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Abstract. We present a method for finding paths in a deep genera-
tive model’s latent space that can maximally vary one set of image
features while holding others constant. Crucially, unlike past traversal
approaches, ours can manipulate arbitrary multidimensional features of
an image such as facial identity and pixels within a specified region.
Our method is principled and conceptually simple: optimal traversal di-
rections are chosen by maximizing differential changes to one feature
set such that changes to another set are negligible. We show that this
problem is nearly equivalent to one of Rayleigh quotient maximization,
and provide a closed-form solution to it based on solving a generalized
eigenvalue equation. We use repeated computations of the correspond-
ing optimal directions, which we call Rayleigh EigenDirections (REDs),
to generate appropriately curved paths in latent space. We empirically
evaluate our method using StyleGAN2 and BigGAN on the following
image domains: faces, living rooms and ImageNet. We show that our
method is capable of controlling various multidimensional features: face
identity, geometric and semantic attributes, spatial frequency bands, pix-
els within a region, and the appearance and position of an object. Our
work suggests that a wealth of opportunities lies in the local analysis of
the geometry and semantics of latent spaces.

1 Introduction

Latent spaces of deep generative networks like generative adversarial networks
(GANs) [13, 17, 18, 29] and variational autoencoders (VAEs) [19] are known to or-
ganize semantic attributes into disentangled subspaces without supervision [14,
16, 29, 37, 39]. This property is the basis of several latent space traversal algo-
rithms that can modify specific image attributes while holding others constant by
moving along carefully-chosen latent space directions [4, 12, 28, 31, 43]. Traversal
methods have many potential applications including dataset creation/augmentation,
image editing, entertainment and graphic design.

Virtually all existing traversal methods assume scalar attributes of interest
that may be modeled well with global linear functions, e.g., a linear regressor
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Fig. 1. Method and examples. (A) Our method traverses the local latent space
around a seed point z0 along optimally chosen paths to synthesize images that share
the same high-dimensional attribute value y0 (e.g., identity), and vary as much as
possible across other image attributes (e.g., hairstyle). Also shown are samples from
our method modifying (B) hairstyle while preserving identity (C) a living room with
a fixed object (lamp in red box of seed image) and (D) low spatial frequencies while
modifying high ones. These results are produced by our method using StyleGAN2
generators.

or a support vector machine, in the latent space. This approach works well for
attributes like gender, hair color and smile of faces [4, 31] and image transfor-
mations like translation, color change and camera movements [16, 28]. But these
approaches cannot be easily extended to work with attributes like ‘style of a
couch’ and ‘face identity’ which are best described with high-dimensional vec-
tors.3 For example, to find a latent space traversal that preserves identity in our
experiments, we need a representation that can compute the similarity between
two 512-dimensional embeddings returned by a face recognition model [10]. In
addition, faces with the same identity or rooms with the same furniture layout
(see Fig. 1C) tend to be tightly clustered in latent space, requiring methods
tuned to local latent space geometry unlike the common global linear models
used for scalar attributes.

We propose a method to tackle this broader class of traversal problems.
Given a point in latent space, we aim to generate many traversals, or sequences
of images, such that we vary one multidimensional feature (x) in as many ways
as possible subject to other multidimensional features (y) being held approx-
imately constant. We formalize the task of finding local latent directions that

3 There is no physical ‘identity’ ground truth behind a GAN-generated portrait. How-
ever, human observers or face recognition algorithms can respond to the question “Is
this the same person?” and can produce consistent judgments. Therefore ‘identity’
here denotes ‘perceptual identity’.
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fulfill these criteria as a constrained optimization problem. By using differential
approximations of the feature functions, we recast the problem into an instance
of Rayleigh quotient maximization, which has a well-known closed-form solu-
tion (Sec. 3.1). The principal directions that solve this problem, which we call
Rayleigh EigenDirections(REDs), span the local latent subspace containing good
paths. Using REDs, we propose a fast linear and more accurate iterative nonlin-
ear projection traversal algorithms (Sec. 3.3) to produce arbitrary-length paths.
Our approach is agnostic to network architecture, scene content, and choice of
attribute embedding functions.

