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Abstract. Creating visual layouts is a critical step in graphic design.
Automatic generation of such layouts is essential for scalable and di-
verse visual designs. To advance conditional layout generation, we intro-
duce BLT, a bidirectional layout transformer. BLT differs from previous
work on transformers in adopting non-autoregressive transformers. In
training, BLT learns to predict the masked attributes by attending to
surrounding attributes in two directions. During inference, BLT first gen-
erates a draft layout from the input and then iteratively refines it into a
high-quality layout by masking out low-confident attributes. The masks
generated in both training and inference are controlled by a new hierar-
chical sampling policy. We verify the proposed model on six benchmarks
of diverse design tasks. Experimental results demonstrate two benefits
compared to the state-of-the-art layout transformer models. First, our
model empowers layout transformers to fulfill controllable layout gener-
ation. Second, it achieves up to 10x speedup in generating a layout at
inference time than the layout transformer baseline. Code is released at
https://shawnkx.github.io/blt.
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1 Introduction

Graphic layout dictates the placement and sizing of graphic components, play-
ing a central role in how viewers interact with the information provided [24].
Layout generation is emerging as a new research area with a focus of gener-
ating realistic and diverse layouts to facilitate design tasks. Recent works show
promising progress for various applications such as graphic user interfaces [2, 18],
presentation slides [13], magazines [45, 43], scientific publications [1], commercial
advertisements [24, 36, 14], computer-aided design [41], indoor scenes [4], layout
representations [28, 42], etc.

Previous work explores neural models for layout generation using Generative
Adversarial Networks (GANs) [10, 25] or Variational Autoencoder (VAEs) [22,
19, 34, 24]. Currently, layout transformers hold the state-of-the-art performance
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for layout generation [15, 1]. These transformers represent a layout as a sequence
of objects and an object as a (sub)sequence of attributes (See Fig. 1a). Layout
transformers predict the attribute sequentially based on previously generated
output (i.e. autoregressive decoding). Like other vision tasks, by virtue of the
powerful self-attention [38], transformer models yield superior quality and diver-
sity than GAN or VAE models for layout generation [15, 1].

(a) Conditional layout generation.

(b) Unidirectional autoregressive (top) and non-autoregressive
(bottom) decoding.

Fig. 1: (a) Conditional layout generation. Each object is modeled by 5 at-
tributes ‘category’, ‘x’, ‘y’, ‘w’ (width) and ‘h’ (height). In conditional genera-
tion, attributes are partially given by the user and the goal is to generate the
unknown attributes, e.g . putting the icon or button on the canvas. (b) Illus-
tration of immutable dependency chain in autoregressive decoding.

Unlike Layout VAE (or GAN) models that are capable of generating layouts
considering user requirements, layout transformers, however, have difficulties
in conditional generation as a result of an acknowledged limitation discussed
in [15] (c.f . order of primitives). Fig. 1a illustrates a scenario in which a designer
has objects with partially known attributes and hopes to generate the missing
attributes. Specifically, each object is modeled by five attributes ‘category’, ‘x’,
‘y’, ‘w’ (width) and ‘h’ (height). The designer wants the layout model to 1) place
the “icon” and “button” with known sizes onto the canvas (i.e. generating x,
y from w, h, and ‘category’), and 2) determines the size of the centered “text
object” (i.e. generating w, h from x, y, and ‘category’).

Such functionality is currently missing in the layout transformers [15, 1] due
to immutable dependency chain. This is because autoregressive transformers fol-
low a pre-defined generation order of object attributes. As shown in Fig. 1b,
attributes must be generated starting from the category c, then x and y, fol-
lowed by w and h. The dependency chain is immutable i.e. it cannot be changed
at decoding time. Therefore, autoregressive transformers fail to perform con-



BLT 3

ditional layout generation when the condition disagrees with the pre-defined
dependency, e.g . generating position y from the known width w in Fig. 1b.

