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Abstract. Large text-guided diffusion models, such as DALLE-2, are
able to generate stunning photorealistic images given natural language
descriptions. While such models are highly flexible, they struggle to un-
derstand the composition of certain concepts, such as confusing the at-
tributes of different objects or relations between objects. In this paper,
we propose an alternative structured approach for compositional gener-
ation using diffusion models. An image is generated by composing a set
of diffusion models, with each of them modeling a certain component
of the image. To do this, we interpret diffusion models as energy-based
models in which the data distributions defined by the energy functions
may be explicitly combined. The proposed method can generate scenes
at test time that are substantially more complex than those seen in
training, composing sentence descriptions, object relations, human facial
attributes, and even generalizing to new combinations that are rarely
seen in the real world. We further illustrate how our approach may be
used to compose pre-trained text-guided diffusion models and generate
photorealistic images containing all the details described in the input
descriptions, including the binding of certain object attributes that have
been shown difficult for DALLE-2. These results point to the effective-
ness of the proposed method in promoting structured generalization for
visual generation.

Keywords: Compositionality, Diffusion Models, Energy-based Models,
Visual Generation

1 Introduction

Our understanding of the world is highly compositional in nature. We are able to
rapidly understand new objects from their components, or compose words into
complex sentences to describe the world states we encounter [21]. We are able
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(a) Composing Language Descriptions

“A red car parked 
in a desert” AND
“hills behind the 
car” AND “Aurora 
in the sky”

“The sun setting in 
a horizon” AND “A 
house next to a 
pond” AND “Hills 
in the background”

“A house with snow 
on the roof” AND
“The house behind a 
tree” AND “A car in 
front of a tree”

Obj1
Obj2

Obj3

Obj4

(NOT Female) AND
Smiling AND 
(NOT Glasses)

(d) Composing Facial Attributes

Male AND
Blonde hair AND
(NOT glasses)

“A Ferris wheel” AND
“A lake right next to 
the Ferris wheel” 
AND “Buildings next 
to the lake”

“A cloudy blue sky” 
AND “A mountain in 
the horizon” AND
“Cherry Blossoms in 
front of the mountain”

“Palm trees on both 
sides of the street” 
AND “Pink Sunset in 
the horizon” AND “A 
car moving away”

(b) Composing Objects

Obj1 (0.1, 0.5) AND
Obj2 (0.5, 0.3) AND
Obj3 (0.5, 0.65) AND
Obj4 (0.7, 0.5)

Obj4

Obj3

Obj1

Obj2

Obj1 (0.1, 0.65) AND
Obj2 (0.3, 0.55) AND
Obj3 (0.5, 0.45) AND
Obj4 (0.7, 0.3)

Obj1
Obj2

Obj3

Obj4

(c) Composing Object Relations

“A large purple metal 
cube to the left of a 
large gray rubber 
cube” AND “A large 
purple metal cube to 
the right of a large 
yellow rubber sphere”

“A large yellow rubber 
cylinder to the right 
of a small gray metal 
cube” AND “A large 
yellow rubber cylinder 
below a large red 
rubber cube”

Fig. 1: Our method allows compositional visual generation across a variety of domains,
such as language descriptions, objects, object relations, and human attributes.

to make ‘infinite use of finite means’ [4], i.e., repeatedly reuse and recombine
concepts we have acquired in a potentially infinite manner. We are interested in
constructing machine learning systems to have such compositional capabilities,
particularly in the context of generative modeling.

Existing text-conditioned diffusion models such as DALLE-2 [30] have re-
cently made remarkable strides towards compositional generation, and are ca-
pable in generating photorealistic images given textual descriptions. However,
such systems are not fully compositional in nature and generate incorrect im-
ages when given more complex descriptions [24,39]. An underlying difficulty may
be that such models encode text descriptions as fixed-size latent vectors. How-
ever, as textual descriptions become more complex, more information needs to
be squeezed into the fixed-size vector. Thus it is impossible to encode arbitrarily
complex textual descriptions.

