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Abstract. We propose a novel automatic colorization technique that
learns domain-invariance across multiple source domains and is able to
leverage such invariance to colorize grayscale images in unseen target do-
mains. This would be particularly useful for colorizing sketches, line arts,
or line drawings, which are generally difficult to colorize due to a lack of
data. To address this issue, we first apply existing domain generalization
(DG) techniques, which, however, produce less compelling desaturated
images due to the network’s over-emphasis on learning domain-invariant
contents (or shapes). Thus, we propose a new domain generalizable col-
orization model, which consists of two modules: (i) a domain-invariant
content-biased feature encoder and (ii) a source-domain-specific color
generator. To mitigate the issue of insufficient source domain-specific
color information in domain-invariant features, we propose a skip con-
nection that can transfer content feature statistics via adaptive instance
normalization. Our experiments with publicly available PACS and Office-
Home DG benchmarks confirm that our model is indeed able to produce
perceptually reasonable colorized images. Further, we conduct a user
study where human evaluators are asked to (1) answer whether the gen-
erated image looks naturally colored and to (2) choose the best-generated
images against alternatives. Our model significantly outperforms the al-
ternatives, confirming the effectiveness of the proposed method. The code
is available at https://github.com/Lhyejin/DG-Colorization.

Keywords: Automatic Colorization, Domain Generalization, Genera-
tive Adversarial Networks

1 Introduction

Recent successes in applying deep learning to computer vision tasks suggest that
a ConvNet-based model can learn a fully automated data-driven colorization of
grayscale images. This model can be trained to predict the a and b color channels
in the CIE-Lab color space using semantic information and the surface texture
of given grayscale image [1,6,15,43]. In practice, data-driven colorization is used
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Fig. 1. We propose a data-driven fully automated colorization technique that can learn
a mapping function from the grayscale image to color channels by regression onto
continuous color space. With a novel domain generalization technique, our model can
generalize well to unseen target domains, whereas existing colorization approaches and
conventional DG techniques often fail to generate.

in applications such as coloring assistance of cartoonist or legacy photo restora-
tion. However, current learning-based methods often fail to generalize colorizing
performance in out-of-distribution. While successfully producing plausible and
visually compelling colorization within the same known test domain, such mod-
els would not intrinsically generalize well to novel domains outside the training
distribution because different domains involve different textures [11,18,30]. For
example, a model trained with photo and cartoon images would fail to colorize
art painting images (see Fig. 1). To address this issue, we first analyze the effect
of domain shift in the colorization task and propose a novel domain general-
ization technique that enables a colorization model to generalize well to novel
domains outside the training distribution. This model would be particularly use-
ful for colorizing sketches, line arts, or line drawings, which are generally difficult
to colorize due to a lack of data. Also, we would emphasize that, to our best
knowledge, improving the model’s ability to generalize across multiple domains
for colorization has not yet been explored.

In literature, various domain generalization techniques have been introduced
to make models generalize well to out-of-training-distribution. These techniques
primarily focused on generalizable object class classification models by learn-
ing the domain-invariances across multiple source domains so that the classifier
can robustly leverage such invariances in unseen target domains [10,30,33,35].
Examples from target domains are not available during training, thus these ap-
proaches differ from domain adaptation, semi-supervised domain adaptation,
and unsupervised domain generations.

In our experiment, applying existing DG techniques to the colorization mod-
els was not successful. We have found that these models tend to over-emphasize
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generating domain-invariant contents and fail to leverage source domain-specific
color information. Interestingly, such domain-specific information is particularly
useful for colorization, as it can provide a domain-sensitive and essential prior
for synthesizing colorized images of better quality.

To mitigate this issue, we propose the domain generalizable color generation
network, which is divided into two components: (i) domain-invariant content-
biased encoder and (ii) source domain-specific color generator. The former is
trained to match content information across multiple domains to generalize well
across domains by learning a domain-invariant texture (i.e., shapes), whereas the
latter captures source domain-specific color information. Because the extracted
features delivered through the skip connection between the encoder and decoder
have little source domain-specific color information, it is necessary to adjust the
color information to the source domain. Thus, we propose to transfer domain-
invariant content feature statistics from encoder to decoder via skip connections
followed by adaptive instance normalization (AdaIN) [14]. We observe such a
connection significantly improves the quality of colored images.

