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Fig. 1: We adapt classical patch-based approaches as a better, much faster non-

parametric alternative to single video GANs, for a variety of video generation

and manipulation tasks.
Abstract. GANs are able to perform generation and manipulation tasks,
trained on a single video. However, these single video GANs require un-
reasonable amount of time to train on a single video, rendering them
almost impractical. In this paper we question the necessity of a GAN for
generation from a single video, and introduce a non-parametric baseline
for a variety of generation and manipulation tasks. We revive classical
space-time patches-nearest-neighbors approaches and adapt them to a
scalable unconditional generative model, without any learning. This sim-
ple baseline surprisingly outperforms single-video GANs in visual qual-
ity and realism (confirmed by quantitative and qualitative evaluations),
and is disproportionately faster (runtime reduced from several days to
seconds). Other than diverse video generation, we demonstrate other
applications using the same framework, including video analogies and
spatio-temporal retargeting. Our proposed approach is easily scaled to
Full-HD videos. These observations show that the classical approaches, if
adapted correctly, significantly outperform heavy deep learning machin-
ery for these tasks. This sets a new baseline for single-video generation
and manipulation tasks, and no less important — makes diverse genera-
tion from a single video practically possible for the first time.
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1 Introduction

Generation and editing of natural videos remain challenging, mainly due to their
large dimensionality and the enormous space of motion they span. Most modern
frameworks train generative models on a large collection of videos, producing
high quality results for only a limited class of videos. These include extensions
of GANs [23] to video data [2, 36, 48, 58, 62, 66], video to video translation [8,
16, 40, 63-65, 71] and autoregressive sequence prediction [3, 6, 7, 17, 22, 59-61].

While externally-trained generative models produce impressive results, they
are restricted to the types of video dynamics in their training set. On the other
side of the spectrum are single-video GANs. These video generative models train
on a single input video, learn its distribution of space-time patches, and are then
able to generate a diversity of new videos with the same patch distribution [5, 25].
However, these take very long time to train for each input video, making them
applicable to only small spatial resolutions and to very short videos (typically,
very few small frames). Furthermore, their output oftentimes shows poor visual
quality and noticeable visual artifacts. These shortcomings render existing single-
video GANs impractical and unscalable.

Video synthesis and manipulation of a single video sequence based on its dis-
tribution of space-time patches dates back to classical pre-deep learning methods.
These classical methods demonstrated impressive results for various applications,
such as video retargeting [30, 47, 55, 70], video completion [27, 34, 39, 41, 42, 69],
video texture synthesis [14, 21, 28, 31-33] and more. With the rise of deep-
learning, these methods gradually, perhaps unjustifiably, became less popular.
Recently, Granot et al. [24] revived classical patch-based approaches for image
synthesis, and was shown to significantly outperform single-image GANs in both
run-time and visual quality.

In light of the above-mentioned deficiencies of single-video GANs, and in-
spired by [24], we propose a fast and practical method for video generation from
a single video that we term VGPNN (Video Generative Patch Nearest Neigh-
bors). In order to handle the huge amounts of space-time patches in a single
video sequence, we use the classical fast approximate nearest neighbor search
method PatchMatch by Barnes et al. [10]. By adding stochastic noise to the
process, our approach can generate a large diversity of random different video
outputs from a single input video in an unconditional manner.

Like single-video GANs, our approach enables the diverse and random gen-
eration of videos. However, in contrast to existing single-video GANs, we can
generate high resolution videos, while reducing runtime by many orders of mag-
nitude, thus making diverse unconditional video generation from a single video
realistically possible for the first time.

In addition to diverse generation from a single video, by employing robust
optical-flow based descriptors we use our framework to transfer the dynamics
and motions between two videos with different appearance (which we call “video
analogies”). We also show the applicability of our framework to spatio-temporal
video retargeting and to conditional video inpainting.
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Fig. 2: Diverse Single Video Generation: Given an input video (red), we
generate similarly looking videos (black) capturing both appearance of objects
as well as their dynamics. Note the high quality of our generated videos. Please
watch the full resolution videos in the supplementary material.

