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Fig. 1: By efficiently matching the distribution of patches between images we can solve
a broad spectrum of single-image generative tasks without training a per-image GAN
or computing patch nearest neighbors.

Abstract. Many traditional computer vision algorithms generate re-
alistic images by requiring that each patch in the generated image be
similar to a patch in a training image and vice versa. Recently, this clas-
sical approach has been replaced by adversarial training with a patch
discriminator. The adversarial approach avoids the computational bur-
den of finding nearest neighbors of patches but often requires very long
training times and may fail to match the distribution of patches.
In this paper we leverage the Sliced Wasserstein Distance to develop
an algorithm that explicitly and efficiently minimizes the distance be-
tween patch distributions in two images. Our method is conceptually
simple, requires no training and can be implemented in a few lines of
codes. On a number of image generation tasks we show that our results
are often superior to single-image-GANs, and can generate high qual-
ity images in a few seconds. Our implementation is publicly available
at https://github.com/ariel415el/GPDM.

1 Introduction

In a wide range of computer vision problems (e.g. image retargeting, super-
resolution, novel view synthesis) an algorithm needs to generate a realistic image
as an output. A classical approach to ensuring that the output image appears
realistic is based on local patches [1–3]: if each patch in the output image is
similar to a patch in a training image, we can assume that the generated image
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will be realistic. Similarly, if each patch in the generated image is similar to a
patch in a Van-Gogh painting, we can assume that the generated image captures
the “style” of Van-Gogh. This insight led to a large number of papers over the
past two decades that use patch nearest neighbors to ensure high quality image
outputs [3–6].

One observation shared by successful methods based on patches is that the
similarity between patches should be bidirectional: it is not enough to require
that each patch in the generated image be similar to a patch in the training
image. Consider a generated image that consists of many repetitions of a single
patch from a Van-Gogh image: even though each patch in the generated image
is similar to a patch in the target image, no one would consider such a generated
image to capture the “style” of Van-Gogh. In order to rule out such solutions,
the bidirectional similarity (BDS) method used in [1, 2, 7] also requires that
each patch in the training image be similar to a patch in the generated image.
As we show in section 2.1, while bidirectional similarity indeed helps push the
distribution of patches in the generated image towards that of the target image,
it still falls short of matching the distributions. Furthermore, optimizing the
BDS loss function requires finding nearest neighbors of patches and this is both
memory and computation intensive (given M patches in each image, BDS is
based on an M2 matrix of similarities between all pairs of patches).

In recent years, these classical, patch-based approaches have been overtaken
by Generative Adversarial Networks (GANs) and related methods [8–13]. In the
adversarial approach, a discriminator is trained to classify patches at different
scales as ”real” or ”fake” and it can be shown that under certain conditions
training with an adversarial loss and a patch discriminator is equivalent to min-
imizing the distance between the distribution of patches in the generated image
and the training image [14, 15]. The requirement that the generated image has
the same distribution over patches as the target image addresses the limitation
of early patch-based approaches that simply required that each patch in the gen-
erated image be similar to a patch in the training image. Indeed Single-Image
GANs [10, 9] have yielded impressive results in generating novel images that have
approximately the same distribution over patches as the target image.

Despite the considerable success of GAN-based methods, they have some no-
table disadvantages. While there are theoretical guarantees that globally opti-
mizing the adversarial objective is equivalent to optimizing the distance between
distributions, in practice GAN training often suffers from ”mode collapse” [16]
and the generated image may contain only few types of possible patches. Fur-
thermore, GAN training is computationally intensive and a separate generator
needs to be trained for different image tasks.

In this paper we leverage the previously proposed Sliced Wasserstein Dis-
tance [17–19] to develop an algorithm that explicitly and efficiently minimizes
the distance between patch distributions in two images without the need to com-
pute patch nearest neighbors. Our method is conceptually simple, requires no
training and can be implemented in a few lines of codes. On a number of image
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generation tasks we show that our results are often superior to single-image-
GANs, and can generate high quality images in a few seconds.

2 Distances between distributions

Given M patches in two images, how do we compute the distance between the
distribution of patches in the two images? The Wasserstein (or Earth Movers)
distance between two distributions P,Q is defined as:

W (P,Q) = inf
γ∈Π(P,Q)

Ex,y∼γ∥x− y∥ (1)

where Π(P,Q) denotes the set of joint distributions whose marginal prob-
abilities are P,Q. Intuitively, Π can be thought of as a soft correspondence
between samples in P and Q and so the Wasserstein distance is the average
distance between corresponding samples with the optimal correspondence. Cal-
culating this optimal correspondence is computationally intensive (O(M2.5)[17])
making it unsuitable for use as a loss function that we wish to optimize for many
iterations.