In this work, we introduce Bidirectional Layout Transformer (or BLT) for
controllable layout generation. Different from the traditional transformer mod-
els [15, 1], BLT enables controllable layout generation where every attribute in
the layout can be modified, with high flexibility, based on the user inputs (c.f .
Fig. 1a). During training, BLT learns to predict the masked attributes by at-
tending to attributes in two directions (c.f . Fig. 2a). At inference time, BLT
adopts a non-autoregressive decoding algorithm to refine the low-confident at-
tributes iteratively into a high-quality layout (c.f . Fig. 2b). We propose a simple
hierarchical sampling policy that is used both in training and inference to guide
the mask generation over attribute groups.

BLT eliminates a critical limitation in the prior layout transformer mod-
els [15, 1] that prevents transformers from performing controllable layout gen-
eration. Our model is inspired by the autoregressive work in NLP [9, 11, 5, 12].
However, we find directly applying the non-autoregressive translation models [9,
23] to layout generation only leads to inferior results than the autoregressive
baseline. Our novelty lies in the proposed simple yet novel hierarchical sampling
policy, which, as substantiated by our experiments in Section 5.4, is essential for
high-quality layout generation.

We evaluate the proposed method on six layout datasets under various met-
rics. These datasets cover representative design applications for graphic user
interface [2], magazines [45] and publications [46], commercial ads [24], natural
scenes [27] and home decoration [8]. Experiments demonstrate two benefits to
several strong baseline models [15, 1, 19, 19]. First, our model empowers trans-
formers to fulfill controllable layout generation and thereby outperforms the pre-
vious conditional models based on VAE (i.e., LayoutVAE [19] and NDN [24]).
Even though our model is not designed for unconditional layout generation, it
achieves quality on-par with the state-of-the-art. Second, our new method re-
duces the time complexity in [15, 1] while achieving 4x-10x speedups in layout
generation.

To summarize, we make the following contributions:

1. We address a critical limitation in state-of-the-art layout transformers [15,
1] and hence empower transformers to fulfill controllable layout generation.

2. Though our idea is inspired by the autoregressive work in NLP [9, 11, 5,
12], a novel hierarchical mask sampling policy is introduced in training and
decoding, which is essential for high-quality layout generation.

3. Extensive experiments validate that our method performs favorably against
state-of-the-art models in terms of realism, alignment, and semantic rele-
vance on six diverse layout benchmarks.

2 Related Work

Layout synthesis: Recently, automatic generation of high-quality and realistic
layouts has fueled increasing interest. Unlike early work [32, 31, 33, 35, 44, 29, 7,
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40, 6, 39], recent data-driven methods rely on deep generative models such as
GANs [10] and VAE [22]. For example, LayoutGAN [25] uses a GANs-based
framework to synthesize semantic and geometric properties for scene elements.
During inference time, LayoutGAN generates layouts from the Gaussian noise.
Afterwards, LayoutGAN is extended to attribute-conditioned design tasks [26].
LayoutVAE [19] introduces two conditional VAEs. The first aims to learn the
distribution of category counts which will be used during layout generation. The
second produces layouts conditioning on the number and category of objects gen-
erated from the first VAE or ground-truth data. Recently, various VAE models
are proposed [34, 20, 24]. Among them, Neural Design Networks (NDN) [24] is a
competitive VAEs-based model for conditional layout generation, which focuses
on modeling the asset relations and constraints by graph convolution. Our work
is different from LayoutVAE and NDN in modeling layout and user inputs by the
transformer, which, as shown in Table 1, perform more favorably thanks to the
transformer architecture. Our finding is consistent with [1] where Arroyo et al .
find VAEs underperforming transformers for unconditional layout generation [1].

