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Abstract. Recently, learning-based image compression methods that
utilize convolutional neural layers have been developed rapidly. Rescal-
ing modules such as batch normalization which are often used in con-
volutional neural networks do not operate adaptively for the various
inputs. Therefore, Generalized Divisible Normalization(GDN) has been
widely used in image compression to rescale the input features adap-
tively across both spatial and channel axes. However, the representation
power or degree of freedom of GDN is severely limited. Additionally,
GDN cannot consider the spatial correlation of an image. To handle the
limitations of GDN, we construct an expanded form of the adaptive scal-
ing module, named Expanded Adaptive Scaling Normalization(EASN).
First, we exploit the swish function to increase the representation abil-
ity. Then, we increase the receptive field to make the adaptive rescaling
module consider the spatial correlation. Furthermore, we introduce an
input mapping function to give the module a higher degree of freedom.
We demonstrate how our EASN works in an image compression network
using the visualization results of the feature map, and we conduct ex-
tensive experiments to show that our EASN increases the rate-distortion
performance remarkably, and even outperforms the VVC intra at a high
bit rate.

Keywords: Image Compression, Adaptive, Rescaling, End-to-End Learn-
ing

1 Introduction

Image compression is one of the most important and fundamental tasks in im-
age processing and computer vision. There are a countless digital images in the
world, and numerous new images are generated every day. Therefore, image com-
pression is essential to save and transmit these massive images efficiently. Many
classic image compression codecs have been developed, including JPEG [29],
JPEG2000 [24], HEVC [26], and VVC [22]. They use several classic methods
such as transformation, quantization, and entropy coding to reduce redundant
information in image.

Recently, deep learning-based image processing techniques have emerged
that have shown superior performance in many computer-vision tasks. There
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(a) Simple version of GDN [3] (b) Simple version of Ours

Fig. 1: Comparison between simple version of GDN [3] and ours. a and b are the
learnable scalar parameters. We exploit the swish [25] function (b) instead of
the arithmetic sigmoidal function (a) from GDN [3].

have been many attempts to apply deep learning-based methods to image com-
pression, and convolutional Variational Autoencoder(VAE)-based architecture,
which has an hourglass-shape with the encoder and decoder, is the mainstream
in image compression. Ballé et al. [3] propose a differentiable method for both
quantization and bit estimation, and entropy can be optimized directly using
this method effectively. Then, HyperPrior [4], which uses additional bits to
model the latent vectors as Gaussian distribution, has been proposed to fur-
ther reduce redundancy in latent vectors. Since then, various models have been
proposed [8,9,13,17,19,20,34], and many models now compete with VVC intra
of the traditional codec.

Many methods that use a convolutional VAE structure [3,4,9,13,17,19,20,34]
utilize Generalized Divisible Normalization (GDN) [3] instead of using both
existing rescaling modules and activation functions, such as batch normaliza-
tion [14] and ReLU [2] function. The reason is that existing rescaling modules
and activation functions cannot operate adaptively for the various inputs since
they apply the same value or manner to all spatial locations equally. In con-
trast, GDN controls the input value scale of intermediate features adaptively
and non-linearly across spatial and channel axes.

However, GDN has several limitations. First, the representation power of
GDN is severely limited. The reason is that GDN can only have non-negative
learnable parameters, and the input features of GDN should be squared since
they are included within the square root of GDN. We empirically find that
increasing the receptive field of GDN or adding more layers cannot increase the
performance due to the square root term in the equation of GDN. Second, GDN
has only a 1× 1 receptive field, which cannot deal with the spatial correlation of
images. Natural images have strong redundancy between adjacent pixels, thus
spatial correlation must be considered for image compression. Third, GDN has a
limitation in non-linearity because it has a only single 1× 1 convolutional layer.
Finally, GDN is unstable at the training stage when we use a larger convolutional
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kernel or add more layers. Although GDN is initialized as a scaled identity matrix
for convergence, it is insufficient to stabilize the adaptive rescaling module.