In this work, we propose to factorize the compositional generation problem,
using different diffusion models to capture different subsets of a compositional
specification. These diffusion models are then explicitly composed together to
jointly generate an image. By explicitly factorizing the compositional generative
modeling problem, our method is able to generalize to significantly more complex
combinations that are unseen during training.

Such an explicit form of compositionality has been explored before under
the context of Energy-Based Models (EBMs) [7,8,23]. However, directly training
EBMs has been proved to be unstable and hard to scale. We show that diffu-
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sion models can be interpreted as implicitly parameterized EBMs, which can be
further composed for image generation, significantly improving training stability
and image quality.

Our proposed method enables zero-shot compositional generation across dif-
ferent domains as shown in Figure 1. First, we illustrate how our approach may
be applied to large pre-trained diffusion models, such as GLIDE [26], to compose
multiple text descriptions. Next, we illustrate how our approach can be applied
to compose objects and object relations, enabling zero-shot generalization to a
larger number of objects. Finally, we illustrate how our framework can compose
different facial attributes to generate human faces.

Contributions: In this paper, we introduce an approach towards compo-
sitional visual generation using diffusion models. First, we show that diffusion
models can be composed by interpreting them as energy-based models and draw-
ing on this connection, show how we may compose diffusion models together.

Second, we propose two compositional operators, conjunction and negation,
on top of diffusion models that allow us to compose concepts in different do-
mains during inference without any additional training. We show that the pro-
posed method enables effective zero-shot combinatorial generalization. Finally,
we evaluate our method on composing language descriptions, objects, object
relations, and human facial attributes. Our method can generate high-quality
images containing all the concepts and outperforms baselines by a large margin.
For example, the accuracy of our method is 24.02% higher than the best baseline
for composing three objects in the specified positions on the CLEVR dataset.

2 Related Work

Controllable Image Generation. Our work is related to existing work on
controllable image generation. One type of approach towards controllable image
generation specifies the underlying content of an image utilizing text through ei-
ther GANs [43,44,2], VQ-VAEs [31], or diffusion models [26]. An alternative type
of approach towards controllable image generation manipulates the underlying
attributes in an image [35,42,46]. In contrast, we are interested in compositionally
controlling the underlying content of an image at test time, generating images
that exhibit compositions of multiple different types of image content. Thus,
most relevant to our work, existing work has utilized EBMs to compose different
factors describing a scene [7,27,8,23]. We illustrate how we may implement such
probabilistic composition on diffusion models, achieving better performance.
Diffusion Models. Diffusion models have emerged as a promising class of gen-
erative models that formulates the data-generating process as an iterative de-
noising procedure [36,15]. The denoising procedure can be seen as parameter-
izing the gradients of the data distribution [38], connecting diffusion models to
EBMs [22,10,28,12,11]. Diffusion models have recently shown great promise in
image generation [6], enabling effective image editing [25,20], text conditioning
[26,32,13], and image inpainting [33]. The iterative, gradient-based sampling of
diffusion models lends itself towards flexible conditioning [6], enabling us to com-
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pose factors across different images. While diffusion models have been developed
for image generation [37], they have further proven successful in the generation of
waveforms [3], 3D shapes [45], decision making [16] and text [1], suggesting that
our proposed composition operators may further be applied in such domains.

3 Background

3.1 Denoising Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative
models where generation is modeled as a denoising process. Starting from sam-
pled noise, the diffusion model performs T denoising steps until a sharp image
is formed. In particular, the denoising process produces a series of intermediate
images with decreasing levels of noise, denoted as xT ,xT−1, ...,x0, where xT is
sampled from a Gaussian prior and x0 is the final output image.