Currently, the state-of-the-art for layout generation is held by the transformer
models [38]. In particular, [15] employs the standard autoregressive Transformer
decoder with unidirectional attention. They find out that self-attention is able
to explicitly learn relationships between objects in the layout, resulting in su-
perior quality compared to prior work. Furthermore, to increase the diversity
of generated layout, [1] incorporates the standard autoregressive Transformer
decoder into a VAE framework and [30] employs multi-choice prediction and
winner-takes-all loss. Despite the superior performance, this work addresses a
critical limitation acknowledged in [15] that prevents transformers from perform-
ing controllable layout generation. Following LayoutGAN [25], [20] proposes a
Transformer based layout GAN model, LayoutGAN++. In this framework, the
input is a set of asset labels and randomly generated code and the output is the
location and size of these asset.Different from the LayoutGAN++, the input to
our proposed model is more flexible and can support unconditional generation
and various types of conditional generation tasks.

Bidirectional transformer and non-autoregressive decoding: The classic Trans-
former [38] decoder uses the unidirectional self-attention mechanism to gen-
erate the sequence token-by-token from left to right, leaving the right-to-left
contexts unexploited. Several NLP works [9, 23, 37] are proposed to investigate
language generation tasks by non-autoregressive generation with bidirectional
Transformers, which allow representations to attend in both directions [3]. How-
ever, non-autoregressive decoding process leads to an apparent performance drop
compared to the autoregressive decoding algorithm [11, 12, 9]. In this work, we
finds that applying the non-autoregressive NLP model [9] to layout generation
also leads to inferior results than the autoregressive baseline. To this end, we
propose a simple yet effective hierarchical sampling policy which is essential for
high-quality layout generation.
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3 Problem Formulation

Following [15], we use 5 attributes to describe an object, i.e., (c, x, y, w, h), in
which the first element c ∈ C is the object category such as the logo or button,
and the remainder details the bounding box information i.e. the center location
(x, y) ∈ R2 and the width and height (w, h) ∈ R2. Furthermore, float values in
bounding box information is discretized using 8-bit uniform quantization. For
instance, the x-coordinate after the quantization becomes {x|x ∈ Z, 0 ≤ x ≤ 31}.
A layout l of K assets is hence denoted as a flattened sequence of integer indices:

l = [⟨bos⟩, c1, x1, y1, w1, h1, c2 · · · , hK , ⟨eos⟩] (1)

where ⟨bos⟩ and ⟨eos⟩ are special tokens to denote the start and the end of
sequence. We use a shared vocabulary and represent each element in l as an
integer index or equivalently as a one-hot vector with the same length. It is
trivial to extend the attribute dimension to model more complex layouts.

Issues To train the model, prior work [15, 1] estimates the joint likelihood of

observing a layout as p(l) =
∏|l|

i=1 p(li|l1:i).
During training, an autoregressive Transformer model is learned to maximize

the likelihood using ground-truth attribute as input (i.e. teacher forcing). At
inference time, the transformer model predicts the attribute sequentially based
on previously generated output (i.e. autoregressive decoding), starting from the
begin-of-sequence or ⟨bos⟩ token until yielding the end-of-sequence token ⟨eos⟩.
The generation must follow a fixed conditional dependency. For example, Eq. (1)
defines an immutable generation order x → y → w → h. And in order to generate
the height h for an object, one must know its x-y coordinates and width w.

There are two issues with autoregressive decoding for the conditional gen-
eration. First, it is infeasible to process user conditions that differ from the
dependency order used in training. For instance, the model using Eq. (1) is not
able to generate x-y coordinates from width and height, which corresponds to a
practical example of placing an object with given size. This issue is exacerbated
by complex layouts that require more attributes to represent an object. Second,
the autoregressive inference is not parallelizable, rendering it inefficient for the
dense layout with a large number of objects or attributes.

4 Approach

Our goal is to design a transformer model for controllable layout generation.
We propose a method to learn non-autoregressive transformers. Unlike existing
layout transformers [15, 1], the new layout transformer is bidirectional and can
generate all attributes simultaneously in parallel, which allows not only for flex-
ible conditional generation but also more efficient inference. In this section, we
first discuss the model and training objective; then detail a novel hierarchical
sampling policy for training and parallel decoding.
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4.1 Model and Training

The BLT backbone is the multi-layer bidirectional Transformer encoder [38] as
shown in Fig. 2. We use the identical architecture as in the existing autoregressive
layout transformers [1, 15] but a bidirectional attention mechanism.