To summarize, our contributions are as follows:

— We show that our space-time patch nearest-neighbors approach, despite its
simplicity, outperforms single-video GANs by a large margin, both in runtime
and in quality.

— Our approach is the first to generate diverse high resolution videos (spatial

or temporal) from a single video.

— We demonstrate the applicability of our framework to other applications:
video analogies, sketch-to-video, spatio-temporal video retargeting and con-
ditional video inpainting.
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2 Related work

Classical video generation methods, many of whom inspired by similar image
methods [19, 20, 67], include video texture synthesis [31-33], MRF-based con-
trollable synthesis [51], flow-guided synthesis [14, 28, 33, 43, 49, 50] and more
(see surveys by [9, 68]). While some used a generative model to model patch dis-
tribution, none of them considered unconditional generation of natural videos,
beyond dynamic textures.

Classical methods typically involve comparing and matching of image/video
patches. Efficient computation for such matching is therefore critical. Patch-
Match [10] proposed a fast method for finding an approximate nearest-neighbor
field (NNF) between patches of two images A, B. Namely, for each patch in im-
age A, find its nearest neighbor in B. While solving NNF exhaustively takes
O(N?) time (N being the number of patches to match), PatchMatch provides
an approximation in O(N log N) time.

PatchMatch starts by a random guess for the NNF, then iteratively refines it
for each patch. The main observation is that since natural images are smooth (as
opposed to e.g., noise), w.h.p, the nearest neighbour patches of two (spatially)
adjacent patches are also adjacent. Therefore, each patch can refine its own guess
by either " peeking” at its neighbor’s guess, keeping the current guess or sampling
a new guess. At random guess, w.h.p at least one patch has a correct solution,
and this is propagated to adjacent patches in further iterations.

Being very efficient, PatchMatch allowed for many applications of image/video
manipulation ([9]). It was also extended for k-nearest neighbors search [11], faster
search [12] and being differentiably learnable [18]. We use PatchMatch in order
to dramatically reduce the running times of video generation from a single video.

The tasks of generation and inpainting are closely related. Both are required
to "invent” new content. Wexler et al. [69] (and later extensions [34, 41, 42])
proposed a patch-based method for video completion. Missing space-time patches
are replaced by their nearest neighbours from the rest of the video. This is also
done in a multi-scale manner by computing a spatio-temporal pyramid. The task
is first solved in the coarsest level, and the upsampled result is the initial guess
for the next level in the pyramid. Our approach uses a different metric for patch
similarity and much deeper spatio-temporal pyramids (higher down-scale ratio).
More importantly, we focus on video generation and video analogies and their
relation to recent deep learning methods.

3 Method

Our main task is to generate diverse video samples based on a single input video,
such that the generated outputs have similar appearance and motions as the
original input video, but are also visually different from one another. We want
our model to operate on natural input videos that can vary in their appearance
and dynamics. In order to capture both spatial and temporal information of a
single video, we start by building a spatio-temporal pyramid and operate coarse-
to-fine to capture the internal statistics of the input video at multiple scales
(Fig. 3). This multi-scale approach is extensively used in classical image synthesis
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Fig.3: VGPNN Architecture Left: given a single input video z, a spatio-
temporal pyramid is constructed and an output video yp is generated coarse-
to-fine. At each scale, VPNN module (right) is applied to transfer an initial
guess @, to the output y, which shares the same space-time patch distribution
as the input x,. At the coarsest scale, noise is injected to induce spatial and
temporal randomness. Right: VPNN module gets as input query, key and value
RGB videos (QKV respectively) and outputs an RGB video. Q and K can be
concatenated to additional auxiliary channels. (a) Inputs are unfolded to patches
(each position holds a concatenation of neighboring positions); (b) Each patch
in Q finds its nearest neighbor patch in K. This is achieved by solving the NNF
using PatchMatch [10]; (c) Each patch in Q is replaced with a patch from V,
according to the correspondences found in stage (b); (d) Resulting patches are
“folded” back to an RGB video output (using the median of all suggested votes).

methods as well as in modern GANs [e.g., 25, 29, 52]). At each scale we employ a
Video-Patch-Nearest-Neighbor module (VPNN); VGPNN is in fact a sequence
of VPNN layers. The inputs to each layer depend on the application, where we
first focus on our main application of diverse video generation (see Sec. 5 for the
specific details of the other applications).