DDPMs construct a forward diffusion process by gradually adding Gaussian
noise to the ground truth image. A diffusion model then learns to revert this
noise corruption process. Both the forward processes q(xt|xt−1) and the reverse
process q(xt−1|xt) are modeled as the products of Markov transition probabili-
ties:

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1), pθ(xT :0) = p(xT )

1∏
t=T

pθ(xt−1|xt), (1)

where q(x0) is the real data distribution and p(xT ) is a standard Gaussian prior.
A generative process pθ(xt−1|xt) is trained to generate realistic images by

approximating the reverse process through variational inference. Each step of the
generative process is a Gaussian distribution with learned mean and covariance:

pθ(xt−1|xt) := N (µθ(xt, t), σ
2
t ) = N (xt + ϵθ(xt, t), σ

2
t ), (2)

where xt−1 is parameterized by a mean µθ(xt, t) represented by a perturbation
ϵθ(xt, t) to a noisy image xt. The goal is to remove the noise gradually by
predicting a less noisy image at timestep xt−1 given a noisy image xt. To generate
real images, we sample xt−1 from t = T to t = 1 using the parameterized
marginal distribution pθ(xt−1|xt), with an individual step corresponding to:

xt−1 = xt + ϵθ(xt, t) +N (0, σ2
t ). (3)

The generated images become more realistic over multiple iterations.

3.2 Energy Based Models

Energy-Based Models (EBMs) [10,9,12,28] are a class of generative models where
the data distribution is modeled using an unnormalized probability density.
Given an image x ∈ RD, the probability density of image x is defined as:

pθ(x) ∝ e−Eθ(x), (4)
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Sentence 1 (!!):
“Road leading into 
the mountains”

Sentence n (!"):
“Yellow trees on the 
side of the road”

Score "#($$ , &| !!)

Generated Image ('')

Concept 
Conjunction

Diffusion 
Model

Score "#($$ , &| !")

Image at iteration t ('&)

Diffusion 
Model

…… …

Fig. 2: Compositional generation. Our method can compose multiple concepts dur-
ing inference and generate images containing all the concepts without further training.
We first send an image from iteration t and each of the concept to the diffusion model
to generate a set of scores {ϵθ(xt, t|c1), . . . , ϵθ(xt, t|cn)}. We then compose different
concepts using the proposed compositional operators, such as conjunction, to denoise
the generated images. The final image is obtained after T iterations.

where the energy function Eθ(x) : RD → R is a learnable neural network.
A gradient based MCMC procedure, Langevin dynamics [10], is then used

to sample from an unnormalized probability distribution to iteratively refine the
generated image x:

xt = xt−1 −
λ

2
∇xEθ(xt−1) +N (0, σ2). (5)

The procedure for sampling from diffusion models in Equation (3) is functionally
similar to the sampling procedure used by EBMs in Equation (5). In both set-
tings, images are iteratively refined starting from Gaussian noise, with a small
amount of additional Gaussian noise added at each iterative step.

4 Our approach

In this section, we first introduce how we may interpret diffusion models as
energy-based models in section 4.1 and then introduce how we compose diffusion
models for visual generation in section 4.2.

4.1 Diffusion Models as Energy Based Models

The sampling procedure of diffusion models in Equation (3) and EBMs in Equa-
tion (5) are functionally similar. At a timestep t, in diffusion models, images are
updated using a learned denoising network ϵθ(xt, t) while in EBMs, images are
updated using the gradient of the energy function ∇xEθ(xt) ∝ ∇x log pθ(x),
which is the score of the estimated probability distribution pθ(x).

The denoising network ϵθ(xt, t) is trained to predict the underlying score
of the data distribution [41,37] when the number of diffusion steps increases
to infinity. Similarly, an EBM is trained so that ∇xEθ(xt) corresponds to the
score of the data distribution as well. In this sense, ϵθ(xt, t) and ∇xEθ(xt) are
fuctionally the same, and the underlying sampling procedure in Equation (3) and
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Equation (5) are equivalent. We may view a trained diffusion model ϵθ(xt, t) as
implicitly parameterizing an EBM by defining its data gradient ∇xEθ(xt) at
each data point, and we will subsequently refer to ϵθ(xt, t) as the score function.
Such a parameterization enables us to leverage past work towards composing
EBMs and apply it to diffusion models.
Composing EBMs. Previous EBMs [14,7] have shown good compositionality
ability for visual generation. Given n independent EBMs, E1

θ (x), · · · , En
θ (x),

the functional form of EBMs in Equation (4) enable us to compose multiple
separate EBMs together to obtain a new EBM. The composed distribution can
be represented as:

pcompose(x) ∝ p1θ(x) · · · pnθ (x) ∝ e−
∑

i E
i
θ(x) = e−Eθ(x), (6)

where piθ ∝ e−Ei
θ(x) is the probability density of image x (Equation (4)). Langevin

dynamics is used to iteratively refine the generated image x.