In this paper, we propose Expanded Adaptive Scaling Normalization(EASN),
which is an expanded form of the adaptive scaling module, to overcome the limi-
tations of GDN. First, we exploit the swish [25] function instead of the sigmoidal
function of GDN, as shown in Fig. 1. Since the swish function has no square root,
both the non-negative and negative learnable parameters are available, and the
input feature does not need to be squared. This allows the scaling module to
utilize the full range of parameters and inputs. Second, we increase the recep-
tive field and add more layers, which allows the scaling module to consider the
spatial correlation of the features and approximate more complex functions, and
utilize the skip connection to stabilize the training. Additionally, we add an
input mapping function to the scaling module to transform the input features
to increase the degree of freedom of modules. Furthermore, we use the features
before the spatial resolution is reduced by downsampling for a scaling function,
and obtain a better performance. Moreover, we show that simply increasing the
layers of EASN does not increase the performance by ablation study, and we
propose a structure that makes the EASN deeper effectively to further improve
performance. Finally, we visualize the output feature map of the scaling function
of low and high bit rate models and reveal that our EASN can adjust and scale
the highfrequency components in accordance with the bit rate. We evaluate our
model on the Kodak dataset [16] and CLIC2021 validation dataset [10], and our
EASN achieves the rate-distortion performance dramatically, even outperforms
VVC intra at a high bit rate.

2 Related Works

Traditional Codec. There are various traditional hand-crafted image compres-
sion methods. JPEG [29], JPEG2000 [24], HEVC [26] and VVC [22] are very
popular image compression standard methods. To compress and reduce spatial
redundancy of the image effectively, encoder modules divide the image into mul-
tiple blocks, and convert spatial domain of the image to the frequency domain
with traditional transforms such as discrete cosine transform(DCT). After trans-
forming, quantization and entropy coding, like Huffman coding, are conducted.
Moreover, HEVC or VVC have many modes of each module and they check
every case to get best rate-distortion performance.
Learning-based. Recently, deep learning-based image processing methods have
emerged and shown superior performance in various computer vision tasks, and
there have been many efforts to utilize deep learning-based methods for image
compression. In the first stage, some works [27,28] utilize recurrent neural net-
works for image compression. These methods can have variable bit rates using
the recurrent scheme. However, entropy of the image is not optimized directly
since the constraint of entropy is not in the loss function, thus these methods
show lower performance than JPEG2000.

The second stage, which is convolutional VAE-based architectures, has be-
come the mainstream in image compression with optimizing entropy directly
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through loss function. From Ballé et al. [3], minimizing the expectation of Kullback-
Leibler divergence is equal to minimizing distortion and entropy at the same time
using a variational autoencoder. Furthermore, they [3] proposes a differentiable
method for both quantization and bit estimation to consider the bit rate con-
straint at the training step. They add uniform random noise in the range of
[−0.5, 0.5] to the latent representation y, which is the output of encoder ga. By
adding the noise, they can approximate the probability mass function (PMF)
of the quantized latent representation ŷ with integrating the probability density
function (PDF) of latent representation y. Using approximated PMF, they [3]
directly optimize the entropy of the image with the following total loss function.

L = −E[log2P ] + λ ·D(x, x̂) (1)

where P is the estimated PMF of the latent representation, and D is the distor-
tion between the original image x and the reconstruction x̂. Thereafter, Hyper-
prior [4] introduces an auxiliary convolutional autoencoder to utilize side infor-
mation to model the latent representation y as a Gaussian distribution to further
reduce the spatial redundancy in the latent representation y. Through these,
the performance of convolutional VAE-based image compression has greatly im-
proved. However they [3,4] are still transform-based models, and there are no
spatial or context prediction modules. Some works [17,19] predict the context
of an image by using an autoregressive context prediction module with latent
representation y and Hyperprior. Another work [13] proposes a parallelizable
context model to accelerate the sequential process of the autoregressive context
prediction module. Further works [8,9] consider the latent representation y as
a more generalized distribution such as the asymmetric Gaussian or Gaussian
mixture distribution.

