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In this appendix, we first provide additional results in appendix A. We then
show the details of training classifiers in appendix B. In appendix C and ap-
pendix D, we show more details of our approach and baselines, respectively.
Finally, we provide the implementation details in appendix E.

A Additional Results

In this section, we first show results of composing human facial attributes in
appendix A.1 as we described in the main paper Section 6. We then show more
qualitative results in appendix A.2.

A.1 Composing Human Facial Attributes

Qualitative results. We compare the proposed method and baselines on com-
positing facial attributes in Figure 1. We find that LACE and StyleGAN2 can
generate high-fidelity images, but the generated images do not match the given
label. For example, StyleGAN2 generates humans without wearing glasses when
the input labels contain “glasses”. LACE generates males sometimes when the
input is “NOT Male”. The image quality of EBM is much worse than other
methods. In contrast, our method can generate high-fidelity images, containing
all the attributes in the input label.

Quantitative results. The results of our method and baselines on three test
settings are shown in Table 1. Our method is comparable with the best baseline
on each evaluation metric.

A.2 More Qualitative Results
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EBM

（NOT Smiling) AND Glasses AND (NOT Male)

StyleGAN2 Ours

LACE

Fig. 1: Composing Facial Attributes. Image generation results on the FFHQ
dataset. Our model is trained to generate images conditioned on a single human fa-
cial attribute, but during inference, our model can recursively compose multiple facial
attributes using the proposed compositional operators. The baselines either fail to
compose attributes (StyleGAN2 and LACE) or generate low-quality images (EBM).

“A dog” AND “the sky”

“A bear” AND “A red tree”

GLIDE Ours

Fig. 2: Our method (composing mul-
tiple sentences) generates different
styles of images compare to GLIDE
(directly encodes the descriptions as
a single long sentence).

We provide more qualitative results of the
proposed method on composing concepts us-
ing the conjunction operator. Figure 3, 4,
5 and 6 shows the results of compositing
language descriptions. Figure 7 shows ad-
ditional results on compositing objects on
the CLEVR dataset. Our approach can reli-
ably generate images conditioned on multi-
ple concepts, even for combinations outside
the training distribution

We further show results of compositing
facial attributes on the FFHQ dataset in
Figure 8. Our model is trained to generate
images conditioned on a single human fa-
cial attribute, but it can compose multiple
attributes during inference without further
training using the conjunction and negation
compositional operators. As shown in the
fifth row of Figure 8, our model can compose
Not Male and Glasses and generate images
with females wearing glasses. The proposed
compositional operators allow our model to
compose facial attributes recursively.

Interesting cases. As shown in Fig-
ure 2, we find that our method, which com-
bines multiple textual descriptions, can generate different styles of images com-
pared to GLIDE, which directly encodes the descriptions as a single long sen-
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Table 1: Image generation results on FFHQ. The binary classification accuracy (Acc)
and FID are reported. Our method achieves comparable results with the best baselines
on three test settings.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

EBM [1] 98.74 89.95 93.10 99.64 30.01 335.70
StyleGAN2 [5] 58.90 18.04 30.68 18.06 16.96 18.06
LACE [11] 97.60 28.21 95.66 36.23 80.88 34.64
GLIDE [9] 98.66 20.30 48.68 22.69 27.24 21.98

Ours 99.26 18.72 92.68 17.22 68.86 16.95

tence. Prompted with “a dog” and “the sky”, our method generates a dog-shaped
cloud, whereas GLIDE generates a dog under the sky from the prompt “a dog
and the sky”.

B Details of Binary Classifiers

We provide more details of the binary classifiers in this section.
CLEVR. CLEVR dataset consists of 30,000 image-label pairs. We split the
dataset into training and validation subsets. There are 24, 000 data pairs used
for training and 6, 000 data pairs used for validation. We train a binary classifier
to evaluate whether there is an object appearing at a particular position of an
image. The classifier achieves 99.05% accuracy on the validation set, which is
used to evaluate the quality of generated images.
Relational CLEVR. Relational CLEVR [7] contains 50, 000 images at 128×128
resolution. We split the dataset into 40, 000 training data and 10, 000 validation
data. Then we train a binary classifier to evaluate whether an image contains
an object relational description. The classifier achieves 99.80% accuracy on the
validation set.
FFHQ. We use 30, 000 image-label pairs from CelebA-HQ [4] to train a classifier
for FFHQ generated images. We split the dataset into training and validation
subsets using 80 : 20 ratio. We select three attributes (i.e. smiling, glasses, and
gender) to evaluate the compositionality ability of our approach and baselines.
We thus train three binary classifiers to evaluate the smiling, glasses, and gen-
der concepts respectively. Our classifiers achieve 95.01%, 99.20% and 97.49%
accuracy on the validation sets of smiling, glasses, and gender.