(a) BLT Training Phrase. (b) BLT Iterative Decoding Process.

Fig. 2: The training (left) and decoding (right) stages of the proposed Bidirec-
tional Layout Transformer (BLT).

Inspired by BERT [3], during training, we randomly select a subset of at-
tributes in the input sequence, replace them with a special “[mask]” token, and
optimize the model to predict the masked attributes. For a layout sequence l,
let M denote a set of masked positions. Replacing attributes in l with “[mask]”
at M yields the masked sequence lM.

Given a layout set D, the training objective is to minimize the negative log-
likelihood of the masked attributes:

Lmask = − E
l∈D

[ ∑
i∈M

log p(li|lM)
]
, (2)

The masking strategy greatly affects the quality of the masked language
model [3]. BERT [3] applies random masking with a fixed ratio where a constant
15% masks are randomly generated for each input. Similarly, we find masking
strategy is important for layout generation, but the random masking used in
BERT does not work well. We propose to use a new sampling policy. Specifically,
we divide the attributes of an object into semantic groups, e.g . Fig. 2 showing 3
groups: category, position, and size. First, we randomly select a semantic group.
Next, we dynamically sample the number of masked tokens from a uniform
distribution between one and the number of attributes belonging to the chosen
group, and then randomly mask that number of tokens in the selected group.
As such, it is guaranteed that the model only predicts attributes of the same
semantic meaning each time. Therefore, given the hierarchical relations between
these groups, we call this method as the hierarchical sampling. We will discuss
how to apply the hierarchical sampling policy to decoding in the next subsection.
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4.2 Parallel Decoding by Iterative Refinement

In BLT, all attributes in the layout are generated simultaneously in parallel.
Since generating layouts in a single pass is challenging [9], we employ a parallel
language model. The core idea is to generate a layout iteratively in a small
number of steps where parallel decoding is applied at each.

Algorithm 1 Decoding by Iterative Attribute Refinement

Require: Sequence l with partially-known attributes. Constant T for the number of
iterations.

1: for g in [C, S, P ] do ▷ Loop over semantic group
2: for i← 1 to T/3 do
3: p, li = BLT (l)
4: γi = T−3i

T
▷ Compute mask ratio

5: ni = ⌊γi × |g|⌋ ▷ |g|: # attributes in g
6: M = argk=ni

top-k(−p) ▷ Get mask indices

7: Obtain l by masking li with respect to M
8: end for
9: end for

10: return l

Algorithm 1 presents the non-autoregressive decoding algorithm. The pro-
cedure is also illustrated in Fig. 2b. The input to the decoding algorithm is a
mixture sequence of known and unknown attributes, where the known attributes
are given by the user inputs, and the model aims at generating the unknown
attributes denoted by the [mask] token. Like in training, we employ the hierar-
chical sampling policy to generate attributes of three semantic groups: category
(C), size (S), and position (P ). For each iteration, one group of attributes is
sampled. In Step 3 of Algorithm 1, the model makes parallel predictions for
all unknown attributes, where p denotes the prediction scores. Step 6 samples
the attributes that belong to the selected group and have the lowest prediction
scores. Finally, it masks low-confident attributes on which the model has doubts.
The prediction probabilities from the softmax layer are used as the confidence
scores. These masked attributes will be re-predicted in the next iteration of de-
coding conditioning on all other ascertained attributes so far. The masking ratio
calculated in Step 4 decreases with the number of iterations. This process will
repeat T times until all attributes of all objects are generated (c.f . Fig. 2b).

Our model is inspired by the autoregressive models in NLP [9, 23]. It is note-
worthy that Algorithm 1 differs from the non-autoregressive NLP models [9,
23] in the proposed hierarchical sampling. This paper finds applying [9, 23] to
layout generation only leads to inferior results than our autoregressive baseline.
We hypothesize that it is because layout attributes, unlike natural language,
have apparent structures, and the non-autoregressive models designed for word
sequences [9, 23] might not sufficiently capture the complex correlation between
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layout attributes. We empirically demonstrate that Algorithm 1 outperforms our
non-autoregressive NLP baselines in Section 5.4.