3 Preliminary

Existing rescaling modules and activation functions such as batch normaliza-
tion [14] or ReLU [2] function are not adaptive since they operate the same way
to all spatial location equally. To deal with this problem, Ballé et al. [3] propose
GDN, which rescale input features adaptively and non-linearly across spatial
and channel axes. GDN is used in image compression neural network instead
of batch normalization [14] or ReLU [2] functions. GDN of normal version gi is
used in the analysis transform, which is encoder, and inverse version ginvi is used
in the synthesis transform, which is decoder.

gi(m,n) = xi(m,n) · 1√
βi +

∑
j γij(xj(m,n))2

(2)

ginvi (m,n) = xi(m,n) ·
√

βi +
∑
j

γij(xj(m,n))2) (3)
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where i is output channel index, and j is input channel index. We can interpret
γ as the 1× 1 convolutional kernel, and β as the bias. (m,n) are coordinates of
spatial height and width axis. If we focus on the normal version of GDN, gi, it
can be simplified as follows.

g =
x√

a+ bx2
(4)

where a and b are non-negative scalar learnable parameters. Output g is adap-
tively changed according to input x, since scaling factor function, which is
rescaling part s(x) = 1/

√
a+ bx2, is various with respect to input features x.

Therefore, we can consider GDN as the adaptive rescaling module. Furthermore,
Fig. 1a shows graph of output y with respect to input x with different values
of a and b. We can find that the network can learn non-linear sigmoidal shape
using a and b, and can use it as a learnable sigmoidal shape activation function.
GDN uses multivariate parameters for a and b instead of the scalar parameter,
thus GDN is a multivariate sigmoidal function.

4 Method

In this section, we introduce the limitations of GDN [3] and our proposals to
cope with the limitations. Furthermore, we propose more deeper scaling module
architecture to obtain higher performance.

The scaling module of GDN can be expressed as follows.

g(x) = x · s(x) (5)

where x is an input feature and s(·) is a scaling factor function. We only consider
the normal version of GDN gi in Eq. 2 for scaling factor function s(x) in this sec-
tion. We replace the inverse version of GDN ginvi in Eq. 3 with the normal version
gi to consider only a single case when we modify the scaling factor function s(x)
in GDN. We empirically confirm that the network shows the same rate-distortion
performance when we only use the normal version of GDN. Fig. 2a represents
the result that Joint Autoregressive [19] model with only normal version of GDN
shows the same performance as the base Joint Autoregressive model. Therefore,
we only use the normal version for simplicity.

4.1 Swish Function
In this section, we describe that GDN [3] has limited representation power or
degree of freedom, and we show that using a swish [25] function for an adaptive
rescaling module allows it to cope with the problem of GDN.

Considering the scaling factor function s(x) of GDN,

s(x) =
1√

βi +
∑

j γij(xj(m,n))2
(6)
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(a) JA [19] with only normal GDN [3] (b) Representation power limitation

Fig. 2: (a): There is no difference in performance even if only the normal version
of GDN [3] is used. (b): Red points denote Eq. 6 of GDN, and blue points
indicate Eq. 8 of ours. The performance increases steadily with Eq. 8 of ours.
By contrast, Eq. 6 of GDN does not show a performance increase owing to
limitations of representation power or degree of freedom.

we can notice that βi+
∑

j γij(xj(m,n))2 should be non-negative. First, to keep
it non-negative, GDN set βi and γij as non-negative learnable parameters, which
limits the degree of freedom of the rescaling module. Second, the input features x
should be squared to be non-negative. This leads to information loss because the
two different values that have the same magnitude but opposite sign attain the
same value after the square operation. Finally, the scaling factor function of Eq. 6
is even symmetric, and it equally scales for inputs that have the same magnitude
but opposite sign. These characteristics significantly limit the representation
power and degree of freedom of the rescaling module. Therefore, we modify the
scaling factor function s(·).