We evaluate our method using StyleGAN2 [17, 18] and BigGAN [7] gen-
erators. We consider a number of challenging applications outside the scope
of previous GAN traversal algorithms: face traversals that preserve identity
(Fig. 3) while changing hairstyle and facial geometries, face traversals that pre-
serve/change content from specific spatial frequency bands (Fig. 5), and living
room traversals that preserve the appearance and location of selected pieces
of furniture (Fig. 6). We provide a number of qualitative results demonstrat-
ing the perceptual quality of our generated image sequences, and quantitatively
demonstrate the necessity for nonlinear traversal strategies in these applications.
Finally, we also compare our method against well-known global linear model
baselines [4, 31] for scalar attributes and perform comparably, though with some
failure cases that we discuss in Sec. 5.

Our main contributions are: (a) REDs, a local method for synthesizing a
diverse set of images that share a chosen set of multidimensional attribute. The
method is principled, simple, and versatile – applicable to pretrained generators,
any image type, and to both low-level and semantically meaningful features. (b)
A nonlinear technique for long-distance traversals in latent space; (c) Qualitative
and quantitative validation experiments on a number of challenging synthesis
tasks in different image domains (faces, livingrooms and ImageNet) using two
different models (StyleGAN2 and BigGAN).

2 Related Work

Several studies focus on finding interpretable directions in GAN latent spaces
for editing and synthesizing images. Most propose finding global linear direc-
tions correlated with scalar attributes of interest [4, 14, 12, 28, 31, 38, 43]. Unfor-
tunately, multidimensional features like face identity and image regions lie on
complex latent space manifolds rather than on simple linear ones, meaning that
a single global direction is not appropriate to model them. Recently, a method
called LowRankGAN [46] was proposed for manipulating image regions by find-
ing low-rank subspaces around a latent point. As in our work, they compute a
local Jacobian matrix to discover steerable latent subspaces that change one fea-
ture while fixing another. Our work is similar in spirit to LowRankGAN with the
following differences: we cast the traversal problem as a constrained optimiza-
tion related to a generalized eigenvalue problem, we propose and demonstrate the
superiority of nonlinear traversals for multidimensional features (see Projection
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algorithm in Sec. 3.3), and our method is applicable to general multidimen-
sional features. Another work [41] introduces a new disentangled intermediate
latent space where linear traversals along a single dimension provides control
over specific visual properties by computing local gradients. Overall, our non-
linear traversals produce samples that satisfy the enforced constraints for longer
traversal lengths compared to [41] and [46].

A few nonlinear traversal strategies for scalar features also exist. Several are
based on training deep neural networks to map latent codes to features [16, 36,
44]. Our method is complementary to these – ours requires no additional training,
but also does not leverage global latent space structure as theirs presumably
can. Finally, our focus on a local rather than global view of the latent space may
also complement various theoretical studies on understanding GAN latent space
structure [3, 5, 8, 21, 30, 39].

A more explicit way to control GAN outputs is to train the generator using
attribute values as inputs. Many of these so-called “conditional GANs” have been
proposed, particularly for altering face attributes [2, 6, 9, 15, 20, 22–26, 34, 35, 42,
45], controlling face identity [6, 32–34], and conditioning on semantic maps [27,
40]. Our approach is complementary to all of these in that offers the benefit of not
needing to design and train a GAN from scratch with apriori-known attribute
controls. Working with a general-purpose black-box GAN has the advantage of
keeping all control objectives open and not committing to a specific goal, e.g.
preserving identity, from the beginning.

3 Method

Given a point z0 ∈ Rd in latent space defining an image, we want to generate
a set of images that holds fixed the multidimensional features y0 ∈ Rn while
maximally changing the features x0 ∈ Rm. For ease of explanation, we assume
y0 and x0 each define a single multidimensional feature like facial identity or
hairstyle, though our method easily handles features from multiple semantic
attributes as explained in Sec. 3.2.

We denote the function that computes the fixed features f(·) : z → y ∈ Rn,
and the function that computes the changing features c(·) : z → x ∈ Rm. For
example, in one of our experiments with faces, f(·) is the concatenation of two
functions: the GAN generator on the input latent vector, and a face recognition
embedding model on the synthesized face. c(·) may be the generator itself (i.e.,
x are the raw pixels of the image) or the concatenation of the generator with
learning models computing various image attributes.