xt = xt−1 −
λ

2
∇x(

∑
i

Ei
θ(xt−1)) +N (0, σ2). (7)

Composing Diffusion Models. By leveraging the interpretation that diffusion
models are functionally similar to EBMs, we may compose diffusion models
in a similar way. The generative process and the score function of a diffusion
model can be represented as piθ(xt−1|xt) and ϵiθ(x, t), respectively. If we treat
the individual score function in diffusion models as the learned gradient of energy
functions in EBMs, the composition of diffusion models has a score function of∑

i ϵ
i
θ(x, t). Thus the generative process of composing multiple diffusion models

becomes:

pcompose(xt−1|xt) = N (xt +
∑
i

ϵiθ(xt, t), σ
2
t ). (8)

A complication when parameterizing of a gradient field of EBM ∇xEθ(xt)
with a learned score function ϵθ(x, t), is that the gradient field may not be con-
servative, and thus does not lead to a valid probability density. However, as
discussed in [34], explicitly parameterizing the learned function ϵθ(x, t) as the
gradient of EBM achieves similar performance as the non-conservative parame-
terization of diffusion models, suggesting this is not problematic.

4.2 Compositional Generation through Diffusion Models

Next, we discuss how we compose diffusion models for image generation. We aim
to generate images conditioned on a set of concepts {c1, c2, . . . , cn}. To do this,
we represent each concept ci as an individual diffusion model, which are com-
posed to generate images. Inspired by EBMs [7,23], we define two compositional
operators, conjunction (AND) and negation (NOT), to compose diffusion
models. We learn a set of diffusion models representing the conditional image
generation p(x|ci) given factor ci and an unconditional image generation p(x).
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Concept Conjunction (AND). We aim to generate images containing certain
attributes. Following [7], the conditional probability can be factorized as

p(x|c1, . . . , cn) ∝ p(x, c1, . . . , cn) = p(x)
∏
i

p(ci|x). (9)

We can represent p(ci|x) using a combination of a conditional distribution
p(x|ci) and an unconditional distribution p(x), with both of them are parameter-

ized as diffusion models p(ci|x) ∝ p(x|ci)
p(x) . The expression of p(ci|x) corresponds

to the implicit classifier that represents the likelihood of x exhibiting factor ci.
Substituting p(ci|x) in Equation 9, we can rewrite Equation 9 as the probability
distribution:

p(x|c1, . . . , cn) ∝ p(x)
∏
i

p(x|ci)
p(x)

. (10)

We sample from this resultant distribution using Equation (8), with a new com-
posed score function ϵ∗(xt, t):

ϵ∗(xt, t) = ϵθ(xt, t) + α
∑
i

(ϵθ(xt, t|ci)− ϵθ(xt, t)), (11)

where the constant α corresponds to a temperature scaling on p(x|ci)
p(x) . We may

then generate the composed sample using the following generative process:

p∗(xt−1|xt) := N (xt + ϵ∗(xt, t), σ
2
t ). (12)

In the setting in which image generation is conditioned on a single concept, the
above sampling procedure reduces to classifier-free guidance.
Concept Negation (NOT). In concept negation, we aim to generate image
with the absence of a certain factor c̃j . We also need to generate images that look
realistic. One easy way to do this is to make the generated images contain another
factor ci. Following [7], concept negation can be represented as the composed

probability distribution p(x|not c̃j , c1, c2, . . . , cn) =
∏

i p(x|ci)

p(x|c̃j)α
. Following [7], we

refactorize the joint probability distribution as:

p(x|not c̃j , c1, c2, . . . , cn) ∝ p(x,not c̃j , c1, c2, . . . , cn) = p(x)

∏
i p(ci|x)

p(c̃j |x)β
. (13)

Using the implicit classifier factorization p(ci|x) ∝ p(x|ci)
p(x) , we can rewrite the

above expression as:

p(x|not c̃j , c1, c2, . . . , cn) ∝ p(x)
p(x)β

p(x|c̃j)β
∏
i

p(x|ci)
p(x)