The sliced Wasserstein distance (SWD) makes use of the fact that for one di-
mensional data, the optimal correspondence can be solved by simply sorting the
samples and so the distance between two samples of size M can be computed in
O(M logM). For a projection vector w define Pw as the distribution of samples
from P projected in direction w, the Sliced Wasserstein Distance is defined as:

SWD(P,Q) = EwW (Pw, Qw) (2)

Where the expectation is over random unit norm vectors ω.

2.1 Properties and Comparisons

As mentioned in the introduction, many classical approaches to comparing patch
probability distributions are based on bidirectional similarity. Suppose we are
given a set of samples {pi}, {qj} from two distributions P,Q the Bidirectional
Similarity (BDS) is defined as:

BDS(P,Q) =
1

M

∑
i

min
j

∥pi − qj∥+
1

M

∑
j

min
i

∥qj − pi∥

The first term (”coherence”) measures the average distance between a patch in
{pi} and its closest patch in {qj} and the second term (”completeness”) measures
the average distance between a patch in {qi} and its closest patch in {pj}. Thus
two images are judged to be similar if each patch in one image has a close match
in the second image and vice versa.
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Kolkin et al, [20] used a closely related measure which they called the “Re-
laxed Earth Movers Distance” (REMD):

REMD(P,Q) = max(
1

M

∑
i

min
j

∥pi − qj∥,
1

M

∑
j

min
i

∥qj − pi∥)

Again, two images are judged to be similar if each patch in one image has a close
match in the second image and vice versa.

Thus SWD(P,Q), BDS(P,Q) and REMD(P,Q) are all methods to mea-
sure the similarity between the patch distributions. Why should one method be
preferred over the others? The following theorem shows that neither BDS nor
REMD can be considered as distance metric between distributions, while SWD
can.

Theorem: SWD(P,Q) = 0 if and only if P = Q. On the other hand for both
BDS and REMD, there exist an infinite number of pairs of distributions P,Q that
are arbitrarily different (i.e.W (P,Q) is arbitrarily large) and yet BDS(P,Q) = 0
and REMD(P,Q) = 0.

Proof: The fact that SWD(P,Q) = 0 if and only if P = Q follows from the
fact that the Wasserstein distance is a metric [17]. To see that neither BDS nor
REMD are metrics, note that any two discrete distributions that have the same
support will satisfy BDS(P,Q) = 0 and REMD(P,Q) = 0 regardless of the
densities on the support. This is because a single sample in one distribution can
serve as an exact match for an arbitrarily large number of samples in the other
distribution. For example, suppose P and Q are both distributions over the set
{0, a} for some constant a and P (0) = ϵ,Q(0) = 1− ϵ. For any ϵ ,BDS(P,Q) =
REMD(P,Q) = 0 (since all samples from P will have an exact matching sample
in Q and vice-versa) even though as ϵ → 0 W (P,Q) → a. By increasing a we
can increase W (P,Q) arbitrarily. ■

To illustrate the difference between SWD, BDS and REMD in the context of
image patches, consider three images of sky and grass, each with 1000 patches.
Images A and B, have 999 sky patches and one grass patch, while image C has 1
sky patch and 999 grass patches. Note that when comparing A and B, and when
comparing B and C both coherence and completeness losses will be zero. This
means that BDS and REMD will consider A and B (which have the same patch
distribution) to be as similar as B and C (which have very different distributions).
In contrast, the SWD will be zero if and only if the two distributions are identical,
and SWD(A,B) will be much lower than SWD(B,C).

2.2 SWD for image patch distributions

SWD has been previously suggested for use as a training loss for different image
processing methods [17, 19, 21, 22]. Here we point out that using SWD to measure
the similarity of patch distributions in two images allows us to efficiently optimize
the patch distribution similarity.

As pointed out in [18], while exact SWD requires an integral over all unit
norm filters w, an approximate SWD can be obtained by considering a set of k
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random unit vectors, {wi}:

˜SWD(P,Q) =
1

k

∑
i

W (Pwi , Qwi)

While for any fixed set of k vectors the approximate SWD is not the same as the
exact SWD, by taking a gradient of the approximate SWD we obtain an unbiased
estimate of the gradient of the exact SWD. The fact that the estimate is unbiased
means that by changing the set of k random vectors at each iterations, we can
efficiently optimize the exact SWD, just as is done in training of neural networks
with stochastic gradient descent.

