84×C from three scales at different locations, i.e., fbg = Hbg(Fbg; [2, 4, 8]).
On the whole, the unique foreground node and all the 84 background nodes work
together to form a node graph, as shown in Figure 1.

Placement Seeking Network (PSN). It is noteworthy that the node graph
is now incomplete, because the location/size of the foreground node awaits to be
determined. To address this issue, we introduce a placement seeking network S,
which consists of a multi-head cross-attention layer and a regression block.

First, we use a Transformer multi-head attention layer [33] to explore the
relationship between the unique foreground node f fg ∈ R1×C and the 84 local
background nodes fbg ∈ R84×C by treating f fg as query and fbg as key/value
(i.e., cross-attention). Inspired by Transformer that incorporates position encod-
ing [9,33,23,27,7,25] into the attention layer, we introduce placement encoding to
encapsulate both location and size information of fbg. Since different background
nodes have distinct positions/scales, they should have different placement encod-
ings. In our implementation, placement encoding includes a learnable pK (resp.,
pV ) for key (resp., value), which is based on but not exactly the same as the
encoding form in [27]. In general, we denote the output of the attention layer by
xatt = Attention(f fg, fbg) ∈ R1×C , and we will introduce the details as follows.

Specifically, we calculate the output o ∈ R1×do of each attention head:

o =

84∑
j=1

αj(f
bg
j WV + pV

j ), (2)

where coefficient αj represents the edge weight between the foreground node and
the j-th background node in the graph:

αj = Softmax

(
(f fgWQ)(fbgj WK + pK

j )⊤
√
do

)
. (3)

In Eqn.(2) and Eqn.(3), WQ,WK ,WV ∈ RC×do are linear learnable weights for
query, key, and value, respectively. pK ,pV ∈ R84×do are learnable placement
encodings. Following [33], we incorporate 8 attention heads and set do as C

8 in
our implementation. pK and pV are not shared among different attention heads.
In this way, different attention heads could potentially discover various placement
information, resulting in more diversified generation results. The attention output
o from different heads are concatenated and transformed with another linear
layer to obtain the final output xatt ∈ R1×C of the attention layer.

Second, we apply a regression block to predict transformation parameters
from the attention output. In order to generate composite images with diversified
reasonable placements, we incorporate a random vector z ∈ R1×Cz with dimension
Cz into the block. Specifically, the regression block takes in the concatenation
of xatt and z to predict transformation parameters t = Regression(xatt, z).
By sampling different z at test time, we can obtain a variety of reasonable t
conditioned on xatt. The detailed implementation for z is left to Section 3.2.
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3.2 Dual-path Framework

Our whole framework is designed as a Generative Adversarial Network (GAN) [11]
including a generator G and a discriminator D. The generator G is comprised
of a graph completion module (GCM) and a transformation function F . As
introduced in Section 3.1, GCM works by predicting transformation parameters
t from a tuple of (Ibg, Ifg,Mfg, z). Using t as parameters for F , we could follow
Eqn.(1) to obtain a generated composite image Ic with object mask Mc. Formally,
the workflow of our generator G is denoted by (Ic,Mc) = G(Ibg, Ifg,Mfg, z). Then,
the discriminator D takes the concatenated (Ic,Mc) as input, and predicts the
probability of reasonableness for the generated composite image.

To facilitate object placement learning, we adopt a dual-path adversarial
training framework containing an unsupervised path Pu and a supervised path
Ps. In Pu, we only have background images Ibg and foreground images Ifg with
object masks Mfg. In Ps, we are provided with additional annotated composite
images/masks Icpos/M

c
pos (resp., Icneg/M

c
neg) with positive (resp., negative) an-

notation in terms of object placement, as well as their corresponding original
Ibg/Ifg/Mfg that constitute them. Due to the difference of provided data, Pu

and Ps adopt distinct implementations for the random vector z. To distinguish
between representations in two paths, we use notation zu in Pu and zs in Ps,
respectively. The generated composite outputs in two paths are represented by
Icu/M

c
u and Ics/M

c
s with different subscripts correspondingly.