Starting at z0, our method traverses different paths in latent space to generate
latent code sequences. For each such trajectory t of length L, z0, z

t
1 · · · , ztL,

we want yt
i ≈ y0 for all i and x0,x

t
1, · · · ,xt

L to progressively change such that
∥xt

i − xt
i+1∥ < ∥xt

i − xt
i+2∥, where ∥ · ∥ is a norm. We return all points from all

sequences.
The key intuition behind our approach is that there exists a manifold on

which y does not change around z0 (see Fig. 1). This is true whenever d > n
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Fig. 2. Comparison of Linear and Projection traversal. We show a Linear and
Projection traversal originating from the same latent seed code (left-most face), and
top RED vector at the seed. f(·) measures identity and c(·) measures raw face pixel
values. We also plot squared pixel distance versus squared identity distance. Projection
and Linear change pixels by roughly the same amount, but Projection is better at
preserving identity (lower distance values).

(and thus the iso-y manifold has dimension n− d) and the generator function is
continuous (which, by inspection, it is, apart from a zero-size set). When d ≤ n,
our approach naturally transitions to a “soft” constraint yi ≈ y0 as will become
clear below. We find directions, which we call Rayleigh EigenDirections (REDs),
that maximally change x within this subspace. This procedure is described in
Sec. 3.1. We propose two traversal strategies using REDs in Sec. 3.3: a linear
method which simply extrapolates the local REDs throughout the latent space,
and a nonlinear method (Projection) which updates traversal directions based
on local latent space geometry.

3.1 Rayleigh EigenDirections (REDs)

Let z be a generic point in the generator’s latent space with fixed and changing
features y = f(z) and x = c(z). Given a displacement δz, the displacements to
y and x are:

δy = f(z+ δz)− f(z) (1)

δx = c(z+ δz)− c(z). (2)

We aim to find the displacement δz∗ that maximizes δx with insignificant changes
to δy:

δz∗ = argmax
δz:∥δz∥=ϵ

∥δx(z, δz)∥2 s.t. ∥δy(z, δz)∥2 ≈ 0, (3)

where we write δx and δy as functions of z and δz, and ϵ is a small, fixed
constant. For sufficiently small ϵ, we can approximate δy and δx with local linear
expansions: δy ≈ Jf (z)δz and δx ≈ Jc(z)δz, where Jf ∈ Rn×d and Jc ∈ Rm×d

are Jacobian matrices. Letting Af (z) = JT
f (z)Jf (z) and Ac(z) = JT

c (z)Jc(z):

δz∗ = argmax
δz:∥δz∥=ϵ

δzTAc(z)δz s.t. δzTAf (z)δz ≈ 0 (4)
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Algorithm 1: Compute local REDs (solves optimization (4))

Input: Af , Ac, βf

Output: R (REDs matrix with directions as columns, from best to worst)
Af , Ac ← Af/∥Af∥2, Ac/∥Ac∥2
uf , Vf ← eig(Af )
ρ← smallest k s.t.

∑k
i=0 u

2
f (i) ≥ βf∥uf∥2

null(Af )← columns ρ to d of Vf

ũc, Ṽc ← eig(null(Af )
TAc null(Af ))

R← null(Af )Ṽc

This optimization is similar to one of finding the δz that maximizes the Rayleigh
quotient

(
δzTAc(z)δz

)
/
(
δzTAf (z)δz

)
, known to be the solution of the general-

ized eigenvalue problem Acδx = λAfδx, or the principal eigenvector of A−1
f Ac

(see Supplementary). The main point of difference is that in our applications
Af is often singular (n < d) and therefore not invertible. Put another way, f(·)
is constant in a subspace null(Af ) around z and any δz in that subspace will
exactly satisfy the constraint in (4). We instead first project Ac onto null(Af ),
and then find the principal eigenvectors of the resulting matrix (Alg. 1) [11]. We
return the eigenvectors (REDs) in matrix R ∈ Rd×d, ordered from best to worst.

