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Abstract. Recent methods for conditional image generation benefit
from dense supervision such as segmentation label maps to achieve high-
fidelity. However, it is rarely explored to employ dense supervision for
unconditional image generation. Here we explore the efficacy of dense
supervision in unconditional generation and find generator feature maps
can be an alternative of cost-expensive semantic label maps. From our
empirical evidences, we propose a new generator-guided discriminator
regularization (GGDR) in which the generator feature maps supervise
the discriminator to have rich semantic representations in unconditional
generation. In specific, we employ an U-Net architecture for discriminator,
which is trained to predict the generator feature maps given fake images
as inputs. Extensive experiments on mulitple datasets show that our
GGDR consistently improves the performance of baseline methods in
terms of quantitative and qualitative aspects. Code is available at https:
//github.com/naver-ai/GGDR.

Keywords: Generative adversarial networks, unconditional image gen-
eration, discriminator regularization, generator feature maps

1 Introduction

Generative adversarial networks(GANs) have achieved promising results in various
computer vision tasks including image [27–29] or video generation [53, 59, 60, 65],
translation [7, 20, 32, 34,73], manipulation [3, 15, 22, 31,36, 50], and cross-domain
translation [18, 35] for the past several years. In GANs, building an effective
discriminator is one of the key components for generation quality since the
generator is trained by the feedback from the discriminator. Existing studies
proposed various methods to make the discriminator learn better representations
by data augmentation [26,68,70,71], gradient penalty [42,43,46], and carefully
designed architectures [25,49].

One simple yet effective way to improve the discriminator is to provide avail-
able additional annotations such as class labels [5, 44], pose descriptors [52],
normal maps [62], and semantic label maps [20, 41, 45, 56]. Among these anno-
tations, semantic label maps contain rich and dense descriptions about images,
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Fig. 1. Comparison of how to provide semantic information between OASIS
and our method. OASIS enhance the discriminator with the ground truth label
maps in conditional image generation setting. GGDR, on the other hand, aims
at unconditional image synthesis, and uses the generator feature maps instead of
human-annotating label maps.

and have been frequently used in conditional scene generation. To provide dense
semantic information to the discriminator, Pix2pix [20] and SPADE [45] con-
catenate the label maps with input images, and CC-FPSE [41] uses projection
instead of the concatenation to inject the embedding of label maps. OASIS [56]
further enhances the discriminator by providing strong supervision using auxiliary
semantic segmentation task and achieves better performance.

Despite the success of dense semantic supervision in conditional generation, it
has been rarely explored in an unconditional setting. Dense semantic supervision
can be useful here as well, as GAN models often struggle when the data has varied
and complex layout images. However, in unconditional generation, most large
datasets do not have pairs of images and semantic label maps, since collecting
them has a significant human annotation cost. Therefore, unlike the conditional
setting, which requires a dense label map for the generator input, unconditional
image generation assumes no dense map, and most studies use discriminators
that learn only from images.

In this paper, we show that guiding a discriminator using dense and rich
semantic information is also useful in unconditional image generation, and propose
the method that avoids data annotation costs while utilizing semantic supervision.
We propose generator-guided discriminator regularization (GGDR) in which
the generator feature maps supervise the discriminator to have rich semantic
representations. Specifically, we redesign the discriminator architecture in U-Net
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style, and train the discriminator to estimate the generator feature map when
input is a generated image. As shown in Fig. 1, GGDR differs from the previous
work in that the discriminator is supervised by the generator feature maps instead
of human-annotated semantic label maps.

To justify our proposed method, we first compare the generation performance
of StyleGAN2 [29] with and without providing ground-truth segmentation maps to
the discriminator, and show that utilizing semantic label maps indeed improves
the generation performance in an unconditional setting (Section 2.1). We
then visualize the generator feature maps and show that they contain semantic
information rich enough to guide the discriminator, replacing the ground-truth
label maps (Section 2.2). Utilizing the generator feature maps, GGDR improves
the discriminator representation, which is the key component to enhance the
generation performance (Section 3). We provide thorough comparisons to
demonstrate that GGDR consistently improves the baseline models on a variety
of data. Our method can be easily attached to any setting without burdensome
cost; only 3.7% of the network parameter increased. Our contributions can be
summarized as follows:

1. We investigate the effectiveness of dense semantic supervision on uncondi-
tional image generation.

2. We show that generator feature maps can be used as an effective alternative
of human-annotated semantic label maps.

3. We propose generator-guided discriminator regularization (GGDR), which
encourages the discriminator to have rich semantic representation by utilizing
generator feature maps.