Multi-scale approach: Given an input video z, we construct a spatio-temporal
pyramid {zg...,zn}, where zy = z, and z,, = x,_1], is a bicubically down-
scaled version of z,_1 by factor r (r = (rg,rw,rr), where rg = ry are the
spatial factors and rr is the temporal factor, which can be different).

At the coarsest level, the input to the first VPNN layer is an initial coarse
guess of the output video. This is created by adding random Gaussian noise zy to
xn. The noise zy promotes high diversity in the generated output samples from
the single input. The global structure (e.g., a head is above the body) and global
motion (e.g., humans walk forward), is prompted by xx, where such structure
and motion can be captured by small space-time patches. The std of the noise
zpn 18 much larger than that of z,, and is related to the typical distance between
neighbouring patches in the video (for full details see our supplementary).
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Each space-time patch of the initial coarse guess (zy + zn) is then replaced
with its nearest neighbor patch from the corresponding coarse input x . The
coarsest-level output yxn is generated by choosing at each space-time position
the median of all suggestions from neighboring patches (known as “voting” or
“folding”).

At each subsequent level, the input to the VPNN layer is the bicubically-
upscaled output of the previous layer (y,+1 1"). Each space-time patch is re-
placed with its nearest neighbor patch from the corresponding input x,, (using
the same patch-size as before, now capturing finer details). This way, the output
Yn in each level is similar in structure and in motion to the initial guess, but
contains the same space-time patch statistics of the corresponding input x,,. The
output y, is generated by median voting as described above.

To further improve the quality and sharpness of the generated output at each
pyramid level (y,, ), we iterate several times through the current level, each time
using the current output y,, as input to the current VPNN layer (similar to the
EM-like approach employed in many patch-based works [e.g., 10, 24, 55, 69]).
Full implementation details (e.g., parameters of noise, pyramid, EM-iterations,
etc.) are found in the supplementary material.

QKYV scheme: In several cases it is necessary to compare patches in another
search space than the original RGB input space. To this end we adopt a QKV
scheme (query, key and value, respectively) as used by [24]. We denote V = z,,
(the corresponding level from the pyramid of the original video) and Q = y,41 1
(the upscaled output of previous layer). Note that since @ is an upscaled version
of previous output, its patches are blurry. Seeking their nearest neighbors in V'
(whose patches are sharp) often results in improper matches. This is mitigated
by setting K = x,411" (in the first iteration of each level), which has a similar
degree of blur/degradation as . After finding its match in K, each patch Q) is
then replaced with a patch V; (where i, j are spatio-temporal positions. Also note
that K and V are of the same shape). The QKV scheme is especially important
in our video analogies application where it is used to include additional temporal
information in the queries and the keys. We discuss it in detail in Sec. 5.1.

Completeness score: In the applications of video analogies, spatio-temporal video
retargeting and conditional video inpainting we use the normalized similarity
score [24] that encourages visual completeness. The score between a query patch
Q; and a key patch K is defined as:

1
a + ming D(Qy, Kj)
where D is mean square error, and « controls the degree of completeness (smaller

« encourages more completeness). S is essentially a weighted version of D, whose
weights depend globally on K and Q.

S(Qi, K;) = D(Qi, K;) (1)

Finding Correspondences: We find the nearest neighbors between @ and K
(Fig. 3right-b) using PatchMatch (Barnes et al. [10]). To cope with the com-
pleteness score, we apply PatchMatch twice. First we find a “rareness” score
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for the keys - for each key we find its closest query. Then, for each query we
find its closest key while factoring in the rareness of the keys as weights in the
PatchMatch search. Namely, we solve for:

NNF(p) = argmin W(p + v) - D(Q(p), K(p + v)) (2)

where D is a distance function, W are per-patch weights, p = (¢, z, y) a position
in Q and v = (¢, 2',y’) are possible NNF candidates (such as the NNF at the
current position NNF(¢,z,y) or at a neighbor position NNF(¢,2 — 1,y) in the
propagation step).