We use two publicly available domain generalization benchmark datasets
(PACS [23] and Office-Home [37]) to evaluate the effectiveness of the proposed
method. We also analyze and compare with existing state-of-the-art domain
generalization techniques, and we observe that our model generally outperforms
these alternatives. In addition, we conduct a user study where human evalua-
tors are asked to answer the following two questions: (i) Naturalness: “Do you
think the provided image looks naturally colored” and (ii) Perceptual Realism:
“Which of the images are the best”. Our work significantly outperforms others,
which confirms the effectiveness of the proposed method. We summarize our
contribution as follows:

– We propose a novel fully automated colorization method that can generalize
well to unseen target domains.

– Our model utilizes domain-invariant contents-biased encoder and source
domain-specific color generator where a skip connection is used to trans-
fer domain-invariant content feature statistics between the encoder and the
decoder for a better quality colorization.

– We effectively show the benefit of our proposed methods on two large domain
generalization benchmark datasets: PACS and Office-home. Our proposed
method quantitatively and qualitatively outperforms alternative colorization
approaches and domain generalization techniques.

– We conduct a user study where human participants evaluate the quality in
terms of naturalness and the perceptual realism. Our method significantly
outperforms other alternative domain generational approaches.

2 Related Work

2.1 Image Colorization

Colorization algorithms use various approaches, which can be broadly catego-
rized into the following three types: (i) scribble-based colorization techniques, (ii)
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example-based colorization, and (iii) fully automatic colorization. Given an input
grayscale image, the scribble-based colorization propagates scribbles (provided
by the user) to the whole image [21]. Example-based colorization techniques,
however, exploit user-provided [5,12,16,40], or automatically retrieved [7,27] ref-
erence images to match the luminance and texture information between a refer-
ence image and the input image (i.e., transferring color onto the input grayscale
image from analogous regions of the reference image). These scribble-based and
example-based approaches, though promising, depend primarily on user input,
which can be time-consuming and expensive for achieving an acceptable result.

Recent work suggests that a data-driven, fully automated approach can suc-
cessfully learn a mapping function from the lightness channel to color channels
by regressing onto continuous color space or classifying them into quantized color
values [3,6,15,17,31,34,38,43]. These approaches have developed similar systems,
such as (i) convolutional neural networks, which are trained end-to-end to predict
color channels of the image from the lightness channel using large-scale data, (ii)
conditional GANs, which have a sharpening effect in the spectral dimension and
make images more colorful, have recently become a key architectural component
for colorization, (iii) Isola et al. [17] used a U-Net-based architecture [32] for the
generator and a convolutional PatchGAN classifier [22] for the discriminator,
and they got promising colorization results. Our method is also based on (iii).

Most of these fully automatic colorization techniques produce promising re-
sults in the same known test domains, but their generation quality tends to
become sub-optimal in unseen different test domains. In previous work [34,38]
because the pretrained ImageNet and COCO models were also used, domain
shift occurred when training domains other than photo. Improving such abil-
ity to generalize across multiple domains has not yet been investigated (though
important) in the community to the best of our knowledge. Here, we explore
the effect of domain shift in the colorization task, and propose a fully automatic
colorization model that can generalize well to novel domains outside the training
distribution.

2.2 Domain Generalization

Domain generalization (DG) techniques focus on generating domain-invariant
latent representations so that the model is to better generalize to the unseen
target domains outside the training distribution. Vapnik et al. [36] introduces
Empirical Risk Minimization (ERM) that minimizes the sum of errors across
the domains of landmark work. Notable variants have been proposed to learn
domain-invariant features by matching distributions across different domains.
Ganin et al. [10] use an adversarial network for such distribution matching, while
Li et al. [26] match the conditional distributions across the domains. Minimizing
maximum mean discrepancy [25], transformed feature distribution distance [29],
or covariances [35] is frequently used to optimize such a shared feature space.
In this study, we also follow this workstream; however, we focus on the benefits
of these techniques for the image colorization task, specifically how the model
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can learn domain-invariant content information across different domains and
generalize effectively to unknown target domains.

Inter-domain mixup [39,41,42] techniques are used on linearly interpolated
examples from random pairs across domains to perform an ERM. JiGen [4]
improves generalization using self-supervised clues obtained by solving a jigsaw
puzzle as a secondary task. Meta-learning frameworks [24] are also investigated
for DG to meta-learn how to generalize across domains by leveraging MAML [9].
Low-rank parameterization [23], style-agnostic network [30], and domain-specific
aggregation modules [8] have recently been used to partition the model into
domain-invariant and domain-variant components.