4. We demonstrate that GGDR consistently improves the state-of-the-art meth-
ods on multiple datasets, especially in terms of generation diversity.

2 Dense semantic supervision in unconditional GANs

We first conduct a preliminary experiment using ground-truth segmentation maps
to show the efficacy of providing dense semantic supervision for the discriminator
(Section 2.1). Then, we study whether the generator feature maps can be used
as a guide instead of using human annotating ground-truth label maps to avoid
expensive manual annotations. We visualize the internal feature maps of the
generator and show that they have semantic information rich enough to be used
as pseudo-semantic labels (Section 2.2).

2.1 Utilization of semantic label maps for discriminator

Although it is natural to utilize semantic label maps in conditional image genera-
tion [41, 45, 56], it has been still underexplored whether label maps are beneficial
for unconditional image generation [26, 28, 29]. We conduct a preliminary ex-
periment to validate the effects of the semantic label maps. We use ADE20K
scene parsing benchmark dataset [72] consisting of 20,210 paired images and
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Fig. 2. Discriminator architecture and FID scores of the preliminary experiment
to show the effects of the semantic label maps for unconditional image generation.
(a) Discriminator with the auxiliary segmentation loss using semantic label maps
(b) FID scores on ADE20K with and without dense semantic supervision.

semantic label map annotations with 150 class labels, which is frequently used
to evaluate conditional generation models. We choose StyleGAN2 [29] as our
baseline, which is a standard model for unconditional image generation and apply
adaptive discriminator augmentation [26]. To provide semantic supervision for
the network, we redesign the discriminator to perform additional segmentation
task similar to OASIS [56]. The modified task for the discriminator is described in
Fig. 2 (a). The detailed architecture is similar to Fig. 4, except that it upsamples
the decoder output until the image size is reached. The decoder in a U-Net style
is attached to the discriminator and the segmentation loss is applied to the last
layer of the decoder to provide dense supervision. The segmentation loss is the
usual cross-entropy loss. Since ground-truth label maps are not available for
generated images, we activate the segmentation loss for real images only.

As shown in Fig. 2 (b), the model with the discriminator leveraging the
semantic supervision(ADA with GT) outperforms the baseline(ADA w/o GT). As
argued in OASIS, the stronger semantic supervision seems to help discriminator
learn more semantically and spatially-aware representations and give the generator
more meaningful feedback. Our experiment supports that providing additional
semantic guide for the discriminator can improve the model performance in
unconditional image synthesis. However, dense label maps are rare in datasets for
unconditional image synthesis, and it is time-consuming to collect them manually.
In the next section, we analyze the feature maps from the generator as an effective
alternative for the ground-truth label maps.

2.2 Analysis of generator feature maps

Recent studies have reported that the feature maps of the trained generator of
GANs contain rich and dense semantic information [9,11,63]. Collins et al. [9]
showed that applying k-means clustering to the feature maps of the generator
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Fig. 3. Visualization of the generator feature maps using k-means(k = 6)
clustering. (a) StyleGAN2 generator feature map. The visualized feature maps
reveal semantically consistent and meaningful regions such as ears in cats. (b)
Generated images and their 32× 32 feature maps in the early training phase.