Our additional observation is that for a single projection w, the calculation
of ˜SWD requires convolving the two images with w, sorting the two convolved
images with respect to their value and then calculating the L1 distance between
the sorted vectors. Similarly, the derivative of the ˜SWD with respect to an
image requires a second convolution of the thresholded and sorted difference
image with a flipped version of w. Combining this observation with the result
of [18] means that a stochastic gradient update with respect to the SWD of the
patch distribution in two images can be performed with two convolutions and a
sorting operation.

Our full algorithm, which we call Generative Patch Distribution Matching
(GPDM) is given in Algorithm 1. Note that it allows us to optimize the difference
between patch distributions in two images without finding patch nearest neighbors
and at a complexity of O(M logM).

Algorithm 1 A pseudo-code of the GPDM module where SWD over sets of
patches in two images is computed and differentiated through. The ”flat/unflat”
operators reshapes a tensor into a vector and vice-versa.

Input: Target image x, initial guess ŷ,
learning rate β
Output: Optimized image y

1: y ← ŷ
2: while not converged do
3: L← 0
4: for i=1,k do
5: ω ∼ N(0, σI)
6: ω ← unflat( ω

∥w∥ )

7: p← flat(conv2d(x, ω))
8: q ← flat(conv2d(y, ω))
9: L← L+ 1

k
|sort(p)− sort(q)|

10: end for
11: y ← y − β∇yL
12: end while
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3 Method

Our method uses the same multi scale structure as previous works [9, 7, 5]. At
each level an initial guess is transformed into an output image which is either used
as an initial guess for the next level or is the final output. More formally, given
a target image x we build an image pyramid out of it (x0, x1, ....xn) specified
with a downscale ratio r < 1 and a minimal height for the coarsest level. We
start with an initial guess ŷn of the same size as xn and at each level i we
optimize the initial guess using algorithm 1 to minimize its patch-SWD with xi.
The optimization output yi is a final output or up-scaled by 1

r to serve as an
initial guess for the next level, i+ 1, optimization. The first initial guess can be
a blurred version of the target, a color map or simple pixel noise.

The same learning rate and number of Adam steps is used to optimize SWD
at all scales. Images are normalized to [-1, 1] and the optimized image values are
clipped to this interval at the end of each level optimization.

Fig. 2: Left: GPDM’s multi-scale architecture: At each scale, i, an image is optimized
to have similar patch distribution as the target xi. Right: The generation module G
is an optimization process of the differentiable patch-distribution metric SWD(x, y).
Triangles marked with R stand for up/downscale.

Figure 2 (based on a similar figure in [7]) shows the overall coarse to fine
structure and the minimization process at each scale.

4 Experiments

In this section we conduct experiments to compare GPDM to other methods.
We first compare the synthesis quality on a number of different single image
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generation tasks and later compare the algorithms in terms of their run-time
efficiency.

The methods we compare to are SinGAN[9] as well as a recent method,
GPNN [7] which approximately optimizes the bidirectional similarity between
the generated image and the target image. GPNN generates a new image by
copying patches from the training image in a coarse to fine manner: at each
iteration it searches for patches in the training image that are closest to the
current estimated image and then aggregates these patches to form a new image.
By construction, this method achieves high coherence (since all patches in the
new image are copied from the training image) and completeness is encouraged
by transforming distances into similarities using a free parameter α. When α →
∞ the patch with maximal similarity is the patch in the second image with
minimal L2 distance, but for small α patches in the second image that have
already been used will receive low similarity.

Our method, SINGAN and GPNN all use exactly the same coarse-to-fine
strategy but as shown in figure 2, the difference is in the form of the gener-
ator used at each scale. While SinGAN [9] approximately minimizes the KL-
divergence between patch distributions and GPNN [7] approximately minimizes
the bidirectional similarity, our method directly minimizes the SWD between
the output and target patch distribution.

The configuration used in each applications of GPDM differ in only the con-
tent and size of the first initial guess from which the generation starts. We used a
patch size of 7, 300 gradient steps and 64 random projections for all experiments.
For more hyper-parameters and details please refer to the supplementary.

4.1 Synthesis quality

Fig. 3: Image reshuffling on images from the Places50 and SIGD16 selected by [7].