To further verify the reliability of results obtained by the classifiers, we add
human evaluation results and find that our method still outperforms baselines.
We generated 300 facial images using our method and one of the best baselines
(LACE), respectively. Given a concept combination, e.g . Smiling AND (NOT
Male), each method generates an image conditioned on this combination. We
asked workers to select which image matches the input concepts the best. At
62% of the time, the workers think the images generated by our method are
better.
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C Details of Our Approach

Training. Our approach is implemented based on the code from [10,9]. Ho et
al . [3] introduce a technique to train a conditional and an unconditional diffusion
model at the same time by masking some labels as null labels. During training,
we utilize the same approach. We randomly replace 10% of training labels as the
null labels in our training to estimate the unconditional score and otherwise use
conditional labels.
Inference. To generate images, we compute the unconditional and conditional
scores for each label and use the combined score to sample a less noisy image at
each timestep. To generate FFHQ images, we first generate images at 64 × 64
resolution and then upsample the images to 256× 256. For CLEVR images, we
generate images at 128× 128 resolution directly.
Label Encoding. On the FFHQ dataset, we use three attributes, including
smile, glasses and gender. For the smile and glasses attributes, label 1 indicates
that the image contains the attribute, and label 0 indicates its absence. For the
gender attribute, label 0 indicates “male”, while label 1 represents “female”.
We use the embedding layer nn.Embedding(7, d) to encode the attribute labels,
including 6 attribute labels and 1 null class label. The labels are encoded as
a d-dimension feature vector, which is then fused with the embedding of the
iteration step t and image xt. The fused features are sent to the U-Net [12]
during training.

On the CLEVR dataset, we encode the (x, y) coordinates using a linear layer
nn.Linear(2, d), where 2 is the dimension of the (x, y) coordinates and d is the
dimension of the hidden feature. The coordinates embedding is then fused with
the embedding of the iteration step t and image xt, which are further sent to
the U-Net [12] during training.

D Details of Baselines

Energy-based models (EBMs). We train energy-based models using the
codebase from [2], where we encode discrete labels and continuous labels us-
ing an embedding layer and a linear layer, respectively. We use the inference
code from [1] to compose multiple concepts.
StyleGAN2. We train an unconditional StyleGAN2 on CLEVR, while we
use an existing StyleGAN2 model trained on FFHQ. For training, we use the
“config-f” setting provided by [5]. To enable image generation conditioned on
multiple concepts, we train a binary classifier on each dataset. During inference,
we optimize the underlying latent code to minimize each loss from the classifier
conditioned on each individual label.
LACE. LACE [11] trains classifiers for image generation by using sampled im-
ages from StyleGAN2 and labels provided by the neural network. For CLEVR
dataset, we firstly generate 10, 000 images using the same StyleGAN2 model that
was trained on CLEVR in Section D. Then we modify the code to train a position
annotator using a DenseNet model provided by LACE to label the positions of
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generated images. Lastly, we train a classifier conditioned on coordinates using
their provided script. For FFHQ, we use their off-the-shelf pre-trained model for
comparison. To enable image generation, we utilize their inference scripts.
GLIDE. We use the released GLIDE [9] model in our experiments. We develop
Composed GLIDE (Ours), a version of GLIDE that utilizes our compositional
operators to combine textual descriptions, without further training. We compare
it to the original GLIDE, which directly encodes the descriptions as a single long
sentence. [9] also released a upsample model to upsample the generated images
to a resolution of 256 × 256. We use the upsample model for both the GLIDE
and Composed GLIDE (Ours).