This requires a slight modification of PatchMatch to support per-key weights.
This additional support makes it possible to approximately solve Eq. 1 with two
passes of PatchMatch. Even though this gives an approximation of Eq. 1, we do
not suffer loss in quality or lack of completeness, as apparent from our results.

The algorithm is implemented on GPU using PyTorch [44], with time com-
plexity O(n x d) and O(n) additional memory (where n is the video size and d
is the patch size; also see Fig. 5).

Temporal Diversity and Consistency: A simple but effective trick to enhance the
temporal diversity of our samples is to generate outputs with less frames than
in the input video. Generating samples with similar number of frames as in the
input video result in outputs that are ”in sync”. Intuitively, the motion of the
input video is the only motion that is coherent for this amount of frames. By
generating shorter videos allow for shorter motions from different times in the
input video, to occur simultaneously in the generated outputs (see for example
how the generated dancers in Fig. 2 are not “synced”). We also found that the
temporal consistency is best preserved in the generated output when the initial
noise zy is randomized for each spatial position, but is the same (replicated) in
the temporal dimension.

4 Experimental Results

In this section we evaluate and compare the performance of our main application
— diverse video generation from a single input video. Figs. 1 and 2 illustrate
diverse videos generated from a single input video, all sharing the same space-
time patch distribution. The diversity is both spatially (e.g., number of dancers
and their positions are different from the input video) and temporally (generated
dancers are not synced). Please refer to the supplementary material to
view the full resolution videos and many more examples.

Evaluation of video gemeration from a single video: We compare our results
to recently published methods for diverse video generation from single video:
HP-VAE-GAN [25] and SinGAN-GIF [5]. We show that our results are both
qualitatively and quantitatively superior while reducing the runtime by a factor
of 3 x 10* (from 8 days training on one video to 18 seconds for new generated
video). Since SinGAN-GIF did not make their code available, and the training
time of HP-VAE-GAN for a single video is roughly 8 days, we are only able to
compare to the videos published by these methods (we use all published videos).
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Fig.4: Comparing Visual Quality between our generated frames and those
of HP-VAE-GAN [25] and SinGAN-GIF [5] (please zoom in on the frames).
Note that our generated frames are sharper and also exhibit more coherent and
plausible arrangements of the scene. For details see Section 4. See supplementary
for full videos and more comparisons.

Evaluation set: “HP-VAE-GAN dataset” comprises of 10 input videos with 13
frames each, and of spatial resolution of 144 x256 pixels. “SinGAN-GIF dataset”
has 5 input videos with maximal resolution of 168x298 pixels and 8-16 frames.

Qualitative comparison: In Fig. 4 we show a side-by-side comparison of repre-
sentative generated frames of our method to frames generated by HP-VAE-GAN
[25] and SinGAN-GIF [5]. Note that while [5, 25] are limited to generated outputs
of small resolution (144x256), we can generate outputs in the same resolution
of the input video (full-HD 1280x1920, shown in the figure). The full videos (as
well as a comparison to our generated outputs of similar low resolution) can be
viewed in the supplementary material. As can be seen, our generated samples
(in low and high resolution) are more spatially and temporally coherent, as well
as having higher visual quality. It is evident that generating videos using the
space-time patches of the original input video, rather than regressing output
RGB values, gives rise to high quality outputs.