reveals semantics and parts of objects, and used the clusters to edit images. We
notice that these feature maps are rich semantic descriptors of the generated
images and can be the substitute for the ground truth label maps. To visualize
what information is captured in each feature map, we run k-means algorithm on
each layer using the batch of generated images. We set k = 6 in this experiment.
As shown in Fig. 3 (a), the pixels are clustered by the semantic information
instead of the low-level features except the last feature map. For example, the
hairs of the people have different colors, but are clustered in to the same cluster.
The early feature maps show coarse object location, and those from the latter
layers contain detailed object parts. The visualized feature maps look like pseudo-
semantic label maps and might be regarded as rich descriptions including spatial
and semantic information about the images. Therefore, we choose the feature
maps of the generator as the substitute for the semantic label maps to guide the
discriminator using semantic supervision. The generator feature maps are useful
in our case. First, we do not need perfect semantic segmentation maps because
our goal is image generation not semantic segmentation. Second, the feature
maps are intermediate by-products essential for the generation, so acquiring them
is free and does not require additional human annotations.

Dissimilar to previous works [9, 11, 63] that utilize the generator feature map
for separate tasks, our method utilizes them during the training to enhance the
generation performance itself. Therefore, it is essential to check whether the
feature maps from the generator in the middle of training are still semantically
meaningful for the guidance. In Fig. 3 (b), we visualize the feature maps of
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Fig. 4. Visualization of our framework. Our method can be applied to a GAN
model by adding a decoder and the cosine distance loss with the reference
generator feature maps to a discriminator. The generator feature maps guide the
discriminator to learn more semantically-aware representations.

the generator during training to check how early the feature maps become
semantically meaningful. Surprisingly, thanks to the powerful modern GANs, we
can observe that even in the early stage, the feature maps and the corresponding
generated images capture coarse shapes and location of objects. Therefore, we
utilize the feature maps from the beginning of training, but for more complex
data where the generator needs more iterations to produce meaningful semantics,
one may choose when to attach our objective function.

3 Generator-guided discriminator regularization

Based on our observations, we propose generator-guided discriminator regulariza-
tion (GGDR) in which the generator feature maps supervise the discriminator to
have rich semantic representations. The overall framework is shown in Fig. 4.

The design of our discriminator D is inspired by that of OASIS [56] where the
U-Net encoder-decoder structure is adopted and the last layer predicts semantic
label maps. However, unlike OASIS, we leverage feature maps of the generator
instead of ground-truth label maps. Thus, there are several differences in the
design. First, since the feature maps are not discrete labels anymore, we cannot
simply add real/fake class to the decoder output as done in OASIS. Therefore, we
separate the decoder and adversarial loss. Next, we use more compact and lighter
modules to reduce additional calculation costs. For each layer, we concatenate
the output from the decoder and the encoder layer, and run one linear 1 × 1
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convolutional layer with upsampling. We stack the decoder modules until the
decoder output has the same resolution with the targeted generator feature map.
Although the decoder is compact, it is sufficient to predict the generator feature
map as the shared encoder can extract semantic information.

Meanwhile, the encoder part is still shared, and thus it is trained via both
semantic and adversarial loss. For the adversarial loss, we adopt the non-saturating
adversarial loss [13]:

min
G

max
D

Ladv(G,D) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]. (1)

Next, we compute the cosine distance loss between the output of the decoder
and the target feature map. We use cosine distance loss since it gives a loss within
a specified range even between denormalized feature vectors, so it is convenient to
scale according to the adversarial loss. Here, we denote l ∈ {1, 2, ..., L} as a layer
index, where L is the number of decoding layers. Our discriminator D contains
an U-Net-style decoder F (F ⊂ D) and the output of each layer denoted as F l

has the same resolution with the corresponding generator feature map G(z)l.
Let us denote the target layer index for guidance as t. Our generator-guided
discriminator regularization (GGDR) is defined as:

max
D

Lggdr(G,D) = −Ez∼p(z)

[
1− F t(G(z)) ·G(z)t

∥F t(G(z))∥2 · ∥G(z)t∥2

]
, (2)

Our full objective functions can be summarized as follows:

Ltotal = Ladv + λregLggdr, (3)

where λreg is a hyperparameter for relative strength compared to the adversarial
term. Note that k-means clustering used in Section 2.2 is only for visualization
purpose and we directly compare raw feature maps without any clustering. We
expect the Lggdr term to enhance the semantic representation of D. While the
generator feature maps participate the regularization loss, we do not update the
generator with Lggdr to prevent a feature collapse which is a trivial solution
making the cosine distance to zeros.