In stylized ImageNet [11] and Kim et al. [18], texture and content are defined
respectively as a domain-specific feature and domain-invariant feature. They ap-
plied a random representation mixture to training data with AdaIN to make the
extracted feature robust. Here, we also use such disentangled image represen-
tations (i.e., content vs. texture). However, we advocate learning not only a
content-biased network (i.e., reducing domain-specific texture information), but
also source domain-specific color information for the colorization task. As the
latter can provide domain-sensitive content information about source domain-
specific color features, which can serve as an essential prior to generate high-
quality colorized images.

3 Method

3.1 Conditional GANs for Colorization

Our model is built upon the pix2pix architecture [17]. This model uses GANs in
the conditional setting, which is suitable for image-to-image mappings as they
can generate a corresponding image conditioned on an input image. As shown
in Fig. 2, our model consists of two main components: (i) a generator G(E(x))
and (ii) a discriminator D.

For (i), we use a U-Net-based architecture, a typical encoder (E) - decoder
(G) architecture with skip connections, as a generator and a PatchGAN classifier
for the discriminator. Given an input lightness channel x ∈ Rh×w×1, our U-Net-
based generator is trained to predict associated a and b color channels (in the
CIE Lab color space) yab ∈ Rh×w×2, where h and w are image dimensions.
For (ii), we use a convolutional classifier that is trained to classify whether the
output image is real (i.e. ground-truth images) or fake (i.e. generated images).
Following the work by Mao et al. [28], we adopt the least squares loss function
for the discriminator instead of using the sigmoid cross entropy loss function,
which may lead to the vanishing gradients problem during the learning process.
Our loss functions for the generator and the discriminator are as follows:

LD(x, yab) =
1

2
Ex,yab∼D

[
(D(x, yab)− a)2

]
+

1

2
Ex∼D

[
(D(x,G(E(x)))− b)2

]
LG(x) = Ex∼D

[
(D(x,G(E(x)))− c)2

] (1)
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Fig. 2. An overview of our proposed generalizable colorization model. Our model is
built upon the existing pix2pix [17] model that utilizes U-Net-based encoder as a gen-
erator and a PatchGAN classifier as a discriminator. Our model takes a grayscale
image and predicts its color channels. During training, to improve the model’s ability
to generalize well to unseen target domains, we propose to use the following three regu-
larizations: (i) Object Class Classifier fc, (ii) Texture-biased Domain Classifier fs, and
(iii) Content Feature Statistics Transfer via AdaIN (adaptive instance normalization).

where we use the a-b coding scheme for the discriminator and a and b are the
labels for real data and fake data, respectively. We use D to denote the training
data distribution. We use c to denote the value that G wants D to believe for
fake data. In our implementation, we use a = 1, b = 0, and c = 1. In literature,
mixing the GAN objective with a traditional loss function, such as L2 distance, is
advantageous for being stable during learning process. Thus, we add the following
L1 distance rather than L2, which often makes the output blurred.

L1(x, yab) = Ex,yab∼D
[
||yab −G(E(x))||1

]
(2)

Concretely, our loss function for training the conditional GANs is as follows:

LcGAN = LD(x, yab) + LG(x) + λcolorL1(x, yab) (3)

where we use a hyperparameter λcolor to control the strength of the traditional
loss function.

3.2 Learning Domain-invariant Contents Features

Unlike the human vision system that largely focuses on contents (i.e. shapes)
for object recognition, recent studies show that ConvNets have a strong induc-
tive bias towards image texture [2,11,13,30]. Moreover, models trained for the
colorization task inherently exhibit a strong bias towards texture, which is an
essential prior to a high-quality image generation. Such texture information of-
ten varies across different domains than the content, and thus makes models
more sensitive to domain shift. We empirically observe this domain shift effect
in colorization as shown in Fig. 3, where all conventional colorization models
generally fail to generalize to unseen target domains.

From recent work [30], we constrain the head encoder Eh from learning
domain-invariant information (i.e., more content-biased and texture-invariant
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representation) via an adversarial framework. We use a content randomization
(CR) module that interpolates contents feature statistics between different ex-
amples (regardless of their object class), i.e. it replaces the content of the input
with the randomized content through AdaIN.

Formally, given an input image xi and a randomly-chosen x′ in same batch,
we first obtain corresponding latent representations z and z′ from the head
encoder Eh, respectively. Given the channel-wise means µ(z) and standard de-
viations σ(z) as style representation, we apply AdaIN to the content of z′ with
the texture of z.