In Eq. 6, βi is a vector with output channel axis i, and the convolution
operation

∑
j γijx

2
j is calculated along the input channel axis j. Thus, we can

factorize Eq. 6 by 1√
βi

with δij =
γij

βi
. Then, 1√

βi
can be considered a constant

scaling factor along the input channel axis of the next convolutional layer. This
means that the convolution kernel of next layer can learn a constant scaling
factor 1√

βi
, thus we can ignore this term. Therefore, we can consider the scaling

factor function as below.

s̄(x) =
1√

1 +
∑

j δij(xj(m,n))2
(7)

We replace the even symmetric function of Eq. 7 with a sigmoid function that
has the same output range of [0, 1], but is a bijective function as follows.
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Fig. 3: Our EASN and EASN-deep. N is output channel, and s1, s2 represent
stride 1 and 2, respectively.

ŝi(x) =
1

1 + eβi · e[F(x)]i
(8)

where βi represents one-dimensional learnable parameters along the output chan-
nel axis and F(·) represents an arbitrary convolutional neural block. Using Eq. 8,
all learnable parameters can have both negative and non-negative values, which
have a higher degree of freedom than Eq. 7. Moreover, input feature x does
not need to be squared, and the scaling factor function of Eq. 8 can rescale the
different inputs that have the same magnitude but opposite sign with different
scale values.

We directly compare the scaling factor function of Eq. 6 from GDN and Eq. 8
of ours in Fig. 2b. All points in Fig. 2b are based on Joint Autoregressive [19]
models with only the normal version of GDN and the skip connection for stabil-
ity. Red points represent Eq. 6 from GDN, and blue points denote Eq. 8. The
circle represents the models with only one 1× 1 convolution, and the triangle is
the model in which the 1× 1 convolution is replaced by a 3× 3 convolution. The
rectangle represents the models with an additional 1 × 1 convolutional layers.
We use the ReLU [2] activation function between the 1× 1 convolutional layers
of Eq. 6 from GDN to maintain the non-negative values, and we use a Leaky
ReLU activation function for Eq. 8. As we can see, in the case of Eq. 6 from
GDN, which is red points, even if the receptive field is expanded or more layers
are added, the performance does not increase since the square root term limits
the representation power or degree of freedom of the scaling module. In contrast,
Eq. 8, which is blue points, shows steady performance improvements as the scal-
ing module expands. Additionally, the green circle point in Fig. 2b represents
Eq. 8 with a 3× 3 convolution and the squared input. We can confirm that the
squared input limits the representation power or degree of freedom of the net-
work and decreases the performance. Therefore, we can confirm that replacing
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Fig. 4: Comparison results with feature location. EASN-f uses features before
down or upsampling for scaling factor function and input mapping function.
Both models have a 5× 5 receptive field, including down or upsampling layer.

Eq. 6 with Eq. 8 allows networks to overcome the limitations of representation
power or degree of freedom.

4.2 EASN

GDN [3] has a single 1 × 1 convolution layer. Thus, GDN cannot deal with
the spatial correlation, which is an important key in compression to reduce the
spatial redundancy, and cannot approximate a more complex function. Since we
can now utilize full representation power with a swish [25] function from Sec. 4.1,
the scaling module can be expanded to consider the spatial correlation or obtain
a higher degree of freedom.

We use two 3 × 3 convolutions with an intermediate Leaky ReLU activa-
tion function for the scaling factor function ŝ(x) to increase the receptive field
and make a function ŝ(x) to be more complex. For these expansions, we add a
skip connection to stabilize the training. Without a skip connection, such ex-
pansions make training unstable and training loss diverges very early. In many
works [12,23,31,33,11,21,7], a skip connection is used to ensure stability when
two different features are multiplied in the neural network. Therefore, we use
a skip connection. Furthermore, we introduce another function, input mapping
function m(x), to provide the scaling module with the option of transforming the
input features to increase the degree of freedom. We call this rescaling module,
Expanded Adaptive Scaling Normalization(EASN), and the final equation for
EASN is as follows.