Our framework is simple and easy to apply existing GAN models, and does
not require any additional annotation. Acquiring the intermediate feature maps
from a generator is free because the generator already produces them in order
to generate fake images. Despite its simplicity, in the next section, we show
the effectiveness of our method in unconditional image generation for various
datasets.

4 Experiments

We validate the efficacy of our GGDR on various datasets including CIFAR-
10 [37], FFHQ [28], LSUN cat, horse, church [64], AFHQ [8] and Landscapes [2].
CIFAR-10 consists of 50,000 tiny color images in 10 classes. FFHQ contains
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Table 1. FID scores of ours and comparison methods on FFHQ(left) and CIFAR-
10(right) datasets. We run three training for each data and show their means
and standard deviations. The numbers are largely brought from ADA [26] and
we follow their evaluation protocol. We brought the numbers of diffusion models
from [54]. The bold numbers indicate the best FID for each baseline.

FFHQ 2k 10k 140k

PA-GAN 56.49 ±7.28 27.71 ±2.77 3.78 ±0.06

WGAN-GP 79.19 ±6.30 35.68 ±1.27 6.43 ±0.37

zCR 71.61 ±9.64 23.02 ±2.09 3.45 ±0.19

AR 66.64 ±3.64 25.37 ±1.45 4.16 ±0.05

StyleGAN2 78.80 ±2.31 30.73 ±0.48 3.66 ±0.10

+GGDR 70.59 ±5.16 24.44 ±0.63 3.14±0.03

ADA 16.49±0.65 8.29 ±0.31 3.88 ±0.13

+GGDR 18.28 ±0.77 6.11±0.15 3.57 ±0.10

CIFAR-10 FID IS

ProGAN 15.52 8.56 ±0.06

AutoGAN 12.42 8.55 ±0.10

StyleGAN2 8.32 ±0.09 9.21 ±0.09

ADA 2.92 ±0.05 9.83 ±0.04

FSMR 2.90 9.68

DDPM 3.17 ±0.05 9.46 ±0.11

NCSN++ 2.2 9.89

ADA+GGDR 2.15±0.02 10.02±0.06

70,000 face images, and AFHQ includes approximately 5,000 images per cat,
dog and wild animal faces. LSUN cat, horse and church consist of scenes with
cat, horse and church respectively, and we have used 200,000 images per each
dataset. Landscapes contains photographs 4,320 landscape images collected from
Flickr [1]. Following StyleGAN2 and ADA [26], we have applied horizontal flips
for FFHQ and small datasets. All images are resized to 256× 256 except AFHQ
(512 × 512) and CIFAR-10 (32 × 32). For GGDR loss, we select the 64 × 64
feature map of the generator as the guidance map, except CIFAR-10 where we
select the 8 × 8 feature map. We set λreg = 10 for the weight of the proposed
regularization in all experiments and let other hyperparameters unmodified. We
apply R1 regularization [42] for StyleGAN2 and ADA models. In the case of the
ADA, we apply the augmentation to the generator feature maps to make them
consistent with corresponding fake images. We use only geometric operations
and skip color transformation for the feature map augmentation.

For evaluation metrics, we have used Fréchet Inception Distance(FID) [16]
and Precision & Recall [39]. FID measures the distance between the real images
and the generate samples in feature space, and Precision & Recall scores indicate
sample quality and variety. We compare 50,000 generated images and all training
images following previous works [26]. For CIFAR-10, we also use Inception Score
(IS) [47] following the previous works [26,54].

4.1 Comparison with baselines

We apply GGDR to StyleGAN2 [29] which is one of the standard models for
unconditional image generation. Instead of the original StyleGAN2 setting, we use
the baseline setting used in ADA [26] which has less parameters and shorter train-
ing iterations but shows comparable performance. For small datasets, we apply
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Table 2. Comparision on FFHQ, LSUN Cat, LSUN Horse and LSUN Church.
Our method improves StyleGAN2 [29] in large datasets in terms of FID and
recall. P and R denote precision and recall. Lower FID and higher precision and
recall mean better performance. The bold numbers indicate the best FID, P, R
for each dataset.