CR(z, z′) = σ(z) ·
(
z′ − µ(z′)

σ(z′)

)
+ µ(z) (4)

Such content-randomized representation is then fed into a domain classifier fs,
which needs to correctly predict its source domain given texture-biased represen-
tations. Thus, this classifier fs is trained by minimizing a domain classification
loss Ldomain:

Ldomain = −Ex,ys∼D

[
S∑

s=1

ys log fs(CR(z, z′))s

]
(5)

where S is the number of source domains and yi ∈ {0, 1}S is the one-hot domain
label.

Our head encoder Eh is then trained by minimizing the following adversarial
loss Ladv = −λadvLdomain where λadv is a hyperparameter to control the strength
of Ladv.

Emphasizing Semantic Information We also add an object class predictor
fc that consumes image representations from the tail encoder Et and performs
the object recognition task to regularize the model to learn semantic features
useful for our generator G to generate better quality images. Formally, we add
the cross entropy loss Lclass given an image x and its class label yc.

Lclass(x, yc) = −Ex,yc∼D

[
C∑

c=1

yc log fc(Et(Eh(x)))c

]
(6)

where D is the training data distribution and C is the number of class categories.

3.3 Transferring Domain-invariant Features

In the previous section, we discussed how we train our encoder to learn content-
biased representations by applying a content randomization (CR) module as
well as a domain classifier. We observe, however, our generator G exhibits color
bias towards source domain during training as the network is forced to learn
“source-domain style-sensitive color information”. This is achieved using skip
connections between encoder and decoder (see Fig. 2). In particular, statistical
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color adjustment is required to generate source-domain style-sensitive color for
realistic colorization from the encoder’s content-biased feature. So, Instead of us-
ing a simple concatenation via skip connection, we use a style transfer technique
using an AdaIN – i.e. given content information from z, we transfer style feature
statistics of ol from the intermediate layer of G. We empirically observe that such
a “content” skip connection allows the generator to use such content information
directly from the encoder during synthesizing output images. We also observe
such a skip connection is critical to improving the colorization performance in
the unseen target domains. We summarize our results in Experiment section.

Formally, we first obtain a representation ol by concatenating the output
z from Eh and the latent representation ol from the l-th layer of G: i.e. ol =
Gl(ol−1 ⊕ zl−1) where Gl is the l-th layer of G. Given the representations z and
ol, we apply AdaIN to the content of z with the style of ol:

zAdaIN = σ(ol) ·
(
z − µ(z)

σ(z)

)
+ µ(ol) (7)

where zAdaIN can be interpreted as a style-transferred representation of z. We
concatenate zAdaIN with ol and feed into the next layer of G: ol+1 = Gl+1(ol ⊕
zAdaIN). In our experiment, we set l = 5. Details of the relevant experiments are
provided in the supplementary material.

4 Experiments

4.1 Implementation and Evaluation Details

Implements Details Following [17], we use the same architectural choices for
the generator and (color) discriminator. For our G, we use a U-Net-based archi-
tecture as a backbone, and for our (color) D, we use a convolutional PatchGAN
classifier. The model architectures for the fs and the fc are based on the same
architecture as that of our Et. Note that domain labels are finally computed
followed by an average pooling layer and three fully connected layers. We train
our model using an Adam optimizer [19] for approximately 50 epochs. The batch
size is set to 128 and the learning rate to 0.001. Our implementation is based on
PyTorch.

Dataset We evaluate the effectiveness of the proposed method on the pub-
licly available PACS [23] and Office-Home [37] benchmark datasets. The PACS
dataset contains over 10k images from four diverse domains: Photo, Art Painting,
Cartoon, and Sketch. This dataset is particularly useful in domain generalization
research as it provides a bigger domain shift than existing photo-only bench-
marks. As the Sketch domain does not provide color information, we exclude it
from the experiment. This PACS dataset provides seven object categories: dog,
elephant, giraffe, guitar, horse, house, and person. We split examples from train-
ing domains in the ratio 8:2 (training:validation) and test on the entire held-out
domain. Note that we use the best-performed model on validation for testing.
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Fig. 3. Colorization performance comparison with conventional colorization ap-
proaches. Target and source domains are listed in the bottom row. Data: PACS.

We also use the Office-Home dataset, which contains over 15k images from four
domains: Art, Clipart, Product, and Real-World. We exclude the Product do-
main from our experiment owing to its lack of color information. This dataset
provides 65 object categories.