For some high-dimensional features, the rank of null(Af ) may be too small
(or even 0 when d < n), yielding little to no diversity of x in the generated
trajectories. To address this, we introduce hyperparameter βf in Alg. 1 that
lets users smoothly control the approximation of Af ’s rank based on explained
variance.

The main computational cost of finding REDs is in calculating the Jacobian
matrices Jf and Jc. We compute them using one-sided finite difference approx-
imations with step size ϵ, which requires d + 1 forward evaluations of f(·) and
c(·). See Sec. 4.6 for more on this topic.

3.2 Handling multiple attributes

To fix multiple attributes y1, · · · ,ynf , we replace the constraint in (4) with
multiple constraints: δzTAi

f (z)δz ≈ 0, i = 1 · · ·nf , and introduce a separate βi
f

for computing the rank of each Ai
f . We compute REDs by projecting Ac onto

∩nf

i=1null(A
i
f ) – the intersection of the fixed attribute nullspaces – and returning

the eigenvectors of the resulting matrix as before. To change multiple attributes,
we compute REDs separately for each changing attribute, and return all vectors
formed by summing together one RED chosen from each set.

3.3 Traversal Algorithms

We propose two traversal algorithms using REDs. The first is a simple Linear
traversal (see Supplementary for algorithm). We randomly select a direction
in the span of R0 (the REDs of z0), and generate a sequence of latent codes
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z1, · · · , zK by moving in that direction starting from z0 with step size s. In the
likely case that the constant-y manifold is curved, the linear traversal is expected
to diverge quadratically from ∥δy∥ = 0 as a function of ∥δz∥.

Our second algorithm, Projection (see Supplementary for algorithm), ad-
dresses this shortcoming by recomputing the space of local REDs along the
traversal path. We again start by selecting a random direction in R0. However,
at each step i (of length s), we project the previous direction, δzi−1, onto Ri.
This results in a path that more faithfully adheres to the local geometries of f(·)
and c(·) in latent space.

A visual example of a Linear and Projection traversal for the same initial
latent code is shown in Fig. 2, where f(·) measures identity and c(·) measures
raw face pixels. Projection is better than Linear at preserving identity for long
trajectories (right plot), while achieving similar levels of image change (left plot).

4 Experiments

We focus our evaluations on two image domains: faces and living rooms, modeled
with StyleGAN2 [18]. For faces, we use the public config-f model from NVIDIA
trained on the Flickr Faces HQ (FFHQ) dataset at 1024×1024 resolution. For liv-
ing rooms, we train a StyleGAN2 generator from scratch on an in-house dataset
of 100K 1024× 1024 living room scenes from the web. For both domains, we use
the “style” space, w ∈ R512, as our latent space. We also demonstrate results on
BigGAN [7] trained on ImageNet, where we use the input noise space (in R128)
as our latent space.

We set βf to 0.95 or 0.99 for our experiments, depending on the perceptual
characteristics of the generated samples that the user prefers (βf = 0.95 results
in more diverse samples at the expense of letting the fixed features change to a
larger degree). See Supplementary for further analysis and figures.

4.1 Identity, hairstyle and geometry traversals for faces

We first evaluate our method on controlling three multidimensional facial fea-
tures: identity, hairstyle, and geometry (quantified by 3D facial landmark po-
sitions). We use ArcFace [10], a popular open-source face identification model,
to encode identity with a 512-dimensional vector. To encode hairstyle, we run a
public face segmentation model 4 on each image, set pixels outside of the hair re-
gion to 0, and flatten all pixels into a 256×256×3 = 196, 608-dimensional vector.
We encode 3D geometry using the MediaPipe mesh model [1], which predicts
468 landmarks around the face. This results in a 468 × 3 = 1404-dimensional
vector. We set βf to 0.95.