E Implementation Details

EBMs. In our experiments, we use the same setting to train models on different
datasets. We use the Adam optimizer [6] with a learning rate of 10−4. For MCMC
sampling, we use a step size of 300 and 80 iterations. On each dataset, the model
is trained for two days on a single Tesla 32GB GPU.
StyleGAN2. We train the StyleGAN2 model for 2 days on CLEVR using
a single Tesla 32GB GPU. It takes 2 hours to train binary classifiers for each
dataset. We use the Adam optimizer [6] with β1 = 0, β2 = 0.99, and ϵ = 10−8 to
train the StyleGAN2 model (more details can be found in the codebase from [5]).
We use the Adam optimizer with β1 = 0, β2 = 0.999, and ϵ = 10−8 to train the
classifiers. We use the pre-trained model provided by [5] on the FFHQ dataset.
LACE. LACE uses the pre-trained model provided by [5] on the FFHQ dataset
as well. For CLEVR, we use the same StyleGAN2 model as described in Sec-
tion E. It takes less than 10 minutes to train the classifier on each dataset using
a single Tesla 32GB GPU.
Our Approach. To train diffusion models on both CLEVR and FFHQ, we
use 1, 000 diffusion steps, and the cosine noise schedule. We use the AdamW
optimizer [8] with β1 = 0.9, β2 = 0.999, and ϵ = 10−8. We train the diffu-
sion models on CLEVR and FFHQ for 7 days (750, 000 iterations) and 2 days
(250, 000 iterations), respectively, using a single Tesla 32GB GPU.
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“A church” AND “A 
forest behind the 
church” AND “A 
parking lot next to the 
church”

“A beach with black 
sand” AND “Palm trees 
on the black sand” AND 
“Orange sunset”

“Palm trees on both sides 
of the street” AND “Pink 
sunset in a horizon” AND 
“A car moving away”

“A city” AND “A river 
flowing through the city” 
AND “A gloomy sky”

“A red bridge above a 
river” AND “A yacht 
sitting on the river” 
AND “The river
surrounded by trees”

“Trees in the fall” AND 
“A long road down a 
hill” AND “A blue car at 
middle of the road”

“A village in a valley” 
AND “Red flowers in 
front of the village” AND 
“Mountains covered with 
snow”

“A car on a highway” 
AND “The highway 
surrounded by hills” 
AND “Hills are covered 
with snow”

“A Ferris wheel” AND 
“A lake next to the 
Ferris wheel” AND 
“Buildings next to the 
lake”

“A train on a bridge” 
AND “A river under the 
bridge” AND 
“Mountains behind the 
train”

“A cloudy blue sky” AND 
“A mountain in the 
horizon” AND “Cherry 
Blossoms in front of the 
mountain”

“A blue house” AND “A 
red tractor on a farm” 
AND “A cloudy sky”

Fig. 3: Composing Language Descriptions. We provide more qualitative results
of Composed GLIDE (Ours), a version of GLIDE [9] that utilizes our compositional
operators to combine textual descriptions, without further training.
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“A river leading into mountains” AND “red trees on the side”

Fig. 4: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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“A horse” AND “a yellow flower field”

Fig. 5: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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“A train on a bridge” AND “A river under the bridge”

Fig. 6: Composing Language Descriptions. Images generated by our method,
Composed GLIDE (Ours).
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Obj1 (0.29, 0.47) AND
Obj2 (0.55, 0.31) AND
Obj3 (0.57, 0.68) AND
Obj4 (0.82, 0.45)

Obj1 (0.24, 0.61) AND
Obj2 (0.3, 0.38) AND
Obj3 (0.45, 0.62) AND
Obj4 (0.65, 0.68) AND
Obj5 (0.74, 0.43)

Obj1 (0.3, 0.3) AND
Obj2 (0.4, 0.4) AND
Obj3 (0.55, 0.55) AND
Obj4 (0.7, 0.65)

Obj1 (0.31, 0.64) AND
Obj2 (0.22, 0.31) AND
Obj3 (0.61, 0.68) AND
Obj4 (0.74, 0.37)

Obj1 (0.16, 0.46) AND
Obj2 (0.38, 0.68) AND
Obj3 (0.47, 0.32) AND
Obj4 (0.73, 0.59)

Obj1 (0.2, 0.65) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.5) AND
Obj4 (0.6, 0.65)

Obj1 (0.1, 0.6) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.5, 0.35) AND
Obj4 (0.7, 0.5) AND
Obj5 (0.9, 0.6)

Obj1 (0.2, 0.66) AND
Obj2 (0.29, 0.39) AND
Obj3 (0.41, 0.58) AND
Obj4 (0.57, 0.29) AND
Obj5 (0.69, 0.5)

Obj1 (0.3, 0.65) AND
Obj2 (0.3, 0.35) AND
Obj3 (0.5, 0.3) AND
Obj4 (0.7, 0.65) AND
Obj5 (0.7, 0.35)

Obj1 (0.15, 0.42) AND
Obj2 (0.3, 0.58) AND
Obj3 (0.41, 0.3) AND
Obj4 (0.59, 0.4) AND
Obj5 (0.64, 0.61)