Image reshuffling: We first compare the three algorithms on the image
reshuffling task task. Given a natural image the task is to generate more images
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from the same scene which are different from the original one but show the
same scene and are visually coherent. For this task, we start the optimization
from a small noise image. Figure 3 visually compares our method to [7, 9] on
the same images from Figure 4 in [7]. It can be seen that our method provides
comparable visual quality to that of GPNN, and both methods generate more
realistic and artifact-free images compared to SinGAN. Some of the images in
figure 3 generated by GPDM do show more artifacts compare to GPNN but they
are also much less similar to the reference image.

Dataset Method SFID↓ Diversity↑ Dataset Method SFID↓ Diversity↑

Places5
Ours 0.068 0.56

SIGD16
Ours 0.069 0.67

GPNN 0.065 0.5 GPNN 0.122 0.52
SINGAN 0.082 0.5 SINGAN 0.172 0.49

Table 1: Qualitative Comparison image-reshuffling.

Table 1 shows a quantitative comparison between our method and [7, 9] using
the SFID metric (a full reference image quality metric described in [9]) and also
using diversity, i.e. the normalized per-pixel standard deviation over 50 generated
images[9]. Good results should have high diversity (i.e. the generated images are
not all identical to the target image) and low SFID (i.e. the generated images
are statistically similar to the training image).

We used the Places50 and SIGD16 datasets from [7, 9]. We recomputed the
SIFID scores for SinGAN and GPNN using the published generated images sets
from each paper’s supplementary. Our scores differ slightly from those reported
in [7], presumably due to different implementations. The numerical scores are
consistent with the visual inspection: our method is comparable to GPNN in
terms of image quality and diversity and both methods outperform SinGAN.

Retargeting: Figure 4 shows the results of our method in retargeting images
into various aspect ratios. We start the optimization from a stretched version of
the target’s smallest pyramid level that matches the desired aspect ratio.

In such tasks, where the number of patches in the output and target images
differ, we duplicate randomly selected patches from the smaller image so that
we compute SWD on two equaly large sets of patches.

Style-transfer: Figure 5 shows our results in style transfer: triplets of con-
tent, style and the mixed output generated by our method. These results are
surprising due to the simplicity of our method. In this task we start the opti-
mization from a rather big image or even use a single-scale configuration. We
start the optimization from the content image and match the patch distribution
to the style image.

Additional tasks: We also applied our method to generating texture images
from texture samples. This is done similarly to retargeting but the initial con-
dition is a noise image. Image editing can be performed by first crudely editing
the image and then using our algorithm to harmonize its fine details so that it
looks real. Figure 1 shows examples of texture synthesis and image editing is
discussed in section 6.
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Fig. 4: Image retargeting results.

Results for additional tasks and more results of reshuffling, retargeting and
style-transfer are available in the supplementary material.

4.2 Efficiency

A major disadvantage of GAN based methods is the need to train a generator
and discriminator for every image. As reported in [7] this means that generating
a new image of size 180 × 250 using SinGAN will take about one hour while
GPNN (and other methods based on bidirectional similarity) take about two
seconds. Our method also does not require any new training and the run times
are similar to those of GPNN when the images are small. However, as the size of
the image increases, the fact that bidirectional similarity requires computing M2

distances (where M is the number of patches in each image) means that GPNNs
run time grows approximately quadratically and generating a novel image of size
1024×678 with GPNN takes more than half an hour on a GPU. In contrast, our
method has complexity of O(M logM) and takes less than a minute to generate
an image of the same size on the same GPU (see figure 6).

The runtime of methods based on bidirectional similarity can be improved
by using approximate nearest neighbor search, rather than exact search. Table 2
shows an analysis of SWD compute time compared to an exact nearest neighbor
search and its approximated counterpart with inverted index [23]. As can be
seen, the use of an inverted index speeds up the search substantially.

While in some of our experiments we found that the approximation performs
reasonably well, a major disadvantage of using approximate nearest neighbor in
the context of GPNN is that it is impractical to modify the similarity metric
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Fig. 5: Style/texture transfer: Each image triplet shows a content image, a
style/texture image and the results of combining them with our synthesis method.

during the image generation process. Recall that GPNN uses a parameter α to
change the similarity of patches based on which patches have already been used
but when an inverted index is used, this would require recomputing the inverted
index at each iteration and the approximate search would become slower than
exact search.