Quantitative comparison: In Table 1 we report the Single-Video-FID (SVFID) [5]
of our generated samples, compared to those generated by HP-VAE-GAN [25]
and SinGAN-GIF [5]*. SVFID was proposed by [25] to measure the patch statis-
tics similarity between the input video and a generated video. It computes the
Fréchet distance between the statistics of the input video and the generated
video using pre-computed C3D [57] features (Lower SVFID is better). As can be
seen in Table 1, our generated samples bear more substantial similarity to the

*All quantitative comparisons were done on generated samples of the same resolu-
tion and video length as that of the other method.
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Fig.5: Generation Runtime. Left: Comparing between our approach (VG-
PNN), a naive extension of GPNN [24] from 2D to 3D and HP-VAE-GAN [25].
We compared the generation time of 13-frames videos with different spatial
resolutions (X-axis). All videos have 16:9 aspect ratio (e.g., 144p is 144x256
and 1080p is 1080x1920 — full-HD). Right: Close-up of our generation run-
time (black line in left). Our approach takes seconds/minutes to generate low-
res/high-res video outputs. The drop in 480p is the result of decreasing the
patch-size in finer-levels of high-res videos. See Section 4 for details, and supple-
mentary for implementation details.

input videos (indicated by lower SVFID). [52] proposed a diversity index to make
sure that generated outputs are indeed different (and not simply “copying” the
input). We adapt the index for videos. The index is zero if all generated outputs
are the same, and higher otherwise. While our and HP-VAE-GAN generated
samples have similar index (0.45/0.41 respectively), those of SinGAN-GIF have
higher index (0.86 vs. our 0.6). Such high diversity is not an advantage, when
paired with SVFID about twice worse than ours. It stems from low quality ap-
pearance with out-of-distribution patches. All inputs and generated videos can
be found in the supplementary material.

User study: We conducted a user study evaluation using Amazon Mechanical
Turk (AMT). For each dataset, 100 subjects were shown multiple pairs of videos,
each consisting of a video generated by our method, and a video generated
by the other method (both were generated from the same input video). The
subjects were asked to judge which sample is better in terms of sharpness, natural
look and coherence. In Table 1 we report the percentage of users who favored
our method over the other. Compared to videos generated from HP-VAE-GAN
dataset, there is a clear preference in favor of our patch-based method. The
results on the SinGAN-GIF dataset are not that clear-cut, this might be due
to the somewhat restricted nature of the videos in that particular dataset (as
mentioned above, it was not possible to check SinGAN-GIF on other samples,
since the authors did not publish their code, nor stated the amount of time it
took to generate their samples).
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Method SVFID Head-on comparison Runtime
[25] (User study) [%]1 1
HP-VAE-GAN [25] 0.0081 7.625 days
VGPNN (Ours) 0.0072 67.84:£1.77 18 secs
SinGAN-GIF [5] 0.0119 Unpublished
VGPNN (Ours) 0.0058 50.57:+ 3.27 10 secs

Table 1: Quantitative Evaluation: A comparison of our generated video sam-
ples to that of HP-VAE-GAN [25] and SinGAN-GIF [5], conducted on input
videos provided in their papers. Our diverse samples have more resemblance to
the input videos (indicated by lower SVFID). In a user study, users scored in
favor of our method (see Section 4 for details).

Reducing running times: In Fig. 5 we show a comparison of the runtime taken to
generate random video samples using our method, compared to a naive extension
of GPNN [24] (from 2D to 3D patches) and compared to the training time
of HP-VAE-GAN [25]. As discussed in Sec. 3, the use of efficient PatchMatch
algorithm for nearest neighbors search, as opposed to the exhaustive search done
in GPNN, dramatically reduces both run time and memory footprint used for
video generation, making it possible to generate high-resolution videos (including
Full-HD 1080p). All experiments were conducted on Quadro RTX 8000 GPU.

5 Applications

Other than unconditional diverse generation, we demonstrate the utility of our
framework on several other video manipulation applications.

5.1 Video Analogies

Video to video translation methods typically train on large datasets and are
either conditioned on human poses or keypoint detection [e.g. 15, 40, 63-65], or
require knowledge of a human/animal model [e.g. 1, 16, 37, 46, 53, 54, 71]. We
show that when videos’ dynamics are similar in both their motion and semantic
context within their video, one can use our framework to transfer the motion and
appearance between the two (see Fig. 6). We term this task “video analogies”
(inspired by image analogies [13, 26, 38]). More formally, we generate a new
video whose spatio-temporal layout is taken from a content video C, and overall
appearance and dynamics from a style video S.