. (14)

Similarly, we may construct a new learned score ϵ∗(xt, t) using Equation (8) to
sample from the generative process to represent this negated probability distri-
bution at each timestep:
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Algorithm 1 Code for Composing Diffusion Models

1: Require Diffusion model ϵθ(x, t|c), scale α, negation factor β, noises σt

2: // Code for conjunction
3: Initialize sample xT ∼ N (0, I)
4: for t = T, . . . , 1 do
5: ϵi ← ϵθ(xt, t|ci) // compute conditional scores for each factor ci
6: ϵ← ϵθ(xt, t) // compute unconditional score
7: xt−1 ∼ N (xt+ϵ+α

∑
i(ϵi−ϵ), σ2

t ) // sampling
8: end for
9:

10: // Code for negation
11: Initialize sample xT ∼ N (0, I)
12: for t = T, . . . , 1 do
13: ϵ̃j ← ϵθ(xt, t|c̃j) // compute conditional scores for negated factor c̃j
14: ϵi ← ϵθ(xt, t|ci) // compute conditional scores for each factor ci
15: ϵ← ϵθ(xt, t) // compute unconditional score
16: xt−1 ∼ N (xt+ϵ+α{−β(ϵ̃j−ϵ)+

∑
i(ϵi−ϵ)}, σ2

t ) // sampling
17: end for

ϵ∗(xt, t) = ϵθ(xt, t)+α{−β(ϵθ(xt, t|c̃j)−ϵθ(xt, t))+
∑
i

(ϵθ(xt, t|ci)−ϵθ(xt, t))}, (15)

where the constant α corresponds to a temperature scaling on each implicit

classifier p(x|ci)
p(x) . We may then generate samples from this modified learned score

using Equation 12.
Algorithm 1 provides the pseudo-code for composing diffusion models using

concept conjunction and negation. Our method can compose pre-trained diffu-
sion models during inference time without any additional training.

5 Experiment Setup

5.1 Datasets

CLEVR. CLEVR [17] is a synthetic dataset containing objects with different
shapes, colors, and sizes. The training set consists of 30,000 images at 128× 128
resolution. Each image contains 1 ∼ 5 objects and a 2D coordinate (x, y) label
indicating that the image contains an object at (x, y). In our experiments, the
2D coordinate label is the coordinate of one random object in the image.
Relational CLEVR. Relational CLEVR [23] contains relational descriptions
between objects in the image, such as “a red cube to the left of a blue cylinder”.
The training dataset contains 50, 000 images at 128×128 resolution. Each train-
ing image contains 1 ∼ 5 objects, and one label describing a relation between
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two objects. If there is only one object in the image, the second object in the
relational description is null.
FFHQ. FFHQ [18] is a real world human face dataset. The original FFHQ
dataset consists of 70,000 human face images without labels. [5] annotates three
binary attributes, including smile, gender, and glasses, for the images using pre-
trained classifiers. As a result, there are 51,067 images labeled by the classifiers.

5.2 Evaluation Metrics

Binary classification accuracy. During testing, we evaluate the performance
of the proposed method and baselines on three different settings. The first
test setting, 1 Component, generates images conditioned on a single con-
cept (matching the training distribution). The second and third test settings,
2 Components and 3 Components, generate images by composing two and
three concepts respectively using the conjunction and negation operators. They
are used to evaluate the models’ generalization ability to new combinations.

For each task, we use the training data (real images) to train a binary clas-
sifier that takes an image and a concept, e.g . ‘smiling’, as input, and predicts
whether the image contains or represents the concept. We then apply this clas-
sifier to a generated image, checking whether it faithfully captures each of the
concepts. In each test setting, each method generates 5, 000 images for evalua-
tion. The accuracy of the method is the percentage of generated images capturing
all the concepts (See Appendix B).
Fréchet Inception Distance (FID) is a commonly used metric for evaluating
the quality of generated images. It uses a pretrained inception model [40] to
extract features for the generated images and real images and measure their
feature similarity. Specifically, we use Clean-FID [29] to evaluate the generated
images. FID is usually computed on 50, 000 generated images, but we use 5, 000
images in our experiments, thus causing our FID scores to be higher than usual.