EASN(x) = m(x) · ŝ(x) + x (9)
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Furthermore, we find that it is useful to utilize features before down or up-
sampling for both the scaling factor function and input mapping function. If we
use these features, we can get slightly better performance even with the same
receptive field. If we compare two different models in Fig. 4 that have the same
5× 5 receptive field including the down or upsampling layer, the performance of
EASN-f is shown to be slightly better than the EASN-b model.

Finally, we find that simply adding more layers to the scaling module does
not efficiently lead to performance increases from ablation study results. There-
fore, we propose a deeper EASN module called EASN-deep to obtain higher
performance. As shown on the right-hand side of Fig. 3, we cascade the EASN-
f(front) and EASN-e(back) modules from Fig. 5 that have a 5 × 5 convolution
for the input mapping function. With this scheme, EASN-deep rescales the in-
put feature twice, which leads to performance increases more efficiently. More
experimental details of EASN-deep are demonstrated in Sec. 5.4.

5 Experiments

5.1 Implementation Details

We use MSE loss or MS-SSIM [30] loss to measure distortion for each PSNR or
MS-SSIM performance comparison. Total loss is given as follows.

Ltotal = −E[log2P ] + λ ·D(x, x̂) (10)

where P is estimated PMF, x is the original image, and x̂ is the reconstructed
image. In case of MSE loss for D, we use D(x, x̂) = 2552 ·MSE(x, x̂), and for
MS-SSIM loss, we use D(x, x̂) = (1 − MSSSIM(x, x̂)). We set Hyperprior [4]
and Joint Autoregressive [19] model as the baseline. In case of EASN, we replace
normal and inverse GDN [3] of baseline with ours. For EASN-deep, we replace
both down or upsampling convolution and GDN with ours, because the down
or upsampling process is included in the EASN-deep module. Rate distortion
trade-off parameter λ is set to [0.005, 0.010, 0.020, 0.035, 0.080, 0.180] for MSE
distortion loss, and to [7, 15, 30, 48, 110, 220] for MS-SSIM distortion loss. N
is the base channel number, and M is the output channel number of the latent
representation y. For the Hyperprior baseline, we select N = 128, M = 192 for
the front two λ values. For the other λ values, we set N = 192, and M = 320.
For the Joint Autoregressive baseline, we set N = 192, M = 192 for the front
two λ values and we select N = 192, M = 320 for the other λ values.

5.2 Training
Basically, we follow the training process of CompressAI [5] framework. We use
Vimeo90K [32] dataset for training. We randomly crop training images into
256×256 size, and randomly flip them horizontally. We use Adam optimizer [15]
with batch size of 16, and learning rate is set to 1e−4 initially. We evaluate
every epoch using validation set of COCO [18] dataset to get the total loss of
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(a) Ablation of EASN (b) Ablation of EASN-deep

EASN-a EASN-b EASN-c EASN-d EASN-e

ŝ(x) [ 1 × 1 ] × 2 [ 1 × 1 ] × 2 [ 3 × 3 ] × 2 [ 3 × 3 ] × 2 [ 3 × 3 ] × 2

m(x) I [ 1 × 1 ] × 1 [ 1 × 1 ] × 1 [ 1 × 1 ] × 1 [ 5 × 5 ] × 1

h(x) 0 0 0 [ 1 × 1 ] × 1 0

Fig. 5: Ablation study result. [ k × k ] × L means using L number of k × k
convolution. I is identity function. 0 means multiplying zero.

validation dataset. We crop the COCO validation dataset at the center with a
size of 256×256. We reduce learning rate of factor 0.5 if the validation loss does
not improve during 10 epochs. We stop training when the learning rate decrease
4 times. In case of MS-SSIM loss, we fine-tune the pretrained model with MSE
loss using initial learning rate of 0.5e−4 and stop training when the learning rate
decreases 3 times.