Our goal is to find a mapping of dynamic elements (3D patches) between the
two videos, which can be very different in their appearance (RGB space). This is
achieved by using the magnitude of the optical flow (extracted via RAFT [56]),
quantized into few bins (using k-means)f. We term this the dynamic structure
of the video. By concatenating the dynamic structure to the RGB values of
the video (along the channels axis), each patch can now be compared using its
RGB values and its dynamic values. This provides a good mapping between the
dynamic elements of the two input videos.

tEach cluster has an integer cluster index. We divide each index by the total number
of clusters/bins to be in [0, 1]
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We compute spatio-temporal pyramids from the style video S, as well as from
the dynamic structure of the content video dyn(C'), and the dynamic structure
the style video dyn(S). The output video is generated by setting Q, K,V at each
level as follows:

Level ‘ Q K \%

N (coarsest) |dyn(C)n dyn(S)n Sy
n (any other)|dyn(C),||Qn+1 T dyn(S)n||Sn Sn

where || denotes concatenation along the channels axis, and n denote the current
level in the pyramid. Note that in the coarsest level, the two videos are only
compared by their dynamic structure. In finer levels, the dynamic structure of C
(the content video) is used to “guide” the output to the desired spatio-temporal
layout.

In Fig. 1 we show a snapshot of the analogies between a waterfall and a lava
stream, and in Fig. 6 we show snapshots of the analogies of all possible pairs
between three videos (the lava stream, a waterfall and a meat grinder). The full
videos are in the supplementary material.

We can use the above mentioned mechanism for “sketch-to-video” transfer,
where the dynamic structure is given by a sketch video instead of an actual video.
See Fig. 6 for a few snapshots of transfering the motion of morphed MNIST [35]
digits to a video of marching soldiers, and please see the full videos and many
more results in the supplementary material.

atio-
3 JTemporal
Layout
Appearance
& Dynamics

Input

Sketch

Generated

Fig.6: Video Analogies: Left: an example of video analogies between all pairs of
three input videos (red). Each generated video (black) takes the spatio-temporal
layout from the input video in its row, and the appearance and dynamics of
the input video from its column. Right: an example of sketch-to-video — the
generated video (bottom) takes its spatio-temporal layout from the sketch video
of morphed MNIST digits (middle) and its appearance and dynamics from the
input video of parading soldiers (top). Please find full videos and additional
examples in the supplementary material.
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Fig.7: Video Analogies: (i) Ablations for the choice of o (completeness score);
(ii) Ablations of choice of auxiliary channel; (iii) Comparisons our results to that

of ReCycle-GAN [3].

Flow-based appearance transfer of fluids has been studied by [14, 28, 33, 43,
49, 50]. Most similar to us is [28] that uses a patch nearest neighbor approach
to transfer the appearance of a fluid exemplar (a still image) into a video given
a human annotated flow+alpha mask. Our method differs in how we model the
flow guidance and in the mapping we have between two flows of two videos
(instead of a still image exemplar). Also similar to us is Recycle-GAN by Bansal
et al. [8] that pose unsupervised video-to-video translation as a domain transfer
problem (each video is a domain). They train convolutional encoders to map
between the two videos using adversarial loss with cyclic constraints.

In Fig. 7 we compare our results to [8]. As can be seen, [8] results generally
fail to converge to the visual quality of the original inputs (partially due to the
difficulty of training a parameteric model on small amounts of data), and in
many cases converge to the input style video (probably due to the instability of
training a GAN).