Algorithm 1 can be extended to unconditional generation. In this case, the
input is a layout sequence of only “[mask]” tokens, and the same algorithm
is used to generate all attributes in the layout. Unlike conditional generation,
we need to know the sequence length in advance, i.e. the number of objects to
be generated. Here, we can use the prior distribution obtained on the training
dataset. During decoding, we obtain the number of objects through sampling
from this prior distribution.

5 Experimental Results

This section verifies the proposed method on six diverse layout benchmarks
under various metrics to examine realism, alignment, and semantic relevance.
The results show our model performs favorably against the strong baselines and
achieves a 4x-10x speedup than autoregressive decoding in layout generation.

5.1 Setups

Datasets We employ six datasets that cover representative graphic design appli-
cations. RICO [2] is a dataset of user interface designs for mobile applications. It
contains 91K entries with 27 object categories (button, toolbar, list item, etc.).
PubLayNet [46] contains 330K examples of machine annotated scientific docu-
ments crawled from the Internet. Its objects come from 5 categories: text, title,
figure, list, and table. Magazine [45] contains 4K images of magazine pages and
six categories (texts, images, headlines, over-image texts, over-image headlines,
backgrounds). Image Ads [24] is the commercial ads dataset with layout anno-
tation detailed in [24]. COCO [27] contains ∼100K images of natural scenes. We
follow [1] to use the Stuff variant, which contains 80 things and 91 stuff cate-
gories, after removing small bounding boxes (≤ 2% image area), and instances
tagged as “iscrowd”. 3D-FRONT [8] is a repository of professionally designed
indoor layouts. It contains around 7K room layouts with objects belonging to 37
categories, e.g ., the table and bed. Different from previous datasets, objects in
3D-FRONT are represented by 3D bounding boxes. The maximum number of
objects in our experiments is 25 in the RICO dataset and 22 in the PubLayNet
dataset.

Evaluation metrics We employ five common metrics in the literature as well as
a user study to validate the proposed method’s effectiveness. Specifically, IOU
measures the intersection over the union between the generated bounding boxes.
We use an improved perceptual IOU (see more discussions in the Appendix).
Overlap [25] measures the total overlapping area between any pair of bounding
boxes inside the layout. Alignment [24] computes an alignment loss with the
intuition that objects in graphic design are often aligned either by center or
edge. FID [16] measures the distributional distance of the generated layout to
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the real layout. Following [24], we compute FID using a binary layout classifier to
discriminate real layouts. We employ a 2-layer Transformer to train the classifier.
Notice that the lower, the better for all IOU, Overlap, Alignment, and FID.

The above metrics ignore the input condition. For conditional generation,
we employ a metric called Similarity [34] and a user study, where the former
compares the generated layout with the ground-truth layout under the same
input. Following [34], DocSim is used to calculate the similarity between two
layouts. The user study is used to further evaluate human’s perception about
the conditionally-generated layouts.

Generation settings We examine three layout generation scenarios (2 conditional
and 1 unconditional).

– Conditional on Category: only object categories are given by users. The
model needs to predict the size and position of each object.

– Conditional on Category + Size: the object category and size are specified.
The model needs to predict the positions, i.e. placing objects on the canvas.

– Unconditional Generation: no information is provided by users. Prior lay-
out transformer work focuses on this setting.

In unconditional generation, the model generates 1K samples from the random
seed. The test split of each dataset is used for conditional generation.

Implementation details The model is trained for five trials with random ini-
tialization and the averaged metrics with standard deviations are reported. All
models including ours have the same configuration, i.e., 4 layers, 8 attention
heads, 512 embedding dimensions and 2,048 hidden dimensions. Adam opti-
mizer [21] with β1 = 0.9 and β1 = 0.98 is used. Models are trained on 2×2
TPU devices with batch size 64. For conditional generation, we randomly shuf-
fle objects in the layout. For unconditional generation, to improve diversity, we
use the nucleus sampling [17] with p = 0.9 for the baseline Transformers and
the top-k sampling (k = 5) for our model. Greedy decoding method is used for
conditional generation. Please refer to the Appendix for more detailed hyper-
parameter configurations.