Evaluation Metrics Evaluation of the quality of colorized images is known to
be challenging. We first use the following four widely-used quantitative metrics:
peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM),
image quality metrics (IQM), and Frechet Inception distance (FID). The first
two metrics compute the pixel-wise distances between the ground-truth and
synthesized images–thus quantifying the similarity of colors. Unlike PSNR and
SSIM, IQM only uses the a and b color channels of the image in the CIE Lab
color space to quantify the image quality in terms of colorfulness, sharpness,
and contrast. Thus, IQM is a suitable metric for the colorization task [1]. FID
measures the distance between latent image representations for the ground-truth
and synthesized images. We use an ImageNet-pretrained Inception v3 model to
extract such feature vectors for FID. Note that we also finetuned the Inception v3
model with the corresponding domains to remove the negative effect of domain
shift when computing FID.
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Fig. 4. Qualitative colorization performance comparison with four alternative domain
generalization techniques. All models are built upon our baseline pix2pix [17] architec-
ture and we add regularization losses to improve the model’s generalization power. We
provide more diverse examples in the supplemental material. We used two datasets:
PACS (see 1st-6th columns) and Office-Home (see 7th-12th columns).

However, these metrics often fail to capture visual realism. Although the
aforementioned four quantitative metrics are frequently used in colorization
tasks, further discussions of clear quantitative performance indicators of col-
orization are still ongoing [1,3,20,44,45]. To address the shortcomings of any of
the above individual evaluations, we further evaluate our model using a user
study.

4.2 Effect of Domain Shift in Colorization

We first investigate the effect of domain shift in the colorization task with the
following three landmark colorization models: Zhang et al. [43], Iizuka et al. [15],
and pix2pix [17]. We use the leave-one-out setting, i.e. a pre-selected single do-
main is used as a test domain and the others as training domains. We use the
PACS and Office-Home datasets for this experiment. As shown in Fig. 3, we ob-
serve that all models generally fail to generate successful colorized images; in fact,
they often show a failure to capture long-range color consistency, a sepia-tone on
complex scenes, and confusion between red and blue information. This is further
confirmed by our quantitative analysis in terms of the four image quality metrics:
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Table 1. Colorization performance comparison in terms of four image quality evalua-
tion metrics. An average value across domains is reported. To observe any performance
degradation in the domain generalization setting, we also compare each model with the
non-domain generalization (non-DG) setting, i.e. models are trained using the same tar-
get domain. Data: PACS [23] and Office-Home [37].

Models
PACS [23] Office-Home [37]

PSNR ↑ SSIM ↑ IQM ↑ FID ↓ PSNR ↑ SSIM ↑ IQM ↑ FID ↓

A. Zhang et al. [43] 30.56 0.65 1.89 30.78 32.25 0.74 1.63 17.77

B. A w/ non-DG setting 33.48 0.79 1.84 12.96 - - - -

C. Iizuka et al. [15] 30.81 0.80 1.91 23.52 32.67 0.79 1.48 17.25

D. C w/ non-DG setting 33.49 0.82 1.84 14.18 - - - -

E. pix2pix [17] 30.38 0.63 1.80 25.28 32.69 0.74 1.63 19.41

F. E w/ non-DG setting 31.56 0.71 1.89 21.28 - - - -

G. E + DANN [10] 30.12 0.59 1.68 25.39 31.07 0.67 1.53 22.53

H. E + CORAL [35] 30.59 0.65 1.84 24.63 32.15 0.73 1.57 16.09

I. E + GroupDRO [33] 30.51 0.65 1.82 25.93 31.98 0.75 1.47 18.35

J. E + SagNet [30] 30.67 0.68 1.81 27.46 31.92 0.67 1.61 18.69

K. E + Ours 30.71 0.66 1.88 24.92 32.29 0.73 1.52 14.92

PSNR, SSIM, IQM, and FID. In Table 1, a large degradation with these metrics
is observed for all models. This clearly indicates that the current colorization
models do not generalize well to novel target domains and additional treatment
is needed to deal with such a domain shift. We provide more detailed numerical
values and failed examples for each domain in the supplementary material.