Method
FFHQ LSUN Cat LSUN Horse LSUN Church

FID↓ P↑ R↑ FID P R FID P R FID P R

UT [4] 6.11 0.73 0.48 - - - - - - 4.07 0.71 0.45
Polarity [19] - - - 6.39 0.64 0.32 - - - 3.92 0.61 0.39

StyleGAN2 3.71 0.69 0.44 7.98 0.60 0.27 3.62 0.63 0.36 3.97 0.59 0.39
+GGDR 3.14 0.69 0.50 5.28 0.58 0.38 2.50 0.64 0.43 3.15 0.61 0.46

Table 3. Comparision on AFHQ Cat, Dog, Wild and Landscape. Our method
improves ADA [26] in small datasets in terms of FID and recall. P and R denote
precision and recall. The bold numbers indicate the best FID, P, and R of the
models.

Method
AFHQ Cat AFHQ Dog AFHQ Wild Landscape

FID↓ P↑ R↑ FID P R FID P R FID P R

FastGAN [40] 4.69 0.78 0.31 13.09 0.75 0.38 3.14 0.76 0.20 16.44 0.77 0.16
ContraD [23] 3.82 - - 7.16 - - 2.54 - - - - -

ADA 3.55 0.77 0.41 7.40 0.76 0.48 3.05 0.76 0.13 13.87 0.72 0.20
+GGDR 2.76 0.74 0.52 4.59 0.79 0.53 2.06 0.80 0.27 10.38 0.69 0.29

the adaptive discriminator augmentations (ADA) [26] that prevents overfitting
of the discriminator and shows the superior performance in small datasets.

Table 1 shows that the proposed GGDR improves the performance of the
baselines in terms of FID scores which indicate the overall quality of the syn-
thesized images. Following ADA [26], we run the experiment multiple times on
FFHQ with varying numbers (2k, 10k and 140k) of training images. We largely
borrowed the reported scores from ADA [26] and NCSN++ [54]. In Table 1
left, we compare our method in a varied number of training images with vari-
ous regularizing methods WGAN-GP [14], PA-GAN [67], zCR [71], AR [6] and
ADA [26]. In the table, StyleGAN2 with our GGDR achieves the best score on
FFHQ with full training images. With a sufficient number of training images,
regularization methods based on data augmentation show limited improvement
or degradation, whereas in our method the discriminator learns from a more
accurate semantic map provided by a better quality generator. In most cases,
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Fig. 5. Selective samples generated by our method. For FFHQ and LSUN datasets,
we show the results of StyleGAN2 with GGDR. For AFHQ and Landscape, we
show the results of ADA with GGDR.

GGDR improves the baseline performance significantly except the FFHQ 2k
setting. We conjecture the dataset is too small to learn semantically meaningful
feature maps in the generator. Since the quality of generator feature maps directly
affects the discriminator in our method, our method is more effective when there
is sufficient number of training data. However, as shown in Table 3, our method
shows effectiveness on the datasets with approximately 5,000 images which are
not too many to collect. Table 1 right shows that our GGDR significantly
improves ADA performance in terms of both FID and IS scores, and makes it
superior to various models including ProGAN [25], AutoGAN [12], FSMR [33]
and DDPM [17], and comparable to the NCSN++ [54].