Unsupervised Path (Pu). In unsupervised path Pu, random vectors zu are
sampled from unit Gaussian distribution, i.e., zu ∼ N (0,1). Correspondingly,
the generator outputs (Icu,M

c
u) = G(Ibg, Ifg,Mfg, zu). We employ an adversarial

loss Ladv
u (G,D) to push the generated composite image to be undistinguishable

from positive composite images.

Ladv
u = Ezu∼N (0,1)[log(1−D(G(Ibg, Ifg,Mfg, zu)))]. (4)

Supervised Path (Ps). In supervised path Ps, random vectors (also called
latent vectors) zs are designed to be sampled from global features of positive
composite images via an encoder network as in VAE [15]. Given a labeled positive
composite image Icpos with object mask Mc

pos, we first calculate its ground-
truth transformation parameters tgt (see details in supplementary), which obeys
(Icpos,M

c
pos) ≡ Ftgt(I

bg, Ifg,Mfg). Then, our idea is to employ the latent vector
zs to help reconstruct tgt because zs contains potential information of positive
composite images. In this way, we establish a bijection between zs and (Icpos,M

c
pos).

Specifically, we first use the backbone network E to extract a feature map
Fc = E(Icpos,Mc

pos). Then we add a latent head Hlat
n=[1] to encode a global latent

node f lat = Hlat(Fc; [1]). After that, we employ the encoder network in VAE to
sample a latent vector zs from f lat. Following VAE, we adopt a KL divergence
loss Lkld

s = DKL(N (µzs
,σ2

zs
) ∥ N (0, 1)) that forces the distribution of zs to be
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close to zu. With zs, GCM predicts transformation parameters ts from a tuple
of (Ibg, Ifg,Mfg, zs). We utilize a reconstruction loss Lrec

s to force ts to approach
the ground-truth tgt, which is defined as a weighted MSE between ts and tgt
(see details in supplementary). Then, transformation function F with parameters
ts produces (Ics,M

c
s), which is finally delivered to the discriminator D. Similar to

Pu, we also adopt an adversarial loss in Ps:

Ladv
s = Ezs∼N (µzs ,σ

2
zs

)[log(1−D(G(Ibg, Ifg,Mfg, zs)))]. (5)

Additionally, we leverage both positive and negative composite images to update
the discriminator by maximizing the negative form of binary cross-entropy loss:

Lcls
s = logD(Icpos,M

c
pos) + log (1−D(Icneg,M

c
neg)). (6)

In summary, the loss function for Ps is defined by

Ls(G,D) = Lkld
s (G) + λLrec

s (G) + Ladv
s (G,D) + Lcls

s (D), (7)

where the hyper-parameter λ is set as 50. Note that Ladv
s (G,D), Lkld

s (G), and
Lrec
s (G) only handle positive composite images.
By using θG and θD to represent learnable weights in G and D, our optimiza-

tion objective in the whole framework is

min
θG

max
θD

Ladv
u (G,D) + Ls(G,D). (8)

Note that two paths share weights in both G and D. Under this design, the su-
pervised path could gradually guide the unsupervised path to generate composite
images with reasonable object placement. During inference, we only use the the
unsupervised path to generate composite images by sampling zu from N (0,1).

4 Experiment

4.1 Experimental Setting

Dataset and Evaluation Metrics. We perform experiments on OPA dataset
[22], which provides binary rationality labels for composite images. The dataset
includes 62074 (21376 positive / 40698 negative) composite images for training
and 11396 (3588 positive / 7808 negative) composite images for testing. These
annotated composite images in the dataset contain 1389 different background
scenes and 4137 different foreground objects from 47 categories.

Since our objective is to generate composite images with reasonable object
placements, we train our model on OPA train set and evaluate it on the 3588
positive samples of OPA test set. During inference, our model takes the fore-
ground/background of each positive test sample as input, and generates 10
composite images by randomly sampling 10 different zu in Pu.

We adopt user study, accuracy, and FID [12] to evaluate generation plau-
sibility and LPIPS [40] for generation diversity. User study will be introduced
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Fig. 3. Visualization of object placement results. Foreground is outlined in red

in Section 4.2. We extend SimOPA [22] as a binary classifier to distinguish
between reasonable and unreasonable object placements. We define accuracy as
the proportion of generated composite images that are classified as positive by
the binary classifier. FID is calculated between the composite images generated
by our method and the positive composite images in the test set. We compute
LPIPS for all pairs of composite images among 10 generation results for each
sample, and adopt the averaged LPIPS among all samples.