Figure 6 demonstrates this with an example of high resolution style transfer
(see figure 5 for the two input images): while using approximate nearest neighbor
(left) speeds up the computation, it requires using α → ∞ in GPDM and there-
fore creates lower quality images in which the same patches are reused many
times. In contrast, GPNN with exact nearest neighbor (middle) can use a small
α parameter and avoid the reuse of patches. Our method (right) is very fast
and since it explicitly optimizes the distance between patch distributions, does
a better job of capturing the style It should be noted that using GPNN with
exact nearest neighbor search and with α → ∞ produces practically the same
results as those generated with an approximate search, indicating that the drop
in quality is due to the α parameter and not to the inaccuracy of the approxi-
mation. We refer the reader to our supplementary material where one can find
further details about GPNN’s α parameter and a quantitative evaluation of the
accuracy of nearest neighbor approximation methods.

Quality-efficiency tradeoff. GPDM is an iterative algorithm and there
is a natural trade-off between the number of iterations and the quality of the
generated images. More random projections at each optimization step and more
optimization steps help the patch-distributions to match more closely, ensur-
ing more realistic outputs. We refer the interested reader to our supplementary
material where we visualize this tradeoff by comparing SIFID ([9]) scores and
average running times on the SIGD16 dataset compared for different number of
SWD random projections.
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Fig. 6: High resolution style transfer images generated (a) GPNN(no-α) with approx-
imate nearest neighbor (∼ 70 seconds, GPU), (b) GPNN(α=0.005) with exact nearest
neighbor (∼ 1900 seconds, GPU). (c) Our result (∼ 60 seconds, GPU). α is the com-
pleteness enforcing parameter and no-α means no constraint.

image-size 642 1282 2562 5122 10242

SWD(64) 0.002 0.006 0.021 0.086 0.335
NN-exact 0.086 0.110 0.336 4.144 73.23
NN-IVF 0.101 0.137 0.382 1.082 5.530

Table 2: Compute time (seconds) of SWD (64 projections), exact nearest neighbor
(FaissFlat) and approximated nearest neighbor (Inverted Index with

√
M bins where

M is the number of patches) for different image sizes. All computation are done on a
NVIDIA TITAN X GPU.

5 Related work

The idea of synthesizing realistic images using patches from a target image goes
back to Efros and Leung [24]. Efros and Freeman [3] and Hertzmann et al [5] ex-
tended this idea to style transfer and other tasks. These classical, nonparametric
approaches required finding patch nearest neighbors in high dimensions and a
great deal of subsequent work attempted to make the search for nearest neighbors
more efficient. The PatchMatch algorithm [2] pointed out that the coherence of
patches in natural images can be used to greatly speed up the search for nearest
neighbors and this enabled the use of these nonparametric techniques in real-
time image editing. Our work is very much inspired by these classical papers
but we use the SWD to directly optimize the similarity of patch distributions
without computing nearest neighbors. Furthermore, in our approach patches in
the synthesized image are not constrained to be direct copies of patches in the
training image.

As mentioned in the introduction, a key insight behind successful patch-based
methods is the use of some form of bidirectional similarity [1]: it is not enough
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to require that patches in the generated image be similar to patches in the
training image. While [1] optimized the BDS directly, the GPNN approach [7]
rewards bidirectional similarity indirectly by modifying the similarity measure
to penalize patches that have already been used. In a parallel line of work [25–
28] attempts are made to make a uniform use of all patches in the source image
through patch histogram matching. Our approach optimizes a well-understood
similarity (the Sliced Wasserstein Distance) that is guaranteed to be zero only if
the two distributions are equal and importantly it optimizes this similarity very
efficiently.

SINGAN and InGAN [9, 10] are both variants of GANs that are trained
on a single image with a patch based discriminator. Thus they can be seen as
approximately matching the distribution of patches in the generated image and
the target image. Our approach directly optimizes the similarity between patch
distributions in the two images, requires no training in the traditional sense, and
provides superior quality results. More recently [12], [13] were able to push the
performance of SinGAN to match that of our method and that of GPNN but
the train time are still orders of magnitude slower than our method.

The Sliced Wasserstein Distance was used in a number of image generation
tasks but it is most often used to estimate the distance between distributions
of full images [29]. Thus [22] train a generative model by replacing the GAN
objective with an SWD objective. In contrast, here our focus is on estimating the
distance between two patch distributions and we have shown that an unbiased
estimate of the distance between patch distributions in the two images can be
estimated using a single convolution.