In Tables 2 and 3, we conduct extensive experiments to validate the per-
formance improvement using GGDR on various datasets. For FFHQ and LSUN
datasets, we report the scores of UT [4], and Polarity [19] which are the state-
of-the-arts models that show the improvement on these datasets. For AFHQ
and Landscape datasets, we report the score of ContraD [23] and FastGAN [40]
that show significant improvements on image synthesis with small size datasets.
We brought the numbers from their papers except FastGAN whose scores are
brought from ProjGAN [48]. GGDR consistently improves the baseline in terms
of FID scores with large gap. In terms of precision and recall metrics, GGDR
improves the recall with significant margins compared to the baselines, which
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(a) Samples on CIFAR-10

ADA ADA+GGDR

(b) Worst samples comparison

Fig. 6. (a) Random samples by ADA with GGDR on CIFAR-10 dataset. (b)
Qualitative comparison of worst-sample images. (top) AFHQ-Cat (middle) AFHQ-
Dog (bottom) AFHQ-Wild.

indirectly indicates where the advantages of our method come from. Better recall
scores mean that our model generates more diverse images and less prone to
the mode collapse. As it is known that incorporating image-level labels to the
discriminator enhances coverage of classes in the data, utilizing pseudo dense
semantic information could facilitate semantic diversities in the generated images.

In Fig. 5 and Fig. 6 (a), we show some selected results of our method
on the evaluated datasets. We visualize StyleGAN2 with GGDR for FFHQ and
LSUN, and ADA with GGDR for other datasets. More uncurated images are
shown in the supplementary material. Since our method tends to improve the
recall than the precision, it is hard to show visual improvement with the limited
numbers of samples. Instead, we compare the worst samples in Fig. 6 (b). We
follow the method of [38] to sort the samples, which uses the Inception [57]
model to fit a gaussian model and sorts by the log-likelihood using it. We can
see the worst samples of our method still contain objects unlike those of ADA. It
is interesting that [38] reports similar improvements on the worst samples by
utilizing pretrained models for the discriminator. We conjecture that the feature
maps of the generator plays similar role with the pretrained models in their
works [38,48].

4.2 Analysis and ablation study

The proposed GGDR supervises a discriminator using the intermediate feature
maps of a generator in a GAN model, so it depends on the quality of the generator
feature maps. In Sec. 2.2, we show that the feature maps of the generator contain
valid semantic information even in the early stage. In addition to the visualization,
we measure the FIDs in early iterations and show in Fig. 7 (a). To check the
effect of initializations, we run multiple experiments on LSUN Cat. In early
iterations, GGDR can interfere the performance by using less trained feature
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Fig. 7. (a) FID score graph of multiple experiments with GGDR in the early
training phase on LSUN Cat. (b) Validation pixel accuracy on the ADE20K
segmentation task with the frozen discriminator trained with and without GGDR.

Target FID

None 7.98
8× 8 7.57
16× 16 6.56
32× 32 5.98
64× 64 5.28

(a) Target size

Activation FID

Linear 5.28
leaky ReLU 5.43

Kernel size FID

1× 1 5.28
3× 3 5.25

(b) Decoder design

Method # params

Baseline 4.87M
+ GGDR 5.05M (+3.7%)

Method time(s)

Baseline 5.60
+ GGDR 6.05 (+8.0%)

(c) Calculation costs

Table 4. Ablation studies and calculation costs on LSUN Cat with eight V100
GPUs. Ablation study on (a) the target feature map size and (b) the decoder
design. (c) Calculation costs with and without GGDR.

maps and bad initialization. However, after only several thousand iterations,
StyleGAN2 with GGDR starts to converge faster and shows better scores.

In Table 4, we conduct ablation studies to investigate the effects of the
decoder architecture and the feature map resolution. In our experiments, we
select 64× 64 feature maps as the guidance. One may curious the performance
differences if we use different sizes of the guidance feature maps. As shown in
Table 4 (a), utilizing the large and dense feature maps achieves the best FID
scores. Meanwhile, we design a compact decoder with 1× 1 convolutional filters
and linear activation for fast training and convergence. In Table 4 (b), we
show that changing decoder activation and kernel size affects only negligible
performance difference.

To analyze the effects of GGDR, we visualize and compare the original
discriminator part in Fig. 8 (a). We run k-means clustering as done in Sec. 2.2.
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StyleGAN2 StyleGAN2+GGDR

(a) K-means clustering of the feature maps of the encoder
in the discriminators.