5.2 Quantitative Comparison

Conditional generation The results are shown in Table 1 and Table 2. State-of-
the-art layout transformers are compared i.e. LayoutTransformer (Trans.) [15]
and Variational Transformer Network (VTN) [1]. In addition, two rep-
resentative VAEs for conditional generation: LayoutVAE (L-VAE) [19] and
Neural Design Network (NDN) [24] are also compared on the large datasets
of RICO and PubLayNet. Two conditional generation tasks are examined i.e.
Conditioned on Category and Conditioned on Category + Size (Column “+
Size”). The same model is used for both conditional cases and “-” indicates the
baseline models fail to process the condition “Category + Size”. The results
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RICO Conditioned on Category + Size

Model IOU↓ Overlap↓ Alignment↓ FID↓ Sim.↑ Sim.↑ FID↓

L-VAE [19] 0.41±1.5% 0.39±2.3% 0.38±1.9% 122±19 0.13±1.5% 0.19 76
NDN [24] 0.37±1.7% 0.36±1.9% 0.41±1.6% 97±21 0.15±2.3% 0.21 63
Trans. [15] 0.31±0.2% 0.33±0.8% 0.30±0.8% 76±24 0.20±0.1% - -
VTN [1] 0.30±0.1% 0.30±0.3% 0.32±0.9% 82±23 0.20±0.1% - -
Ours 0.30±0.4% 0.23±0.2% 0.20±1.1% 70±29 0.21±0.2% 0.30 26

PubLayNet Conditioned on Category + Size

Model IOU↓ Overlap↓ Alignment↓ FID↓ Sim.↑ Sim.↑ FID↓

L-VAE 0.45±1.3% 0.15±0.9% 0.37±0.7% 513±26 0.07±0.3% 0.09 239
NDN 0.34±1.8% 0.12±0.8% 0.39±0.4% 425±37 0.06±0.3% 0.09 178
Trans. 0.19±0.3% 0.06±0.3% 0.33±0.3% 127±29 0.11±0.1% - -
VTN 0.21±0.6% 0.06±0.2% 0.33±0.4% 159±21 0.10±0.1% - -
Ours 0.19±0.2% 0.04±0.1% 0.25±0.7% 134±24 0.11±0.2% 0.18 87

Table 1: Conditional layout generation on two settings (Category and Category+
Size) on the large datasets of RICO and PubLayNet.

COCO Conditioned on Category + Size

Model IOU↓ Sim.↑ Sim.↑

Trans. [15] 0.60±0.4% 0.20±0.2% -
VTN [1] 0.63±0.4% 0.22±0.1% -
Ours 0.43±0.5% 0.24±0.1% 0.44

Magazine Conditioned on Category + Size

Model IOU↓ Sim.↑ Sim.↑

Trans. 0.20±0.8% 0.15±0.3% -
VTN 0.18±1.8% 0.15±0.9% -
Ours 0.18±0.6% 0.18±0.4% 0.27

Ads Conditioned on Category + Size

Model IOU↓ Sim.↑ Sim.↑

Trans. [15] 0.19±0.1% 0.30±0.1% -
VTN [1] 0.18±0.2% 0.30±0.1% -
Ours 0.10±0.4% 0.31±0.1% 0.41

3D-FRONT Conditioned on Category + size

Model Sim.↑ Sim.↑

Trans. 0.04±0.7% -
VTN 0.04±0.4% -
Ours 0.06±0.7% 0.10

Table 2: Category (+ Size) conditional layout generation on four datasets.

are aggregated on independently trained models, where the mean and standard
deviation over five trails are reported.