4.3 Effect of Domain Generalization Techniques

To improve the generalization power of the colorization models, we explore the ef-
fect of applying some existing domain generalization techniques. Note that these
models originally focused on the object recognition task, not on the colorization
task. Thus, for a fair comparison, all models are based on the pix2pix model that
generally shows better colorization performance than alternatives. We then im-
plement the core idea of each domain generalization technique from DANN [10],
CORAL [35], GroupDRO [33], and SagNet [30]. Note that other techniques may
also be applicable, but we leave them as future work. As summarized in Table 1
(in the 7th-10th rows for alternatives and in the 11th row for ours), all domain
generalization techniques (except DANN [10]) generally provide better results
than our baseline pix2pix model (5th row) in terms of four image quality evalu-
ation metrics. In particular, ours generally outperforms others and shows better
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Fig. 5. (a) Evaluation of perceptual realism by a user study. Participants were asked to
answer two questions for evaluating naturalness (left) and perceptual realism (right).
(b) Ablation study results between variants of our models with and without the fol-
lowing three modules: Adversarial Domain Classifier, Content Feature Transfer, and
Object Class Predictor.

capability in generalizing to unseen target domains. This indicates that consider-
ing both domain-invariant contents and source domain-specific color information
is suitable for the generalized colorization task.

In Fig. 4, we provide some random examples of the generated colorized im-
ages. Models are trained on the PACS (1st-6th columns) and Office-Home (7th-
12th columns) datasets. For a better comparison, we provide the corresponding
ground-truth images in the 8th row as well as the results from our baseline model
(i.e. pix2pix) in the 3rd row. Not surprisingly, the baseline model generates lower-
quality images; they often generate gray-tone images on the Office-Home dataset
and fail to capture long-range color consistency. Applying existing domain gen-
eration techniques (as observed by comparing the 3nd vs. 4-7th rows) generally
provides better-quality colorized images than our baseline, but their generated
images still show limitations as they show confusion between blue and red chan-
nels. This failure is more apparent in the Office-Home dataset, which is more
challenging for colorizing unseen-domain images.

Ours, however, generally shows comparable or better performance against
alternative domain generalization techniques. Our quantitative analysis, as pre-
sented in Table 1, confirms that our proposed method outperforms others in
terms of four image quality evaluation metrics. Our qualitative analysis in Fig. 4
further confirms that exploiting domain-invariant contents and source domain-
specific color features enables the proper colorization of images (see 2nd row vs.
others). In Office-Home benchmark, neither baseline nor existing domain gener-
alization techniques succeeded in colorizing the object in novel domains, whereas
our model could realistically color these objects.
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Table 2. Ablation study results between variants of our models. An average value is
reported. Data: PACS.

Models λadv PSNR ↑ SSIM ↑ IQM ↑ FID ↓ Acc.

A. Ours 1.0 30.71 0.66 1.88 24.92 38.5
B. Ours (λadv = 0.5) 0.5 30.61 0.66 1.84 25.48 36.8
C. Ours (λadv = 0.1) 0.1 30.63 0.65 1.93 27.06 36.4

D. A - Object Class Predictor fc 1.0 30.67 0.67 1.84 25.23 -
E. A - Content Feature Transfer 1.0 29.77 0.62 1.76 28.25 -
F. A - Content Feature Transfer - Object Class Predictor fc 1.0 30.42 0.63 1.82 26.10 -
G. F - Adversarial Domain Classifier fs (baseline) - 30.38 0.63 1.80 25.28 -

H. Ours w/ Style Feature Transfer 1.0 30.52 0.67 1.77 30.10 -

4.4 Evaluation of Perceptual Realism by User Study

Evaluating colorized images is generally difficult using a set of automatic metrics,
such as PSNR. As our main goal is to make the colorized images that are more
compelling to human observers, we set up a user study, in which we show par-
ticipants synthesized colors for an image, and ask them to answer the following
two questions: (i) Naturalness: do you think the provided image looks naturally
colored? (ii) Perceptual Realism: which of the images are the best? Images were
randomly sampled from each domain on the PACS and Office-Home datasets.
For this user study, 34 participants were recruited and each participant answers
overall 360 questions and submitted 12, 240 votes. A detailed explanation is pro-
vided in the supplementary material.

As shown in Fig. 5 (a), ours significantly outperforms alternatives (including
existing domain generalization approaches) with a large gap in both questions.
41.68% (2,551 out of 6,120 votes) of colorized images by ours were perceived as
naturally colored. For evaluating perceptual realism, 49.26% (2,959 out of 6,120
votes) of colorized images by ours was chosen as the best-colorized images among
five approaches: DANN, CORAL, GroupDRO, SagNet, and ours. This number
is significantly higher than all compared approaches, and these results validate
the effectiveness of the proposed method.