We performed four experiments: changing hairstyle while keeping landmarks
fixed, changing hairstyle while keeping landmarks and identity fixed, changing
landmarks while keeping hairstyle fixed, and changing landmarks while keeping

4 https://github.com/zllrunning/face-parsing.PyTorch
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Seed Change: hair, Fix: landmarks 

Seed

Change: hair, Fix: identity & landmarks 

Change: landmarks, Fix: hair Change: landmarks, Fix: identity & hair

Fig. 3. Results for face traversals controlled by hairstyle, landmarks (geom-
etry) and identity. We generated results using REDs with Projection. For each seed
face and experiment, we selected four illustrative samples from the first few principal
trajectories. (Top) Changing hairstyle while fixing facial landmarks (columns 2-5) and
changing hairstyle while fixing identity and facial landmarks (columns 6-9). (Bottom)
Changing landmarks while fixing hairstyle (columns 2-5) and changing landmarks while
fixing identity and hairstyle (columns 6-9). Our method is able to generate a percep-
tually diverse set of faces while adhering to the fixed attribute constraints. Explicitly
fixing identity greatly helps preserve the identity in the seed images. See Fig. 4 for
quantitative analysis.

identity and hairstyle fixed. Fig. 4 presents sample results for three test seed
points using REDs and Projection. We set both the Jacobian finite difference
step and path step s to 1, and the path length L = 4. Along with changing the
input images along the intended features, our method is able to produce a wide
variety of different samples from different paths.

We quantitatively evaluated REDs against three baseline direction-finding
approaches: choosing directions at random (Random), choosing the most sig-
nificant eigenvectors of Ac, thereby maximizing changes to x (Max-∆x), and
choosing the least significant eigenvectors of Af , thereby minimizing changes
to y (Min-∆y). The plots in Fig. 4 present our results for two of the ex-
periments. When using Linear traversal, REDs outperforms the three baseline
direction-finding approaches. Max-∆x finds directions that significantly change
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Fig. 4. Quantitative comparison of face traversal strategies controlled by
identity, landmarks (geometry), and hairstyle (see Fig. 3 for visual samples).
We generated 6 traversals with L = 4 steps for each method for 50 random seeds. We
plot changes to hair (left) and landmarks (right) versus changes to identity in log-
log scale, where each dot in the plot is the average value for each traversal step over
all examples. Leftward and higher values are better . Our method using Linear
traversal (REDs-lin) outperforms the baselines also using Linear. Our method with
Projection traversal (REDs-proj) outperforms REDs-lin by reducing identity changes
with no impact to hair or landmark changes.

hairstyle/landmarks and identity, Min-∆y preserves identity but also minimally
changes hairstyle/landmarks, and Random performs worst of all. The figure also
shows that when using REDs, Projection outperforms Linear. See Fig. 2 for a
visual sample of this comparison and Supplementary for complete traversals and
more plots.

4.2 Frequency band traversals

Our method can handle arbitrary low-level image representations. We demon-
strate this by controlling specific spatial frequency bands for StyleGAN2 and
BigGAN in Fig. 5. We let f(·) and c(·) encode the raw pixels of low-pass and
high-pass filtered versions of the input image (and vice versa). We set βf to 0.99.
High-pass modifications change fine details like face physiognomies and expres-
sions, while low-pass modifications mainly change colors, lighting and shading.

4.3 Object-preserving living room traversals

We next apply our method to living room scenes. We aim to keep selected
furniture fixed while changing other parts of the scene. We generated furniture
bounding boxes with an object detector. We let f(·) encode the raw pixels within
the bounding box, and let c(·) encode all remaining pixels in the scene. We set
the Jacobian finite difference step to 0.75, path step s = 0.25, and a path length
L = 10. We set βf to 0.99.
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Seed Change: high spatial frequencies
Fix: low spatial frequencies

Change: low spatial frequencies
Fix: high spatial frequencies

Fig. 5. Samples from traversals controlled by spatial frequency bands. The
first two rows are generated by StyleGAN2, and the last two rows are generated by
BigGAN. (Columns 2-4) The embedding function f(·) returns the raw pixels of the
low-pass filtered image and c(·) the high-pass one. High-pass modifications change fine
details. (Columns 5-7) f(·) and c(·) are inverted. Low-pass modifications change colors,
lighting and shading.

