
Generating Natural images with direct patch
Distributions Matching
Supplementary material

Ariel Elnekave and Yair Weiss
Hebrew University Jerusalem

{Ariel.Elnekave, Yair.Weiss}@mail.huji.ac.il

This document contains supplementary material on our method for Gener-
ating natural images by Patch Distribution Matching (GPDM).

1 Python implementation

Our python implementation of GPDM is available at
https://github.com/ariel415el/GPDM.
All GPDM results generated in this document and in the main paper are gen-
erated via the python scripts in the ’scripts’ sub-folder. Please Consult the
README.md file for additional instructions.

All our experiments with GPNN were done with our implementation available
at https://github.com/ariel415el/Efficient-GPNN.

2 Method parameters description

In this section we describe our method’s configurations in more details As de-
tailed in the paper. GPDM is an iterative multi-scale process for generating
images and has multiple configurations controlling the output given the inputs.

pyramid factor and coarse dimension: These parameters control the num-
ber and sizes of the different scales in which the GPDM works. The input image
is repeatedly scaled down by pyramid factor until scaling it will result in one of
its dimensions to be less than coarse dimension. All the intermediate images
are used as the multi scale pyramid on which the algorithm works.

scale factors: This parameter defines the aspect ratio of the output. It is
relevant mostly for the texture synthesis and retargeting tasks as in all other
tasks the output image should have the same size as the input.

init mode and noise sigma: These parameters effect the first initial guess
of the algorithm. init mode can instruct the algorithm to start the optimization
from a blank image, from the target image or from another image. noise sigma
defines the amount of Gaussian pixel noise added to the initial guess in order to
increase variability.

learning rate and num optimization steps: These parameters effect the
optimization of the synthesis image at each scale. specifically it defines the num-
ber of SGD steps and the step size used for optimizing SWD between the images.



2 A. Elnekave, Y. Weiss.

patch size, stride and num projections: These parameters control the
SWD computation between patches in two images. patch size and stride con-
trol the way patches are extracted from an image. num projection defines the
number of projections used to estimate SWD.

3 Task specific configurations and results

In this section we describe the actual configurations we used for each of the tasks
we talk about in the paper. We also add additional result images for each task
generated with the noted configuration.

3.1 Image reshuffling

For the task of reshuffling images from the SIGD16, Places50 datasets we used
the following configuration:
pyramid factor=0.85, coarse dim=28, scale factors=(1,1),
init mode=’zeros’, noise sigma=1.5, patch size=7, stride=1,
num projections=64, learning rate=0.01,
num optimization steps=300

Fig. 1. Reshuffling of images from the SIGD15 dataset. Inputs on the left.

3.2 Image retargeting

As mentioned before, unlike in reshuffling, retargeting generates an output in
different size than the output. For that purpose we set the scale-factor param-
eter as desired, i.e (1,2) for an output which is twice as wide from the input.



Generating Natural images with direct Patch Distributions Matching 3

Fig. 2. Reshuffling of images from the Places50 dataset. Inputs on the left.

Another difference in the retargeting task is that we aim for less variability and
more coherence in the output. For that reason we start the optimization from an
image resized to a different aspect ratio defined by the parameter scale-factor,
blur it, (init mode=’blurred target’) and add no pixel noise (noise sigma=0).
Figures [3, 5, 4] show some additional retargeting results. Each batch of images
shows the input on the upper left and results where the scale factor parameter is
set to (2,2) (1,2), (2,1) in a clockwise order from it. The other parameters used
for creating these images are:
pyramid factor=0.85, coarse dim=35
init mode=’blurred target’, noise sigma=0, patch size=7, stride=1,
num projections=64, learning rate=0.01,
num optimization steps=300



4 A. Elnekave, Y. Weiss.

Fig. 3. Retargeting of famous paintings.

Fig. 4. Retargeting of some selected images from previous papers.



Generating Natural images with direct Patch Distributions Matching 5

Fig. 5. Less sucsessfull examples of retargeting

Fig. 6. Image style transfer of an HQ image into two different styles/textures and with
two different values for the parameter coarse dim. The right-most column shows results
when using multiple pyramid level (specifically coarse dim=512) and the second column
from the right is showing the results with a single pyramid level (coarse dim=1024).



6 A. Elnekave, Y. Weiss.

3.3 Image style transfer

As described in the paper the way we perform style transfer is by starting the
optimization process from a content image and use the style image as the target.
We found that the best outputs are generated using a single pyramid level and
using a patch size of 11. Of course the best parameters may change from image
to image. Figure 6 shows generation of a high resolution image of size 1024x642
with two different texture ”styles”. We also show the output when using multiple
pyramid level for reference. These are the parameters we used for style transfer:
pyramid factor=1, coarse dim=max dim, scale factors=(1,1),
init mode=content image, noise sigma=0, patch size=11, stride=1,
num projections=64, learning rate=0.05,
num optimization steps=300

3.4 Image texture synthesis

The examples in the papers together with the results on figures 7 are all generated
with with starts from noise and with scale factors=(2,2) that is:

Fig. 7. Results of GPDM on texture synthesis creating a twice as big a texture from a
given sample that shows in the upper left cornet of each image.