5.3 Evaluation

We use Kodak dataset [16] for evaluation for both PSNR and MS-SSIM metrics.
Moreover, we use CLIC2021 validation dataset [10], which consists of 41 high
resolution images for confirming robustness for more high resolution images. To
evaluate rate-distortion performance, we measure bits per pixel (bpp). We save
the bitstreams to a hard disk drive to get a physical file size and divide the size
with the total pixels number of the image to get bpp. We draw rate-distortion
(RD) curves to check the compression performance.

5.4 Ablation Study

Fig. 5a represents the ablation study results of EASN, and Fig. 5b shows the
results of EASN-deep. We expand existing GDN [3] to the following equation.

EASN(x) = m(x) · ŝ(x) + h(x) + x (11)
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where h(x) is shift function. The table from Fig. 5 shows module structure of
each modules. [k×k]×L represents that it has L number of k×k convolutions. I
is identity function, and 0 means that those modules do not use a corresponding
function. GDN [3] and EASN modules with skip connection have a worse per-
formance than original GDN of Joint Autoregressive [19]. However, if we look
at the Fig. 5a, we can make up slightly poor performance using only one more
1×1 convolution (EASN-a). EASN-a from Fig. 5 shows the same performance as
the GDN-based Joint Autoregressive [19] model. As we add 1× 1 convolution to
input mapping function m(x) (EASN-b), and replace 1×1 convolution of scaling
factor function ŝ(x) with 3×3 convolution (EASN-c), performance of the EASN
modules increase steadily. In case of EASN-d, we use shift function with 1 × 1
convolution. However, we find that the performance does not increase. EASN-e
has 5 × 5 convolution for input mapping function. Although the performance
slightly increases, but considering the parameter numbers, we select EASN-c for
the final EASN.

Fig. 5b shows the performance comparison results of combining EASN-f with
EASN-c, EASN-d, and EASN-e, which show the highest performance within
EASN ablation results. In case of EASN-g, we simply add two more 3× 3 con-
volution layers to scaling factor function ŝ(x) of EASN-f and one more 5 × 5
convolution layer to input mapping function m(x) of EASN-f to make same re-
ceptive field as the EASN-e + EASN-f module. As shown in Fig. 5b, we can
confirm that simply adding more layers decreases the performance. Therefore,
for constructing a deeper adaptive rescaling module effectively, we cascade the
EASN-f module with other EASN modules. We find that the receptive field of
input mapping function is important in terms of cascading two modules. Using
5 × 5 convolution for input mapping function (EASN-e) shows significant per-
formance improvement. Therefore, we choose the combination of EASN-f(front)
and EASN-e(back) modules for EASN-deep version.

5.5 Rate Distortion Performance

For comparison, we use traditional codecs of JPEG [29], JPEG2000 [24], BPG [6]
which is image codec based on HEVC [26], and VTM [1] which is the official
test model of VVC [22]. For learned image compression method, we use Hyper-
Prior [4], Joint Autoregressive [19] and GMM [8]. For GMM, we use two different
version, Anchor and Attention. The only difference between them is existence
of the attention module. We adapt our EASN and EASN-deep to HyperPrior
and Joint Autoregressive models which have a GDN-based structure. We plot
two separate figures optimized by MSE or MS-SSIM [30], respectively. In case
of MS-SSIM, we use log scale for visualization.

Fig. 6a shows the rate-distortion performance with PSNR metric on both
dataset. HP and JA represent HyperPrior and Joint Autoregressive, respec-
tively. As we can see, HP + EASN outperforms HyperPrior that has a similar
performance with traditional BPG, and HP + EASN-deep model shows higher
performance than the HP + EASN model. The JA + EASN model outperforms
the Joint Autoregressive model, and even shows similar performance with GMM



12 C. Shin et al.

(a) RD performance with PSNR (b) RD performance with MS-SSIM

Fig. 6: Rate-distortion Performance comparison results on Kodak [16] and
CLIC2021 validation dataset [10].