Because of the non-autoregressive decoding, our model is able to conduct
conditional generation on category + size while the baseline transformer models
(Trans. [15] and VTN [1]) fail. Our model also outperforms VAE-based condi-
tional layout models (L-VAE [19] and NDN [24]) across all metrics in Table 1 by
statistically significant margins. This result is consistent with the prior finding
in [1] that transformers outperform VAEs for unconditional layout generation.

Unconditional Generation Although our model is not designed for this task, we
compare it to the models [19, 15, 1] on unconditional layout generation. From
Table 3, our model outperforms LayoutVAE [19] and achieves comparable per-
formance with two autoregressive transformers (Trans. [15] and VTN [1]).

User study We conduct user studies on RICO and PubLayNet to assess gener-
ated layouts for conditional generation. We randomly select 50 generated layouts
under both conditional settings specified in Section 5.1 and collect their golden
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RICO PubLayNet COCO

Methods IOU↓ Overlap↓ Alignment↓ IOU↓ Overlap↓ Alignment↓ IOU↓ Overlap↓ Alignment↓

LayoutVAE [19] 0.193 0.400 0.416 0.171 0.321 0.472 0.325 2.819 0.246

Trans. [15] 0.086 0.145 0.366 0.039 0.006 0.361 0.194 1.709 0.334

VTN [1] 0.115 0.165 0.373 0.031 0.017 0.347 0.197 2.384 0.330

Ours 0.127 0.102 0.342 0.048 0.012 0.337 0.227 1.452 0.311

Table 3: Unconditional layout generation comparison to the state-of-the-art on
three benchmarks. Results of baselines are cited from [1] and our scores are
calculated following the same method described in [1].

Fig. 3: We conduct a user study to compare the quality of generated samples
from our model and baseline models on RICO (left) and PubLayNet (Right).

layouts. For each trial, we present Amazon Mechanical Turk workers two layouts
generated by different methods along with the golden layout for reference, and
ask “which layout is more similar to the true reference layout?”. There are 75
unique workers participating in the study. Qualitative comparison is shown in
the Appendix. The results, which are plotted in Fig. 3, verify that the proposed
model outperforms all baseline models for conditional layout generation.

5.3 Qualitative Result

We show some generated layouts, along with the rendered examples for visu-
alization, in Fig. 4. The setting is conditional generation on category and size
for three design applications, including the mobile UI interface, scientific paper,
and magazine. We observe that our method yields reasonable layouts, which
facilitates generating high-quality outputs by rendering.

Next, we explore the home design task on the 3D-Front dataset [8]. The
goal is to place the furniture with the user-given category and length, height,
and width information. Examples are shown in Fig. 5. Unlike previous tasks,
the model needs to predict the position of the 3D bounding box. The result
suggests the feasibility of our method extending to 3D object attributes. The
low similarity score on this dataset indicates that housing design layout is still
a challenging task that needs future research.

To further understand what relationships between attributesBLT has learned,
we visualize the patterns in how our model’s attention heads behave. We choose
a simple layout with two objects and mask their positions (x, y). The model
needs to predict these masked attributes from other known attributes. Exam-
ples of heads exhibiting these patterns are shown in Fig. 6. We use ⟨layer⟩-⟨head
number⟩ to denote a particular attention head. For the head 0-2, [mask]y2

spe-
cializes to attending on its category (c2) and especially, its height information
(h2), which is reasonable because y-coordinate is highly relevant to the height of
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Fig. 4: Conditional layout generation for scientific papers, user interface, and
magazine. The user inputs are the object category and their size (width, height).
We present the rendered examples constructed based on the generated layouts.

the object. Furthermore, for heads 2-4 and 3-2, [mask]x1
focuses on the width of

not only the first but the second object as well. Given this contextual informa-
tion from other objects, the model is able to predict the position of these objects
more accurately. The similar pattern is also found at head 3-2 for [mask]x2

.