Implementation Details. Our backbone network is the beginning 34 layers
(including and before the fourth MaxPool layer) of VGG16 [28] with batch
normalization, except that the first Conv layer has four input channels. In NEH,
each node extraction layer Gl with parameter nl contains three groups of (3× 3
Conv, BN, ReLU), followed by a nl × nl AdaptiveAvgPool. The regression block
contains three fully connected layers (Fc1024, Fc1024, Fc3), followed by an
activation function (tanh(·) + 1)/2 that normalizes transformation parameters to
range (0, 1). We adopt the discriminator architecture in [34]. All images are resized
to 256×256 and normalized before being fed into the network (see supplementary
for more details). The VGG16 backbone is pretrained on ImageNet [8]. Our model
is trained with batch size 32 for 11 epochs on a single RTX 3090 GPU. We adopt
Adam optimizer with β1 = 0.5 and β2 = 0.999 for optimization. The learning rate
is initialized as 2× 10−5 for backbone and discriminator, and 2× 10−4 for the
remaining parts. For hyper-parameters, we set dimension C as 512 for nodes, and
Cz as 1024 for random vectors, which will be carefully analyzed in Section 4.4.

4.2 Comparison with Existing Methods

We compare our GracoNet with two baselines: TERSE [31] and PlaceNet [38].
Both of them are re-implemented on OPA dataset [22]. For the first baseline, we
retain the synthesizer network and the discriminator of TERSE, and remove the
target network. This is because the synthesizer is enough to generate composite
images that we need, and we do not need to use the target network for down-
stream tasks. For the second baseline, we directly use the complete PlaceNet
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Table 1. Quantitative object placement results for different methods on OPA dataset

Method
Plausibility Diversity

user study↑ acc.↑ FID↓ LPIPS↑
TERSE [31] 0.214 0.679 46.94 0

PlaceNet [38] 0.249 0.683 36.69 0.160
GracoNet 0.537 0.847 27.75 0.206

structure to predict object placement without further adjustment. Since TERSE
and PlaceNet had been proposed before OPA dataset was released, these object
placement methods did not include negative samples in their method. When
we conduct experiments on OPA dataset, unless otherwise stated, we fairly use
positive samples and negative samples together for both the baselines and our
method. Specifically, we use negative samples in baselines by introducing a binary
classification loss following Eqn.(6) to train the discriminator network.

Table 1 shows the quantitative object placement results for baselines and
our proposed method. Among different evaluation metrics, user study, accuracy,
and LPIPS are the most important ones. User study is conducted with 20
voluntary participants by comparing the composite images generated by TERSE,
PlaceNet, and our method. For each sample, every participant chooses the method
producing the most reasonable composite image. Then, each method is scored by
the proportion of participants who choose it. The final score of each method is
defined by the averaged score over all samples.

By comparison, our method significantly outperforms TERSE/PlaceNet in
generation plausibility (0.537 v.s. 0.214/0.249 for user study, 0.847 v.s. 0.679/0.683
for accuracy, and 27.75 v.s. 46.94/36.69 for FID). Also, our method achieves
better LPIPS in generation diversity than PlaceNet. Note that TERSE does
not incorporate randomness, so its generation diversity is zero. Generally, our
method performs satisfactorily and balances plausibility and diversity well.

Figure 3 visualizes some object placement results for different methods. As
illustrated, our method works better in predicting foreground locations and sizes
by comprehensively analyzing different background regions, verifying the effec-
tiveness of our designed GCM. In the supplementary, we show more visualizations
of generation plausibility and diversity from three aspects: 1) combination of an
identical background scene and different foreground objects, 2) combination of
an identical foreground object and different background scenes, and 3) sampling
different random vectors for the same pair of foreground and background.