In-distribution (1-5 objects) Compositional Generation on CLEVR

Out-of-distribution (> 5 objects) Compositional Generation on CLEVR

Obj1 (0.18, 0.59) AND
Obj2 (0.21, 0.35) AND
Obj3 (0.43, 0.31) AND
Obj4 (0.42, 0.63) AND
Obj5 (0.63, 0.33) AND
Obj6 (0.61, 0.55)

Obj1 (0.2, 0.65) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.4, 0.4) AND
Obj4 (0.6, 0.4) AND
Obj5 (0.7, 0.5) AND
Obj6 (0.8, 0.65)

Obj1 (0.24, 0.41) AND
Obj2 (0.28, 0.62) AND
Obj3 (0.48, 0.4) AND
Obj4 (0.51, 0.6) AND
Obj5 (0.64, 0.29) AND
Obj6 (0.77, 0.58)

Obj1 (0.13, 0.63) AND
Obj2 (0.24, 0.33) AND
Obj3 (0.33, 0.54) AND
Obj4 (0.52, 0.36) AND
Obj5 (0.51, 0.67) AND
Obj6 (0.77, 0.41)

Obj1 (0.3, 0.35) AND
Obj2 (0.3, 0.5) AND
Obj3 (0.3, 0.65) AND
Obj4 (0.7, 0.35) AND
Obj5 (0.7, 0.5) AND
Obj6 (0.7, 0.65)
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Obj1 (0.12, 0.57) AND
Obj2 (0.27, 0.35) AND
Obj3 (0.27, 0.51) AND
Obj4 (0.32, 0.61) AND
Obj5 (0.5, 0.63) AND
Obj6 (0.62, 0.47) AND
Obj7 (0.67, 0.62) AND
Obj8 (0.77, 0.38)

Obj1 (0.22, 0.62) AND
Obj2 (0.35, 0.4) AND
Obj3 (0.44, 0.26) AND
Obj4 (0.47, 0.59) AND
Obj5 (0.57, 0.45) AND
Obj6 (0.7, 0.63) AND
Obj7 (0.7, 0.3) AND
Obj8 (0.8, 0.5)

Obj1 (0.21, 0.37) AND
Obj2 (0.26, 0.65) AND
Obj3 (0.35, 0.27) AND
Obj4 (0.47, 0.59) AND
Obj5 (0.55, 0.27) AND
Obj6 (0.5, 0.5) AND
Obj7 (0.64, 0.4) AND
Obj8 (0.8, 0.47)

Obj1 (0.13, 0.43) AND
Obj2 (0.24, 0.67) AND
Obj3 (0.4, 0.4) AND
Obj4 (0.49, 0.5) AND
Obj5 (0.5, 0.6) AND
Obj6 (0.57, 0.68) AND
Obj7 (0.73, 0.65) AND
Obj8 (0.81, 0.47)

Obj1 (0.22, 0.57) AND
Obj2 (0.25, 0.45) AND
Obj3 (0.33, 0.33) AND
Obj4 (0.4, 0.65) AND
Obj5 (0.48, 0.51) AND
Obj6 (0.56, 0.34) AND
Obj7 (0.61, 0.6) AND
Obj8 (0.71, 0.48)

Obj1
Obj1

Obj1
Obj1

Obj1

Obj2

Obj2

Obj2 Obj2

Obj2Obj3

Obj3 Obj3 Obj3 Obj3

Obj4 Obj4 Obj4

Obj5

Obj4Obj5

Obj5

Obj5

Obj4
Obj5

Obj6

Obj6

Obj6

Obj6

Obj6

Obj7

Obj7

Obj7

Obj7 Obj7

Obj8
Obj8 Obj8 Obj8 Obj8

Fig. 7: Composing Objects. During inference, our model can generate images that
contain multiple objects by composing their probability distributions using the con-
junction operator. Note that the training set only contains images with fewer than 5
objects, but our model can compose more than 5 objects during inference.
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Smiling AND NOT (No Glasses) AND NOT Female

NOT (No Smiling) AND No Glasses AND NOT Male

NOT (No Smiling) AND NOT (No Glasses) AND Male

No Smiling AND NOT Glasses AND NOT Female

Smiling AND NOT (No Glasses) AND NOT Male

Fig. 8: Composing Facial Attributes. During inference, our model can generate
images that contain multiple attributes by composing their probability distributions
using the negation and conjunction operators.
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