Fig. 6 shows several sample sequences from REDs with Projection traversal
and LowRankGAN [46]. Samples from LowRankGAN deviate significantly from
the desired constraint of preserving the object in the bounding box, due mostly
to the linear traversal strategy used in that method. See caption of Fig. 6 for a
detailed description. In Supplementary, we show sample strips of full traversals
and also compare against StyleSpace [41]. We observe two notable degradations
in all methods the farther we move away from the seed image. First, the ‘fixed’
object often moves slightly at each step. Second, artifacts become more promi-
nent because we rapidly advance to low-probability regions of the latent space.

4.4 Spatial region traversals for faces

We next demonstrate our method’s effectiveness at manipulating facial regions
(mouth and eyes). We use the same fixed bounding boxes for the mouth and eyes
used in the LowRankGAN study [46]. The changing features are the pixels within
the box, and the fixed features are pixels outside the box. Fig. 7 presents sample
visual results using REDs with Projection traversal. Our method is better than
LowRankGAN and StyleSpace [41] at generating a variety of changes within the
bounding boxes while roughly adhering to the constraints (the degree to fixing
these constraints can be adjusted with βf ).
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Seed Ours (REDs-Proj) LowRankGAN [46]

Fig. 6. Object-preserving living room traversals. We used REDs with Projection
traversal, with f(·) and c(·) encoding raw pixel values inside and outside a bounding
box on a piece of furniture (red box on seed image at left). The object within the
box often stays fixed, but can undergo stylistic changes and movements (examples in
rows 3, 5) due to feature correlations in latent space. There are diverse changes to the
rooms outside of the boxes, including new furniture (rows 2, 3, 5), wall and window
properties/decorations (all rows), and house plants (rows 3, 4). Samples in the right
three columns are edits following the approach in [46] using the same path step. Clearly
REDs-Proj is better at preserving objects.

4.5 Scalar attribute traversals

We finally compare our method against a popular technique for modifying scalar
attributes with global linear directions [4, 31]: train a linear model (regressor for
a continuous attribute or an SVM for a binary attribute) to predict an attribute
value from the latent code, and change the attribute by moving along the hy-
perplane’s normal direction. To fix attributes, we orthogonalize the changing
attribute’s direction with respect to the fixed attribute directions.

Fig. 8 presents our results for four face attributes: age, pose, smile, and gen-
der. Overall, REDS-proj achieves similar qualitative performance to the baseline
for most samples, but also has more failures cases when changing an attribute
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Seed StyleSpace [1] LowRankGAN [2]Seed StyleSpace [1] LowRankGAN [2]

Seed Change: eye region, Fix: everything else Change: mouth region, Fix: everything else

[41] [46] [41] [46]

REDs-Proj (Ours) REDs-Proj (Ours)

Fig. 7. Samples from traversals controlled by spatial image regions. We let the
changing features be the pixels inside a bounding box (green boxes overlaid on images
for visualization), and the fixed features be pixels outside the box. (Top) For each seed,
we show several output samples of our method changing the eyes (columns 2-5) and
mouth (columns 6-9). (Bottom) Results for the same task using StyleSpace [41] and
LowRankGAN [46]. Notice the change in other attributes like identity and landmarks
which REDS-proj better preserves.

like gender, which often does not have a large local gradient in latent space. We
discuss this more in 5.

4.6 Computation Time

Virtually all the computation time of our method is spent on computing the
Jacobian matrices in each traversal step, which involves generating d+1 images
and evaluating d + 1 feature functions. For the livingroom traversals shown in
Sec. 4.3 at 1024x1024 resolution, evaluating one of the d dimensions (assuming
no parallelization) on an NVIDIA A100 GPU required approximately 25 mil-
liseconds with StyleGAN2, translating to 15 seconds for all d dimensions. For
faces, the time for one Jacobian computation ranged from 15-50 seconds depend-
ing on the features being extracted. This time may be reduced dramatically if
operations are parallelized in batches and across multiple GPUs.