Although not immediately apparent, neural style transfer [30] can be seen as a
single image generative model that preserves patch distribution. [31] showed that
the Gram loss in neural style transfer is equivalent to MMD [32] over features
of intermediate layers of VGG hence the style transfer objective is to minimize
distribution of patches (in size of the layers’ receptive fields) between the opti-
mized image and the style target. [33] also recognized this nature of the Gram
loss and suggested replacing it with SWD between the VGG features. Similarly
[34–36] use the closed form of the Wasserstein distance between Gaussians to
push the spatial distribution in VGG feature maps of a content image into that
of a style image and then decode it as a mix image.

The works of [37, 4] closely relate to the neural patch distribution for style
transfer. They both suggest objectives that focus on the coherence of neural
patches in the synthesized image. Similar to [7], they enforce NN similarity
of neural-patches but they compute similarity in a pre-trained neural network
representations rather than in pixel space. Similar to the classic algorithms,
both of these work require explicit computation of patch nearest neighbors. In
contrast, our use of SWD allows avoiding the computation of patch nearest
neighbors which make our algorithm much faster.

The work of [18] also use SWD for texture synthesis. They minimize SWD
on wavelet coefficients with SGD to synthesize new samples from a given texture
image. Our paper differs from theirs in that we work in multiple scales, on pixel-
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level and compute SWD in a more efficient way. We are able thus to produce
much better results and to apply our method to more complicated generative
tasks.

6 Limitations and Extensions

Limitations: As mentioned previously, approaches based on bidirectional sim-
ilarity do not explicitly optimize the similarity of patch distributions while our
method does. In some applications, the fact that our method attempts to re-
produce the relative frequencies of different patches is a limitation. It is often
easier to find an image that is coherent (i.e. all patches in the synthesized image
come from the target image) than to find one that preserves the relative fre-
quencies. Furthermore, in some tasks such as image editing, the desired image
should have a different distribution over patches (e.g. if the user wishes to add a
new object to the image). Finally, since our method is based on optimization, it
is not guaranteed to find a good local minima and so the final results sometimes
show artifacts as can be seen in figure 3.

Extensions:We propose here two extensions to our method. Both extensions
are designed to soften the patch frequency constraint on the output allowing the
generation of more diverse outputs.

The first extension of our method allows the user to explicitly manipulate
the distribution over patches that is matched by our algorithm. Figure 7a illus-
trates this. Here the user first manipulates the target distribution of patches by
indicating that certain patches should be increased in frequency and the algo-
rithm then generates an image to match the augmented target distribution. As
can be seen, this simple modification allows us to generate images with different
number of objects based on the user’s preference.

(a) (b)

Fig. 7: Two Extensions of our method. (a): A mask that specifies target patches whose
frequency should be increased is given as an additional input. This allows the user to
manipulate the number of objects in the generated images. (b): Batched GPDM. Each
row shows the two most diverse outputs out of 10 image batch.
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The second extension is to use an ensemble of images so that the patch
distribution in the ensemble matches that of the target image. Formally, instead
of matching the patch distribution of a single output image to a single target we
generate N output images and match their total patch distribution to that of
all the patches in N copies of the target image. This way, while the total patch
distribution is still strictly preserved, the distribution within each generated
image can diverge from that of the original target image. For example when
reshuffling 2 images to match the distribution of 2 copies of an image with black
balls on grass, one output may contain no balls at all and the other will have
twice as many balls while still preserving the frequency of patches in the two
images together. Figure 7b shows the results from this algorithm which we call
“batched-GPD”: For each input image we generated 10 images in parallel and
showed the two most different results.

This extension works surprisingly well and yields cleaner and more diverse
results. Moreover since the memory footprint of GPDM is linear in the number
of patches (in-place sorting) we were able to run in large batches reducing the
generation time for a single image.

7 Conclusion

Classical approaches for generating realistic images are based on the insight that
if we can match the distribution of patches between the generated image and
the target image then we will have a realistic image. In this paper we have
used the same insight but with a novel twist. We use the Sliced Wasserstein
Distance which was recently used as a method to compare distributions of full
images when training generative models and we showed that when applied to
distributions of patches, an unbiased estimate of the SWD can be computed
with a single convolution of the two images. Our experiments shows that this
unbiased estimate is sufficient for excellent performance in a wide range of image
generation tasks.
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Daniel Sỳkora. Lazyfluids: appearance transfer for fluid animations. ACM Trans-
actions on Graphics (TOG), 34(4):1–10, 2015.
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