6 Experiments

We compare the proposed method and baselines (section 6.1) on compositional
generation on different domains. We show results of composing natural language
descriptions (section 6.2), objects (section 6.3), object relational descriptions
(section 6.4), and human facial attributes (Appendix A). Results analysis are
shown in section 6.5.

6.1 Baselines

We compare our method with baselines for compositional visual generation.
Energy-based models (EBM) [7] is the first paper using EBMs for compo-
sitional visual generation. They propose three compositional operators for com-
posing different concepts. Our works is inspired by [7], but we compose diffusion
models and achieve better results.
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“A blue bird on a 
tree” AND “A red 
car behind the 
tree” AND “A 
green forest in the 
background”

“A green tree swaying 
in the wind” AND “A 
red brick house 
located behind a tree” 
AND “A healthy lawn 
in front of the house”

“A pink sky in 
the horizon” 
AND “A sailboat 
at the sea” AND 
“Overwater 
bungalows”

“A starry night 
sky” AND “A 
polar bear in a 
forest”

“A white church 
sitting on a hill” 
AND “Aurora in 
the sky”

GLIDE

Composed GLIDE (Ours)

“A pink sky” AND 
“A blue mountain 
in the horizon” 
AND “Cherry 
Blossoms in front 
of the mountain”

Fig. 3: Composing Language Descriptions. We develop Composed GLIDE (Ours),
a version of GLIDE [26] that utilizes our compositional operators to combine textual
descriptions, without further training. We compare it to the original GLIDE, which di-
rectly encodes the descriptions as a single long sentence. Our approach more accurately
captures text details, such as the “overwater bungalows” in the third example.

StyleGAN2 [19] is one of the state-of-the-art GAN methods for unconditional
image generation. To enable compositional image generation, We optimize the
latent code by decreasing the loss between a trained binary classifier and the
given labels. We use the final latent code to generate images.
LACE [27] uses pre-trained classifiers to generate energy scores in the latent
space of the pre-trained StyleGAN2 model. To enable compositional image syn-
thesis, LACE uses compositional operators [7].
GLIDE [26] is a recent state-of-the-art text-conditioned diffusion model. For
composing language descriptions, we use the classifier-free model released by
OpenAI for comparison. For the rest tasks, we train the GLIDE model using the
same data as our method.

6.2 Composing Language Descriptions

We first validate that our approach can compose natural language descriptions.
We use the pre-trained text conditional diffusion models from GLIDE [26]. The
image generation results of the released GLIDE model (a small model) is shown
in Figure 3. We develop Composed GLIDE (Ours), a version of GLIDE [26] that
utilizes our compositional operators to combine textual descriptions, without
further training. We compare this model to the original GLIDE model, which
directly encodes the descriptions as a single long sentence.

In Figure 3,GLIDE takes a single long sentence as input, for example “A pink
sky in the horizon, a sailboat at the sea, and overwater bungalows”. In contrast,
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Obj1 (0.1, 0.5) AND Obj2 (0.3, 0.5) AND Obj3 (0.5, 0.5) 
AND Obj4 (0.7, 0.5) AND Obj5 (0.9, 0.5)

OursEBM

Obj1

Obj2

Obj3

Obj4

Obj5

Obj1 (0.2, 0.65) AND Obj2 (0.2, 0.4) AND Obj3 (0.5, 0.5) 
AND Obj4 (0.7, 0.4) AND Obj5 (0.7, 0.65)

Obj1

Obj2

Obj3

Obj5

Obj4

Obj1 (0.2, 0.65) AND Obj2 (0.3, 0.5) AND Obj3 (0.4, 0.4) AND Obj4 (0.5, 
0.3) AND Obj5 (0.6, 0.4) AND Obj6 (0.7, 0.5) AND Obj7 (0.8, 0.65)