5.4 Ablation Study

Decoding speed We compare the inference speed of our model and the autore-
gressive transformer models [15, 1]. Specifically, all models generate 1,000 layouts
with batch size 1 on a single GPU. The average decoding time in millisecond
is reported. The result is shown in Fig.7, where the x-axis denotes the number
of objects in the layout. It shows that autoregressive decoding time grows with
#objects. On the contrary, the decoding speed of the proposed model appears
not affected by #objects. The speed advantage becomes evident when produc-
ing dense layouts. For example, our fastest model obtains a 4x speedup when
generating around 10 objects and a 10x speedup for 20 objects.

Hierarchical sampling This experiment investigates the effectiveness of the hier-
archical sampling strategy used in training (Section 4.1) and non-autoregressive
decoding (Section 4.2). Specifically, we compare with the non-autoregressive
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Fig. 5: 3D-FRONT sample layouts.

(a) head 0-2 (b) head 1-3 (c) head 2-4 (d) head 3-2

Fig. 6: Examples of attention heads exhibiting the patterns for masked tokens.
The darkness of a line indicates the strength of the attention weight (some
attention weights are so low they are invisible). We use ⟨layer⟩-⟨head number⟩
to denote a particular attention head.
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Fig. 7: Decoding speed versus number of gen-
erated assets. ‘Autoregressive’ denote the auto-
gressive Transformer-based model [15]. ‘Iter-*‘
shows the proposed model with various number
of iterations.

method [9] in NLP on the large datasets of RICO and PubLayNet in Table 4.
Autoregressive transformer results [15] are also included for reference but notice
that autoregressive methods [15] have difficulties with conditional generation.

The results in Table 4 show that the non-autoregressive baseline yields infe-
rior results than the autoregressive one. We hypothesize that it is because the
non-autoregressive models designed for word sequences [9, 23] might not suffi-
ciently capture the apparently-structural correlation between layout attributes.
The proposed method with hierarchical sampling significantly outperforms the
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RICO IoU ↓ Overlap↓ Align.↓ FID↓ Sim. ↑

Autoregressive [15] 0.30 0.33 0.30 76 0.20

Non-autoregressive [9] 0.37 0.33 0.24 104 0.17
Non-autoregressive + HSP (Ours) 0.30 0.23 0.20 70 0.21

PubLayNet IoU ↓ Overlap↓ Align.↓ FID↓ Sim. ↑

Autoregressive [15] 0.19 0.06 0.33 127 0.11

Non-autoregressive [9] 0.16 0.12 0.32 217 0.09
Non-autoregressive + HSP (Ours) 0.19 0.04 0.25 134 0.11

Table 4: Comparison with the non-autoregressive method [9] in NLP on the
RICO and PubLayNet datasets. Autoregressive results are included for reference.
HSP denotes hierarchical sampling policy proposed in this work.

Order IoU ↓ Overlap↓ Alignment↓

C→S→P 0.127 0.102 0.342
C→P→S 0.129 0.107 0.344
S→C→P 0.147 0.109 0.351
S→P→C 0.162 0.121 0.357

Table 5: Layout generation results with differ-
ent iteration group orders on the RICO dataset.
C, S, and P denote category, size, and position
attribute groups, respectively.

non-autoregressive NLP baseline, which suggests the necessity of the proposed
hierarchical sampling strategy. We also explore the effect of hierarchical sam-
pling order. In Algorithm 1, we prespecify an order of attribute groups, i.e.,
Category (C) → Size (S) → Position (P). Here, more orders are explored in
Table 5. It seems better to first generate the category and afterward determine
either location or size.

6 Conclusion and Future Work

We present BLT, a bidirectional layout transformer capable of empowering the
transformer-based models to carry out conditional and controllable layout gener-
ation. Moreover, we propose a hierarchical sampling policy during BLT training
and inference processes which has been shown to be essential for producing high-
quality layouts. Thanks to the high computation parallelism, BLT achieves 4-10
times speedup compared to the autoregressive transformer baselines during in-
ference. Experiments on six benchmarks show the effectiveness and flexibility of
BLT. A limitation of our work is content-agnostic generation. We leave this out
to have a fair and lateral comparison to our baselines which do not use visual
information either. In the future, we will explore using rich visual information.
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