In Fig. 7 we show ablations for the main parameters used for video analogies.
Fig. 7(i) we show the role of using the completeness term « (see Eq. 1). No
completeness term (equivalent to o — 00) results in over smoothed outputs due
to many patches in () being mapped to a similar patch in K. On the other
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hand, too “strong” completeness term results in many undesired visual details.
We found o = 1 to be a good balance for our results. In Fig. 7(ii) we ablate
the use of quantized optical flow in the auxiliary channel. Without employing
temporal features (RGB only) or using optical flow without quantizing to [0—1],
the resulting mapping fails to match similar dynamical elements to those with
similar semantics in the context of their video. Please find full videos in the
supplementary material.

5.2 Spatial Retargeting

The goal of video retargeting is to change the dimensions of a video without
distorting its visual contents (e.g., fit a portrait video to a wide screen display).
It can be performed in a very similar manner to our video generation described
in Sec.3. Given a target shape, we first resize (bicubically) the input video to the
target shape, then compute two pyramids (for the input and resized videos) with
the same depth and downscale factor. The initial guess at the coarsest level Q
would be the coarsest level of the resized pyramid (without any additional noise).
We then compute the rest of the output video in the same manner as in Sec.3.
Note that at each level, V,, are unchanged, hence no distortion is introduced to
the patches reconstructing the retargeted video.

As can be seen in Fig. 1 and in the supplementary material, the results pre-
serve the original size and aspect ratio of objects from the input videos while
keeping the overall appearance coherent even though the aspect ratio is signifi-
cantly altered. The dynamics and motions in the videos are also preserved. For
instance, the balloons are not “squashed” but rather packed more compactly in
the sky and more members were added to the choir instead of stretching them.
Nevertheless, the motion of the balloons or the sway of the choir members are
preserved. Other classical works for video retargeting, such as [30, 47, 55, 70] did
not make their implementation available, therefore we were unable to provide a
comparison.

5.3 Temporal Retargeting

Similar to spatial retargeting, one can generate a realistic video with a different
temporal length. One possible use is generating a shorter summary of the video.
While most deep video summarization techniques are achieved by selecting a
subset of frames (see survey [4]), classical methods have demonstrated summaries
that consist of novel frames in which dynamics that are originally sequential can
be parallelized or vice versa [45, 55]. By applying the retargeting approach to
the temporal dimenstion, we are able to generate summaries with novel frames.
The temporal retargeting section in the supplementary material shows several
examples. For example, in the dog training summarized video, the trainer and
dog turn around simultaneously as opposed to sequentially in the original video.
Moreover, we can, in a similar manner, extend the temporal duration of a video
creating longer dynamics while preserving the speed of the individual actions.
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In the ballet dancer video for example, the choreography is longer, but the pace
of the dance motions remains the same.

5.4 Video Conditional Inpainting

In this task we are given an input video with some occluded space-time volume,
where the missing parts should be completed based on crude color cues placed
by the user in the occluded space (similar to conditional image inpainting [24]).
Here we set the number of levels in the pyramid such that the occluded part in
the coarsest level is roughly in the size of a single patch. The masked part is then
coherently reconstructed using other space-time patches of similar colors to that
of the cue. In finer levels, details and dynamic elements are added correctly. The
conditional inpainting section in the supplementary material shows how different
cues are completed with different elements from the non-occluded parts. See for
instance, how a blue cue will be replaced by a player from Barcelona while a
white cue by a player from Real Madrid. See more examples in the supplementary
material.

6 Limitations

Generation of local patches lacks high-level semantic or global geometric under-
standing of the scene. For example, This is apparent when scenes with significant
depth variations are introduced with large camera motion. While each frame is
plausible, different patches are not being transformed consistently, resulting in
non-rigid deformations to entities that are realistically rigid. See the generated
videos of mountains in the supplementary.

7 Conclusion

We demonstrated that random diverse video generation from a single video can
be efficiently done by simple patch-based methods. We also demonstrated how
small modifications to our framework give rise to other tasks such as video
analogies and spatio-temporal retargeting. We showed that our non-parametric
approach outperforms existing single-video GANs in the visual quality of the
generated outputs, while being orders of magnitude faster. The low run time
required for generating videos using our approach makes it a good baseline for
future works in the field.
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