Generating Natural images with direct Patch Distributions Matching 7

init mode=’zeros’, noise sigma=1.5, patch size=7, stride=1, scale factors=(2,2),
num projections=64, learning rate=0.05
num optimization steps=300

4 GPNN with Approximate nearest neighbor

4.1 The α parameter

In the paper we discussed the possibility to use approximate nearest neighbor
(ANN) methods in order to increase GPNN’s speed. The main problem with
this approach is that it is much harder to control the completeness of the output
with such methods. As mentioned in the text, GPNN approximately optimizes a
bidirectional loss by adding a term to the patch distance that penalizes patches
that have already been used. Specifically, GPNN chooses a patch that minimizes:

Sij =
Dij

α+minl Dlj

As written in the GPNN paper ” The parameter α is used as a knob to control
the degree of completeness, where small α encourages completeness, and α >> 1
is essentially the same as using MSE.”.

α is set to 0.005 in the standard GPNN (the penalty is harder for smaller
values of α). When using approximate nearest neighbor we just use MSE (this
is equivalent to α >> 1 which we mark as ”no-α”).

Here we add more results from the experiment described in figure 7 of the
paper showing the effect of using GPNN with approximate nearest neighbor
calculations. Figure 8 shows the effect of using ANN in the reshuffling task.
The optimization process in this figure starts from a blurred version of the tar-
get (init-mode=’blurred target’) which makes exact-NN more prone to selecting
smooth patches. The figure shows the crucial effect of the α parameter on the
completeness of the outputs but also that using ANN leads to very similar result
to exact-NN when α is not used.

In Figure 9 we show the same effect in the style transfer task with GPNN.
Notice how using α makes the result contain more details from the style image.
Moreover using ANN does not seem to have a negative effect compared to exact-
NN without the α parameter.

4.2 Accuracy of the inverted index search

In the main text we claimed that the drop in the results quality when using
approximate nearest neighbor is due to not being able to set α rather then to
the approximate search being inaccurate. We show here a visual and quantitative
evidence to support this claim.

In order to test the accuracy of the inverted axis ANN approach we randomly
split the patches of a natural image into two sets and for each patch in the first



8 A. Elnekave, Y. Weiss.

Table 1. Comparing the accuracy of two approximate nearest neighbor search methods

Recall top-1 pick Recall top-10 pick distance overhead

FaissIVF 0.76± 0.07 0.77± 0.07 133%± 0.11%
FaissIVF-PQ 0.64± 0.14 0.76± 0.07 135%± 0.09%

set searched its nearest neighbor in the other. We compared the approximate
results to the exact results. Table 1 shows that FaissIVF was Able to retrieve
the same Nearest neighbor patch in 73%±0.72 of the patches (Recall top-1 pick).
Surprisingly, looking at the 10 best picks of IVF for each patch didn’t improve
the results much (Recall top-10 pick). The last column in the table (Distance
overhead) shows the average quotient of distance to the Approximate nearest
neighbor over the distances to the exact nearest neighbor averaged over patches
where the first pick differ. These statistics show that in the cases where IVF
picked up the wrong patches it picked patches that are 33% more distant then
the real nearest neighbor.

Fig. 8. GPNN reushuflling results on images from the SIGD dataset with different NN
computation methods.

Figures 8 and 9 correspond with Figure 7 in the paper. For image reshuffling
and style-transfer we compare the results of GPNN with exact nearest neighbor
to the results when using IVF only here we also show the results when using
exact-nearest neighbor without the effect of the α parameter (no-α). This way we
can isolate the effects of choosing approximate nearest neighbor methods from
that of the α parameter. As can be seen in these figures, Turning α off drastically
lowers the quality of the results even when using exact nearest neighbor. More-
over when not using α the results with approximate and exact nearest neighbor



Generating Natural images with direct Patch Distributions Matching 9

Fig. 9. GPNN style transfer results on images from the SIGD dataset with different
NN computation methods. The input content and style images are on the left of each
row.

search are comparable. Both show large smooth areas that are presumably due
to repeated use of the same patches.

5 Run-time quality trade-off

As mentioned in the paper, decreasing the number of random projections can
speed up our algorithm considerably but at a price of image quality. Figure 10
shows this tradeoff for a particular input image.

Fig. 10. Average SIFID and compute time of image-reshuffling on SIGD16. The images
show generations of one of the images.