Obj1

Obj2
Obj3

Obj4

Obj5
Obj6

Obj1

Obj2 Obj3

Obj4

Obj5

Obj1

Obj2

Obj5
Obj3

Obj4

Obj1

Obj2
Obj3

Obj4
Obj5

StyleGAN2

Obj2

LACE OursEBMStyleGAN2LACE

Obj1 (0.1, 0.5) AND Obj2 (0.3, 0.5) AND Obj3 (0.5, 0.5) AND Obj4 (0.7, 
0.5) AND Obj5 (0.9, 0.5) AND Obj6 (0.5, 0.65) AND Obj7 (0.5, 0.3)

Obj1Obj2Obj3
Obj4

Obj5

Obj6

Obj7

Obj6
Obj4Obj2

Obj7

Obj2
Obj6

Obj7

Obj7

Fig. 4: Composing Objects. Our method can compose multiple objects while base-
lines either miss or generate more objects.

Table 1: Quantitative evaluation of 128 × 128 image generation results on CLEVR.
The binary classification accuracy (Acc) and FID scores are reported. Our method
outperforms baselines on all the three test settings.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

EBM [7] 70.54 78.63 28.22 65.45 7.34 58.33
StyleGAN2 [19] 1.04 51.37 0.04 23.29 0.00 19.01
LACE [27] 0.70 50.92 0.00 22.83 0.00 19.62
GLIDE [26] 0.86 61.68 0.06 38.26 0.00 37.18
Ours 86.42 29.29 59.20 15.94 31.36 10.51

Composed GLIDE (Ours) composes several short sentences using the concept
conjunction operator, e.g . “A pink sky in the horizon” AND “A sailboat at the
sea” AND “Overwater bungalows”. While both GLIDE and Composed GLIDE
(Ours) can generate reasonable images containing objects described in the text
prompt, our approach with the compositional operators can more accurately
capture text details, such as the presence of “a polar bear” in the first example
and the “overwater bungalows” in the third example.

6.3 Composing Objects

Given a set of 2D object positions, we aim to generate images containing objects
at those positions.

Qualitative results. We compare the proposed method and baselines on com-
posing objects in Figure 4. We only show the concept conjunction here because
the object positions are not binary values, and thus negation of object positions
is not interpretable. Given a set of object position labels, we compose them to
generate images. Our model can generate images of objects at certain locations
while the baseline methods either miss objects or generate incorrect objects.
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“A large blue metal cube to the left of a small yellow metal sphere” AND
“A large blue metal cube in front of a large cyan metal cylinder”

Obj1

Obj2

Obj3

Obj4

Obj5

Obj1

Obj2
Obj3 Obj5

Obj6

Obj1

Obj2 Obj3

Obj4

Obj5

Obj1

Obj2
Obj3

Obj4
Obj5

Obj2

LACE

Obj7

“A small brown metal sphere below a small green metal sphere” AND
“A small brown metal sphere behind a large gray rubber cube”

StyleGAN2 EBM GLIDE DALLE-2 Ours

Fig. 5: Composing Visual Relations. Image generation results on the Relational
CLEVR dataset. Our model is trained to generate images conditioned on a single
object relation, but during inference, our model can compose multiple object relations,
generating better results than baselines.

Table 2: Quantitative evaluation of 128 × 128 image generation results on the Re-

lational CLEVR dataset. The binary classification accuracy (Acc) and FID score on

three test settings are reported. Although EBM performs well on the binary classifica-

tion accuracy, its FID score is much lower than other methods. Our method achieves

comparable or better results than baselines.

Models
1 Component 2 Components 3 Components

Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓ Acc (%) ↑ FID ↓

EBM [23] 78.14 44.41 24.16 55.89 4.26 58.66
StyleGAN2 [19] 20.18 22.29 1.66 30.58 0.16 31.30
LACE [27] 1.10 40.54 0.10 40.61 0.04 40.60
GLIDE [26] 32.68 57.48 7.48 59.47 2.14 61.52
Ours 60.40 29.06 21.84 29.82 2.80 26.11

Quantitative results. As shown in Table 1, our method outperforms baselines
by a large margin. The binary classification accuracy of our method is 15.88%
higher than the best baseline, EBM, in the 1 component test setting and is 24.02
higher than EBM on the more challenging 3 Components setting. Our method is
more effective in zero-shot compositional generalization. In addition, our method
can generate images with lower FID scores (more similar to the real images).