Anchor model. At high bit rate, Our JA + EASN model reach the rate-distortion
performance of traditional codec of VTM. In case of JA + EASN-deep model,
although its performance is similar with JA + EASN model at low bit rate,
our model outperforms all other learning-based and traditional codecs at high
bit rate on both datasets. Fig. 6b shows the performance comparison results
with MS-SSIM metric. They show a similar tendency to PSNR results. HP +
EASN and JA + EASN models outperform the baselines of HyperPrior and
Joint Autoregressive, respectively. The HP + EASN-deep model has a higher
performance than our HP + EASN models, and our JA + EASN-deep model
outperforms all other learning-based models on both datasets.

5.6 Scale Feature Map

In this section, we demonstrate how the EASN module works along the bit rates
with the visualization results of feature maps of the scaling factor function ŝ(x).
A low bit rate model discards many high frequency information to obtain a high
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Fig. 7: Visualization of high frequency components of scaling factor function
output ŝ(x) with kodim21 image from Kodak dataset [16]. The top-right image
represents the log scale gradient result of original image. The left column images
denotes high bit rate results, and right column images represents low bit rate
results.

compression rate. Whereas, a high bit rate model should generate reconstructed
images with low distortion that comprise many fine details. To confirm the dif-
ference between various bit rate models, we remove low-frequency components
to focus on high frequency details. Intuitively, the two models with different bit
rates may rescale the blue color pixels with different values, such as 0.1 and 0.8,
respectively. Therefore, the exact scale values are not important, and we should
focus on the variety of scale values in accordance with the pixel variety of input
images. We remove the low-frequency components using the following equation.

xhf
avg =

1

N

N∑
n=0

xn − (xn ∗ k3×3) (12)

where k3×3 is the mean filter with a kernel size of 3 × 3, and 1/9 value for all
components. Symbol ∗ is a convolution operator, n indicates channel axis, and
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N is the channel number. x is the feature map from the scaling factor function
ŝ(x) of the first EASN module in the encoder.

Fig. 7 is the visualization results of the high frequency components of the
feature x of the scaling factor function ŝ(x) with the kodim21 image from the
Kodak dataset [16]. The top-left image is the original image, and the top-right
image is the gradient of the original image with log scale. The vertical axis rep-
resents each module, the left column images represent high bit rate models, and
the right column images represent low bit rate models. For EASN-deep model,
there are two scaling factor functions. EASN-deep front is the first rescaling part,
which is the EASN-f module, and EASN-deep back is the second rescaling part,
which is the EASN-e module represented in Fig. 3.

The log scale gradient of the original image shows high frequency components
in the sky of the image, which is a flat region. Unlike the textures or edges, these
details are not clearly visible to the human eye. The high bit rate module results
of the EASN show that they catch these details in the red boxes of the sky
region. In the case of GDN-deep front, this does not show a difference for the
sky region but the EASN-deep back shows high frequency components in the
sky. In contrast, there are no high frequency components in the sky region for
all models trained for low bit rate. This means that models trained with a high
bit rate catch more fine details in images. From these results, we can confirm
that the scaling factor function ŝ(x) in our EASN can adjust and rescale high
frequency components of input features depending on the bit rates. We can also
interpret these results as the scaling factor function ŝ(x) determines how many
details to remove to save bits.

6 Conclusions

We propose Expanded Adaptive Scaling Normalization(EASN), which is an ex-
panded structure of existing GDN. For constructing EASN, first we exploit the
swish function for the scaling factor function to make the module to utilize rep-
resentation power fully. Second, we increase receptive field and make the scaling
factor function deeper to consider spatial correlation and approximate more com-
plex function. Additionally, we add input mapping function to increase degree
of freedom, and we propose more EASN-deep module to make the module more
deeper effectively. Furthermore, we reveal the process of how our EASN works
along the bit rates within an image compression network using the visualization
results of feature map. We conduct extensive experiments to show that each of
the proposed methods is effective through ablation study, and our EASN shows
dramatic increase of performance, and even outperforms other image compres-
sion methods.
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