4.3 Ablation Studies

Different Choices of Background Head Hbg. Table 2 displays four choices
of parameter n in the background head Hbg. Since the input size of images is
256× 256 and the backbone E contains four pooling layers, feature maps F are
16×16 in size. As default, we choose n = [2, 4, 8] to represent large-scale, medium-
scale, and small-scale background nodes, which pay attention to different regions
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Table 2. Ablation study on background head Hbg

Hbg with parameter n
Plausibility Diversity

acc.↑ FID↓ LPIPS↑
n = [2] 0.807 37.44 0.136
n = [2, 4] 0.821 34.23 0.146

n = [2, 4, 8, 16] 0.837 25.91 0.154

n = [2, 4, 8] 0.847 27.75 0.206

Table 3. Ablation study on different types of learnable placement encodings

pK pV shared across Plausibility Diversity
heads acc.↑ FID↓ LPIPS↑

- 0.793 28.22 0.120
✓ ✓ 0.809 28.02 0.133

✓ ✓ 0.844 25.14 0.127
✓ ✓ ✓ 0.851 29.09 0.170
✓ 0.836 26.85 0.156

✓ 0.839 26.22 0.154

✓ ✓ 0.847 27.75 0.206

on the feature map. In detail, each of the 4 large-scale (resp., 16 medium-scale,
64 small-scale) background nodes focuses on a local receptive field of 8× 8 (resp.,
4× 4, 2× 2) region on F. In Table 2, we show more choices of parameter n in
Hbg. When n = [2] or n = [2, 4], the model misses small-scale information, so
the placement process lacks details in some local regions. When n = [2, 4, 8, 16],
the model tends to learn pixel-wise knowledge, which is redundant in object
placement learning and adversely affects network optimization. Overall, our choice
n = [2, 4, 8] achieves a good balance.

Different Types of Learnable Placement Encoding. As discussed in
Section 3.1, we adopt placement encoding pK and pV in the attention layer.
In our implementation, pK and pV are both learnable and not shared across
different attention heads. In this paragraph, we discuss more variants of placement
encoding, as shown in Table 3. Without placement encoding, the generation
plausibility and diversity witness a considerable decrease, because location and
size information of different background nodes are missing under this condition.
With a single pK or pV , the model performs a little better in plausibility, but the
diversity is still unsatisfactory. Using pK and pV together works best. If placement
encodings are shared across attention heads, different attention heads could not
learn diversified attention regions for object placement, resulting in comparably
low generation diversity. Therefore, we choose to use pK and pV together, and
make them independent across different attention heads. Comprehensively, our
choice considers both plausibility and diversity to achieve the best results.
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Table 4. Ablation study on functionality of GCM

Fg/Bg Feature Placement Plausibility Diversity
Extractor Finder acc.↑ FID↓ LPIPS↑

global vector concat+fc 0.793 33.97 0.082
NEH concat+fc 0.828 31.36 0.144

NEH PSN 0.847 27.75 0.206

Table 5. Ablation study on loss functions

Method
Plausibility Diversity

acc.↑ FID↓ LPIPS↑
w/o Ladv

u 0.790 32.64 0.038

w/o Ladv
s 0.800 34.76 0.057

w/o Lcls
s 0.734 34.62 0.033

w/o Lkld
s 0.844 29.26 0.199

w/o Lrec
s 0.767 25.53 0.131

Ours 0.847 27.75 0.206

Functionality of GCM. As introduced in Section 3.1, our graph completion
module (GCM) consists of two important components: node extraction head
(NEH) and placement seeking network (PSN). Table 4 provides an ablation study
on GCM by replacing NEH or PSN with naive network structures. In Table 4,
the first experiment uses split branches to extract global features for foreground
and background respectively. Then the two global features are concatenated
and regressed with several fc layers to obtain the transformation parameters for
object placement. Compared with the first experiment, the second one uses NEH
to extract features by considering different background locations and sizes. The
background nodes are then averaged and concatenated with the foreground node
to predict transformation parameters. The last experiment is our method that
combines NEH for feature extraction and PSN for placement finding. Comparing
the results of the first two experiments, we find that using NEH to explicitly
encode different background locations and sizes is beneficial for object placement.
By comparing the results of the last two experiments, PSN works better in
discovering relationships between foreground and background, and successfully
establishes a reasonable connection between foreground node and background
nodes in the node graph. In summary, both NEH and PSN are crucial in our
method. They work together to ensure the functionality of our proposed GCM.