6.4 Composing Object Relations

Qualitative results. We further compare the proposed approach and baselines
on composing object relational descriptions in Figure 5. Our model is trained to
generate images conditioned on a single object relation, but it can compose mul-
tiple object relations during inference without additional training. Both LACE
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and StyleGAN2 fail to capture object relations in the input sentences, but EBM
and our method can correctly compose multiple object relations. Our method
generates higher-quality images compared with EBM, e.g . the object boundaries
are sharper in our results than EBM. Surprisingly, DALLE-2 and GLIDE can
generate high-quality images, but they fail to understand object relations.
Quantitative results. Same as experiments in section 6.3, we evaluate the pro-
posed method and baselines on three test settings in Table 2. We train a binary
classifier to evaluate whether an image contains objects that satisfy the input re-
lational description. For binary classification accuracy, our method outperforms
StyleGAN2 (CLIP), LACE, and GLIDE on all three test settings. EBMs per-
form well on composing relational descriptions, but their FID scores are much
worse than other methods, i.e. their generated images are not realistic.

6.5 Results analysis

We show the image generation results conditioned on each individual sentence
description, and our composition results in Figure 6. We provide four successful
compositional examples, where the generated image contains all the concepts
mentioned in the input sentences.
Failure cases. We observed three main failure cases of the proposed method.
The first one is the pre-trained diffusion models do not understand certain
concepts, such as “person” in (b). We used the pre-trained diffusion model,
GLIDE [26], which is trained to avoid generating human images. The second
type of failure is because the diffusion models confuse the objects’ attributes. In
(c), the generated image contains “a red bear” while the input is “a bear in a
red forest”. The third type of failure is because the composition does not work,
e.g . the “bird-shape and flower-color object” and the “dog-fur and sofa-shape
object” in (d). Such failures usually happen when the objects are in the center
of the images.

7 Conclusion

In this paper, we compose diffusion models for image generation. By interpreting
diffusion models as energy-based models, we may explicitly compose them and
generate images with significantly more complex combinations that are never
seen during training. We propose two compositional operators, concept conjunc-
tion and negation, allowing us to compose diffusion models during the inference
time without any additional training. The proposed composable diffusion models
can generate images conditioned on sentence descriptions, objects, object rela-
tions, human facial attributes, and even generalize to new combinations that are
rarely seen in the real world. These results demonstrate the effectiveness of the
proposed method for compositional visual generation.

A limitation of our current approach is that while we are able to compose mul-
tiple diffusion models together, they are instances of the same model. We found
limited success when composing diffusion models trained on different datasets. In
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“A bird” “A flower” “A bird” AND
“A flower”

(b) Diffusion model fails

“A bus” “A person” “A bus” AND
“A person”

“A bear in a red 
forest”

“A car stuck in 
the forest”

“A bear in a red 
forest” AND “A car 
stuck in the forest”

(c) Diffusion model confuses object attributes

(d) Composition fails

“A camel” “A forest” “A camel” AND 
“A forest”

(a) Successful Examples

“An abandoned 
vehicle”

“A forest covered 
with snow”

“An abandoned vehicle” 
AND “A forest covered 
with snow”

“A dog sitting in 
the living room”

“A couch” “A couch” AND “A dog 
sitting in the living room”

“A horse” “A yellow flower field” “A horse” AND “A 
yellow flower field”

“A boat” “A desert” “A boat” AND
“A desert”

Fig. 6: Qualitative results. Successful examples (a) and failure examples (b-d) gen-
erated by the proposed method. There are three main types of failures: (b) The pre-
trained diffusion model does not understand certain concepts, such as “person”. (c) The
pre-trained diffusion model confuses objects’ attributes. (d) The composition fails. This
usually happens when the objects are in the center of the images.

contrast, compositional generation with EBMs [7] can successfully compose mul-
tiple separately trained models. Incorporating additional structures into diffusion
models from EBMs [10], such as a conservative score field, may be a promising
direction towards enabling compositions of separately trained diffusion models.
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