4.5 Ablation Study

Effect of Object Class Predictor Recall that our model uses an object class
predictor that takes domain-invariant content features as an input and performs
object recognition tasks to encourage the model to learn semantic features nec-
essary to predict their classes. We observe in Fig. 5 (b) that this predictor is par-
ticularly useful to generate more saturated images (compare A vs. E columns).
As shown in Table 2, our quantitative analysis also confirms that performance is
generally degraded without the use of object class predictor as a regularization
(compare Model A vs. D).

Effect of Transferring Domain Feature Statistics Recall that we transfer
content feature statistics from encoder to decoder as a skip connection followed



14 Lee et al.

by AdaIN, which is widely used in the style transfer task. To see its effect, we con-
duct an ablation study and we observe in Table 2 that colorization performance
is generally degraded as we turn the content feature transfer off (see Model A
vs. E), which is probably because our generator is easily biased towards source
domain-specific color information. This is more apparent in our qualitative anal-
ysis as shown in Fig. 5 (b) where the color for source domain is better recovered
(see 1st vs. 3rd columns).

Further, to verify our motivation behind transferring content feature statis-
tics, we evaluate a variant of ours where we apply AdaIN to the content of
ol with the style of z (instead of using the content of z with the style of ol).
As expected, constraining the generator towards using content-biased features
generally degrades the overall performance in colorization (see model A vs. H
in Table 2). This may confirm that the generator needs to be source domain
color-biased network, while the encoder needs to be content-biased network. We
provide examples in the supplementary material.

Effect of λadv We observe in Table 2 that decreasing λadv generally degrades
the colorization evaluation scores (see models A-C), which may confirm that
learning content-biased representations is beneficial for the model to generalize
well to unseen domains. This trend is more apparent in object class classification
performance (see the rightmost column in the table). Ours outperforms other
alternative domain generalization approaches (Acc. of SagNet: 36.5).

5 Conclusion

We proposed an innovative fully automatic colorization algorithm that can gen-
eralize well to unseen target domains. Built upon a conditional GAN-based col-
orization deep neural network architecture, we proposed three modules to learn
domain-invariant content-biased encoder and source domain-specific color gen-
erator. A skip connection between them transfers rich information about content
feature statistics. Our extensive experiments demonstrate ours generally outper-
forms alternative domain generalization techniques, and our user study further
confirmed this. To the best of our knowledge, we are the first to explore the
effect of domain shift in the colorization task.

Acknowledgement

This work was supported by Institute of Information & communications Tech-
nology Planning & Evaluation (IITP) grant funded by the Korea government
(MSIT) (No.2021-0-00994, Sustainable and robust autonomous driving AI edu-
cation / development integrated platform). J. Kim was supported by the MSIT
(Ministry of Science and ICT), Korea, under the ICT Creative Consilience pro-
gram (IITP-2022-2020-0-01819) supervised by the IITP (Institute for Informa-
tion & communications Technology Planning & Evaluation)



Bridging the domain gap towards generalization in Automatic Colorization 15

References

1. Anwar, S., Tahir, M., Li, C., Mian, A., Khan, F.S., Muzaffar, A.W.: Image col-
orization: A survey and dataset. arXiv preprint arXiv:2008.10774 (2020)

2. Baker, N., Lu, H., Erlikhman, G., Kellman, P.J.: Deep convolutional networks do
not classify based on global object shape. PLoS computational biology 14(12),
e1006613 (2018)

3. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via gen-
erative adversarial networks. In: Joint European conference on machine learning
and knowledge discovery in databases. pp. 151–166. Springer (2017)

4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain
generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2229–2238 (2019)

5. Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via mul-
timodal predictions. In: European conference on computer vision. pp. 126–139.
Springer (2008)

6. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE
International Conference on Computer Vision. pp. 415–423 (2015)

7. Chia, A.Y.S., Zhuo, S., Gupta, R.K., Tai, Y.W., Cho, S.Y., Tan, P., Lin, S.: Se-
mantic colorization with internet images. ACM Transactions on Graphics (TOG)
30(6), 1–8 (2011)

8. D’Innocente, A., Caputo, B.: Domain generalization with domain-specific aggre-
gation modules. In: German Conference on Pattern Recognition. pp. 187–198.
Springer (2018)

9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Proceedings of the International Conference on Machine
Learning (ICML). pp. 1126–1135. PMLR (2017)

10. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. The
journal of machine learning research 17(1), 2096–2030 (2016)

11. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.:
Imagenet-trained cnns are biased towards texture; increasing shape bias improves
accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

12. Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Zhiyong, H.: Image colorization
using similar images. In: Proceedings of the 20th ACM international conference on
Multimedia. pp. 369–378 (2012)

13. Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in
convolutional neural networks. Advances in Neural Information Processing Systems
33, 19000–19015 (2020)

14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: Proceedings of the IEEE International Conference on Computer
Vision. pp. 1501–1510 (2017)

15. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! joint end-to-end learning
of global and local image priors for automatic image colorization with simultaneous
classification. ACM Transactions on Graphics (ToG) 35(4), 1–11 (2016)

16. Ironi, R., Cohen-Or, D., Lischinski, D.: Colorization by example. Rendering tech-
niques 29, 201–210 (2005)

17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. pp. 1125–1134 (2017)



16 Lee et al.

18. Kim, M., Byun, H.: Learning texture invariant representation for domain adapta-
tion of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 12975–12984 (2020)

19. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

20. Lei, C., Chen, Q.: Fully automatic video colorization with self-regularization and
diversity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3753–3761 (2019)

21. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM
SIGGRAPH 2004 Papers, pp. 689–694 (2004)

22. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian gener-
ative adversarial networks. In: European conference on computer vision. pp. 702–
716. Springer (2016)

23. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV) (2017)

24. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: Meta-
learning for domain generalization. In: Proceedings of the AAAI Conference on
Artificial Intelligence. vol. 32 (2018)

25. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 5400–5409 (2018)

26. Li, Y., Tian, X., Gong, M., Liu, Y., Liu, T., Zhang, K., Tao, D.: Deep domain
generalization via conditional invariant adversarial networks. In: Proceedings of
the European Conference on Computer Vision (ECCV). pp. 624–639 (2018)

27. Liu, X., Wan, L., Qu, Y., Wong, T.T., Lin, S., Leung, C.S., Heng, P.A.: Intrinsic
colorization. In: ACM SIGGRAPH Asia 2008 papers, pp. 1–9 (2008)

28. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares gen-
erative adversarial networks. In: Proceedings of the IEEE international conference
on computer vision. pp. 2794–2802 (2017)

29. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant
feature representation. In: Proceedings of the International Conference on Machine
Learning (ICML). pp. 10–18. PMLR (2013)

30. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing
style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 8690–8699 (2021)

31. Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversar-
ial networks. In: International conference on articulated motion and deformable
objects. pp. 85–94. Springer (2018)

32. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015)

33. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neu-
ral networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731 (2019)

34. Su, J.W., Chu, H.K., Huang, J.B.: Instance-aware image colorization. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 7968–7977 (2020)

35. Sun, B., Saenko, K.: Deep coral: Correlation alignment for deep domain adaptation.
In: European conference on computer vision. pp. 443–450. Springer (2016)



Bridging the domain gap towards generalization in Automatic Colorization 17

36. Vapnik, V.: Statistical learning theory new york. NY: Wiley (1998)
37. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing

network for unsupervised domain adaptation. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 5018–5027 (2017)

38. Vitoria, P., Raad, L., Ballester, C.: Chromagan: Adversarial picture colorization
with semantic class distribution. In: The IEEE Winter Conference on Applications
of Computer Vision. pp. 2445–2454 (2020)

39. Wang, Y., Li, H., Kot, A.C.: Heterogeneous domain generalization via domain
mixup. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 3622–3626. IEEE (2020)

40. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In:
Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. pp. 277–280 (2002)

41. Xu, M., Zhang, J., Ni, B., Li, T., Wang, C., Tian, Q., Zhang, W.: Adversarial
domain adaptation with domain mixup. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 34, pp. 6502–6509 (2020)

42. Yan, S., Song, H., Li, N., Zou, L., Ren, L.: Improve unsupervised domain adaptation
with mixup training. arXiv preprint arXiv:2001.00677 (2020)

43. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: European confer-
ence on computer vision. pp. 649–666. Springer (2016)

44. Zhang, R., Zhu, J.Y., Isola, P., Geng, X., Lin, A.S., Yu, T., Efros, A.A.: Real-
time user-guided image colorization with learned deep priors. arXiv preprint
arXiv:1705.02999 (2017)

45. Zhao, J., Han, J., Shao, L., Snoek, C.G.: Pixelated semantic colorization. Interna-
tional Journal of Computer Vision pp. 1–17 (2019)


	Bridging the Domain Gap towards Generalization in Automatic Colorization