Utility of Different Loss Functions. Table 5 gives an ablation study on
different loss functions. Except for Lkld

s , deleting any loss makes the performance
drop sharply on plausibility or diversity, especially for Lcls

s and Lrec
s . Although

our model still performs passably without Lkld
s , adding this loss can bring some

improvement. Generally, every loss makes up an important part, and they work
together to guarantee the effectiveness of our method.
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Table 6. Choices of hyper-parameter Cz

Cz
Plausibility Diversity

acc.↑ FID↓ LPIPS↑
256 0.807 36.04 0.151
512 0.838 35.53 0.175
2048 0.827 28.10 0.208
4096 0.792 27.39 0.219

1024 0.847 27.75 0.206

Table 7. Choices of hyper-parameter λ

λ
Plausibility Diversity

acc.↑ FID↓ LPIPS↑
1 0.820 23.04 0.183
10 0.823 29.93 0.190
25 0.847 28.57 0.193
100 0.821 24.62 0.174

50 0.847 27.75 0.206

4.4 Hyper-parameter Analyses

Dimension Cz of Random and Latent Vectors. As introduced in Section 4.1,
we set the dimension of nodes as C = 512, and set the dimension of random vector
zu and latent vector zs as Cz = 1024. The value of C is chosen by considering
both hardware resource occupation and model performance. Table 6 analyzes
different choices of Cz in the range of [256, 4096]. When Cz increases, accuracy
first increases, meets a peak at 1024, and then decreases. Meanwhile, LPIPS
increases and FID decreases generally. For a balanced consideration between
plausibility and diversity, we choose Cz = 1024 in our implementation.

Coefficient λ of Reconstruction Loss. As discussed in Section 4.3, recon-
struction loss Lrec

s plays an important role in the supervised path. It helps
our model reconstruct ground-truth transformation parameters from positive
composite images, enabling the supervised path to guide the unsupervised path
through the unified training of two paths. In Eqn.(7), reconstruction loss Lrec

s

has a hyper-parameter λ indicating the coefficient/weight of this loss during
optimization. Table 7 displays different choices of λ in the range of [1, 100]. As
can be analyzed, our model achieves comparably good plausibility and diversity
when λ = 50, which becomes our default choice in all experiments.

4.5 Visualization of Multi-head Attention

In Section 3.1, we introduce multi-head attention with placement encoding to
discover the relationship between the unique foreground node and totally 84
background nodes. Eqn.(3) defines attention coefficient αj (1 ⩽ j ⩽ 84) in each
head to represent the edge weight between the foreground node and the j-th
background node in the node graph. Specifically, we use jmax to denote the index
with the maximum edge weight:

jmax = argmax
j

αj j = 1, 2, · · · , 84. (9)

Since we have 8 attention heads, we use j
(k)
max with 1 ⩽ k ⩽ 8 for differentiated

representations in distinct heads. In the k-th attention head, j
(k)
max corresponds to

a local background region with a specific location and size encoded by the jmax-th
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Fig. 4. Visualization of background regions (marked in red) that the multi-head attention

layer pays the most attention to in each head. j
(k)
max is the index of background node

with the maximum attention coefficient in the k-th head. See details in Section 4.5

background node. According to the definition of background nodes in Section 3.1,

j
(k)
max corresponds to a local background region with scale H

2 × H
2 (resp., H

4 × H
4 ,

H
8 × H

8 ) when 1 ⩽ j
(k)
max ⩽ 4 (resp., 5 ⩽ j

(k)
max ⩽ 20, 21 ⩽ j

(k)
max ⩽ 84). In Figure 4,

we visualize the local background region attended by j
(k)
max for each attention head,

which represents for the region that the k-th head pays the most attention to on
the background scene. As illustrated, the multi-head attention layer successfully
discovers diversified locations and sizes of potential background regions for object
placement by learning the relationship between the unique foreground node
and multiple background nodes. We could also conclude from Figure 4 that the
most attended regions are reasonable enough for placing the zebra because only
near-earth locations are activated, which accords with common sense.

5 Conclusion

In this work, we have proposed a novel graph completion module (GCM) for
the object placement task to explicitly explore the relationship between the
foreground object and the background image. We have also designed a dual-path
framework upon the GCM structure, in which the supervised path provides
additional cues for the unsupervised path so as to significantly enhance the
performance. Extensive experiments on OPA dataset have demonstrated the
effectiveness of our proposed method.
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