(b) Visualization of the
decoder feature map

Fig. 8. k-means clustering of the feature maps of (a) the encoder in the dis-
criminator with and without GGDR loss. From top to bottom, real images,
feature maps that are 8(k = 3) and 16(k = 6) pixels wide. (b) the decoder in our
discriminator on real images(k = 6).

With GGDR loss, the shared encoder part prefers to learn high-level features
which are useful for both tasks, so its feature maps reveal more semantically
meaningful clusters. By guiding to learn semantic features, our approach can
help discriminators to focus on salient parts of the image instead of meaningless
features. To further analyze, we conduct a downstream experiment, training a
shallow segmentation network using the extracted features by the discriminator
with or without GGDR. As shown in Fig. 7 (b), the accuracy on validation data
shows the discriminator with GGDR has more representation power on semantic
information. Meanwhile, since we trained on fake images only, it may be curious
if the guidance by fake images is still valid for real images. In Fig. 8 (b), we
visualize the outputs of the decoder of our discriminator on real image. While
the decoder of our method learned using fake images, we can see that its features
well capture the semantically meaningful regions of the real images.

In Table 4 (c), we show the additional calculation costs when use GGDR.
We can see the additional costs are marginal where the parameters increase 3.7%
and the time increases 8.0%. For these measurement, we run the StyleGAN2 on
the 256× 256 dataset with eight V100 GPUs.

5 Related Work

Conditional image synthesis utilizing semantic label map. For the con-
trollability of the generated images, it is common to exploit semantic layout-level
information for the conditional image generation [21, 41, 61]. SPADE [45] utilizes
Spatilally-Adaptive Denormalization which preserves semantic informations, and
OASIS [56] have shown that it is able to train the conditional GANs using the
discriminator that predicts pixel-level semantic labels, without incorporating
semantic maps as additional conditions. Also, instead of using explicit semantic
ground-truths, it is possible to use the features from the deep networks for the



14 Lee et al.

semantic guidance of the generator as shown in [10,51]. Unlike these works, our
method aims at unconditional image generation.

Regularization for GANs. Several works interest to stabilizing the GAN
trainings, especially by regularizing the discriminators [33, 42, 43]. Recently,
utilizing augmentations for the discriminator gained a lot of interests, which was
proven successful in general vision tasks [66, 69]. In consistency regularization
(CR) [68,71], in addition to using regular GAN losses, a discriminator is penalized
by the differences in the outputs between augmented and non-augmented images.
APA [24] regularizes the discriminator by utilizing fake images as psuedo-real data
adaptively. DiffAugment [70] and ADA [26] use non-leaking augmentations for
both generator and discriminator losses. Recently, several papers use pretrained
models to help discriminator for fast and stable training. ProjGAN [48] uses
EfficientNet [58] as a feature extractor for the discriminator, and Vision-aided
GAN [38] provides automatic selection from model bank of pretrained networks
to get optimal features for real and fake discrimination.

Utilization of generator features. Recent studies have shown that the
generators contain rich and disentangled semantic structures in the features.
Collins et al. [9] show that by applying k-means clustering on feature activations
of the generator is possible to extract semantic objects and object parts in the
generated images. Xu et al. [63] have trained linear mapping between feature
maps in the generator and semantic maps, and Endo et al. [11] used the nearest
neighbor matching between feature maps and representative vectors by averaging
the feature vectors corresponding to the ground-truth semantic labels of inverted
images. StyleMapGAN [31] has used spatial dimensions in the latent codes and
grouping of the channels to further disentangle spatial semantic features.

6 Conclusion and limitation

In this paper, we present the efficacy of the dense semantic label maps for
unconditional image generation. Inspired by this observation, we propose a new
regularization method to leverage the feature maps of the generator instead of
human annotating ground-truth semantic annotations to allow the discriminator
to learn richer semantic representation. With negligible additional parameters and
no ground-truth semantic segmentation map, the proposed GGDR consistently
outperforms strong baselines. Since our method depends on the performance of
the generator, if the generator cannot learn meaningful representations due to
the extremely limited number of data or initial training collapse, GGDR will
fail to improve the performance. However, thanks to modern GANs and training
techniques, we believe our method can be easily applied in various situations.
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