5 Discussion

Our experiments demonstrate the effectiveness of REDs at finding locally op-
timal orientations. By contrast, selecting random traversal directions or local
directions that prioritize only one of the objective or constraint in Eq. (4) do
not work well due to the high dimensionality of the latent space (see Fig. 4).
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Seed
Fix: Pose, Smile, Gender
Change: Age

REDS-
proj

Global
Linear
[4,30]

Global
Linear
[4,30]

Global
Linear
[4,30]

Fix: Age, Smile, Gender
Change: Pose

Fix: Age, Pose, Gender
Change: Smile

Fix: Age, Pose, Smile
Change: Gender

REDS-
proj

REDS-
proj

Global 
Linear
[4,31]

Global 
Linear
[4,31]

Global 
Linear
[4,31]

Fig. 8. Samples from traversals controlled by scalar semantic attributes. On
scalar attributes one may compare our method to a baseline of using a global linear
model (SVM or ridge regressor) in latent space [4, 31] (the global method is not defined
and cannot handle multi-dimensional attributes). We change one attribute (age, pose,
smile, gender) at a time while fixing the other three. Both methods are comparable
for many cases. REDs sometimes fails (red-boxed images), particularly for gender (see
Sec. 5 for further discussion).

The superiority of Projection over Linear traversal (Fig. 4, Fig. 7) also
demonstrates the need for localized approximations of latent space geometry for
complex image features. This is in contrast to past traversal studies [4, 14, 16,
28, 31] that found global linear directions to suffice for simple scalar attributes.

A consideration in all image synthesis works is the balance between per-
ceptual quality based on human judgment, and quantitative optimization and
analysis. In the application of faces, the user may have his/her own internal
tradeoff curve between identity preservation and image diversity. Our method
offers a principled way to explore different points on this curve by tuning the β
parameters (see Supplementary). Image perception also factors into the embed-
ding functions used to measure image changes.

GAN latent spaces are not all alike, and each requires different considerations.
Faces are easier to model than living rooms, because the latter are a composition
of many discrete objects interacting with one another. As a result, we found
the face latent space and traversals to be smoother. Our living room traversals
often exhibit large perceptual “jumps” due to discontinuities in latent space
(see Supplementary). The complexity of a distribution also affects the degree
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of correlation between attributes. As Fig. 6 shows, it is not always possible to
exactly fix a particular region of a living room while obtaining enough diversity
elsewhere due to entangled features. Different regions of the latent space are
also not alike. We found that high-likelihood regions produce the most realistic
images and diverse traversals. Thus, the biases of the generative model have a
direct effect on how well our method performs for a given image.

Our method takes a local view of the latent space to identify good traversal
directions. However, as our results in Sec. 4.5 suggest, there are benefits to
taking a global view. Global linear models are likely better for attributes that
are discrete, such as ‘wearing eyeglasses,’ or approximately discrete for a large
majority of samples like gender. For such attributes, local gradients in latent
space can be near zero and swamped by noise. Another limitation of a local view
is that gradients are undefined near sharp discontinuities in the latent space. We
did not find this to be a decisive issue for faces, but did notice perceptual ‘jumps’
in the living room scenes during traversals (see Supplementary for traversal
strips). However, we note that our framework could be extended to use both
global and local directions per traversal step, which we leave for future work.

5.1 Ethics

Fairness: As in past work [4] we observed bias in StyleGAN’s face distribution:
Caucasian faces are most likely to be generated. This bias also affects trajec-
tory quality, with light-skinned seed faces producing more diverse trajectories
than dark-skinned ones. Biases in fixed and changing functions that use learning
models also affect results. One example are face recognition models, like the one
we used in our experiments to fix identity, which are known to have gender and
ethnicity biases. To reduce bias one will want to train GANs and any learned
models on rich and diverse datasets. Fake portrayals: GANs could be used to
generate fake images of individuals under different conditions. This could include
the case where the image of the face of a real person is projected onto the GAN
latent space and then manipulated.

6 Conclusion

We presented a simple, principled and versatile method designed to explore a
generative model’s latent space to produce sets of synthetic samples where one
group of multidimensional features is held constant while another is varied as
much as possible. We demonstrated traversal results on several features that
previous works are not capable of handling: landmark locations, pixels within
regions, frequency information, and facial identity as measured by a deep neural
network. Our experiments show the need for modeling local geometry of latent
spaces for high-dimensional features. Understanding the complex nature and
geometry of the latent space of image generators is a fascinating question which
we have only started to explore.
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