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Fig. 1: Applications of the proposed method. Our image editing system is flexible in
responding to a wide variety of editing requirements.

Abstract. Semantic image editing utilizes local semantic label maps to
generate the desired content in the edited region. A recent work borrows
SPADE block to achieve semantic image editing. However, it cannot pro-
duce pleasing results due to style discrepancy between the edited region
and surrounding pixels. We attribute this to the fact that SPADE only
uses an image-independent local semantic layout but ignores the image-
specific styles included in the known pixels. To address this issue, we
propose a style-preserved modulation (SPM) comprising two modula-
tions processes: The first modulation incorporates the contextual style
and semantic layout, and then generates two fused modulation param-
eters. The second modulation employs the fused parameters to mod-
ulate feature maps. By using such two modulations, SPM can inject
the given semantic layout while preserving the image-specific context
style. Moreover, we design a progressive architecture for generating the
edited content in a coarse-to-fine manner. The proposed method can ob-
tain context-consistent results and significantly alleviate the unpleasant
boundary between the generated regions and the known pixels.
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1 Introduction

Image editing aims to generate the desired content in a specific region under
users’ control. This task attracts a lot of research enthusiasm due to its wide
application in social media, image and video re-creation, and virtual human-
object interaction. The well-known commercial software Photoshop has achieved
success in this field. However, the use of such software requires many professional
skills and much manual effort.

Most image editing methods fall into a few categories. The first category is
low-level-guided editing methods [18,3,6,28]. They introduce low-level informa-
tion such as lines and color. These methods can deal with editing simple contours
or shapes but only provide very limited editing control and cannot manipulate
the high-level semantics of the image. The second category is classification-based
methods [9,12]. They utilize an auxiliary classifier to guide synthesis and edit
images. These methods can only control discrete attributes and cannot provide
spatial control. The third category methods employ GAN inversion technique
[39,4,1,27], which relies on a pre-trained GAN and dissects GANs’ latent spaces,
finding disentangled latent codes suitable for editing. They require a powerful
well-trained StyleGAN, which is impossible in many cases because training a
strong StyleGAN [20,22] model is not easy, especially for complex scenes. Fur-
ther, such methods lack flexibility, and the editing of each attribute may require
independent training. The fourth category methods [11,32] utilize pixel-level se-
mantic label maps, which define the class labels of pixels in edited regions to
control edited content. This task is also known as Semantic Image Editing. Fol-
lowing this line of work, our approach can provide users with greater editing
flexibility than the other three categories of methods. Our method includes the
following editing capabilities: (1) Our method can be applied to complex scene
editing. (2) Users can flexibly edit the image via manipulating semantic layout,
such as modifying the shape of objects, adding or removing objects. (3) Edited
regions can be selected at arbitrary positions, even beyond the original image
boundaries. The Figure 1 demonstrates the versatility of our approach.

Semantic image editing is a non-trivial task. Its challenge lies in keeping con-
text style consistent between edited and known regions. Here, ”context” refers to
the non-edited region of the input image, and ”style” is the features of ”context”
such as color/texture. The previous state-of-the-art method SESAME [32] lever-
ages SPADE block [33] to build their generator. SPADE is remarkably effective
in conditional image synthesis. Conditional image synthesis learns a mapping
from the semantic map domain to the real image domain, synthesizing the en-
tire image according to the given semantic label map. Therefore, the generator
may synthesize simple textures to get visually plausible results. However, since
known pixels and fake pixels coexist for the image editing task, our task becomes
tougher in that the requirement is synthesizing realistic textures and retaining
consistency to the context style. Aside from that, image synthesis requires a
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Fig. 2: (a) Principle difference between SPM and SPADE; (b) The structure of SPADE;
(c) The structure of the proposed SPM.

full semantic label map, but semantic image editing can only see the semantic
layout of the edited region. Thus, if SPADE is employed directly on the editing
task, only meaningless modulation parameters would be generated in the known
region. Previous work [32] often causes significant style inconsistency and un-
pleasant boundaries for the above reasons.

To address such limitations of the existing works, we propose a style-preserved
modulation module (SPM). Compared with SPADE, which only utilizes one
modulation operation, SPM consists of a two-stage modulation process. Inspired
by the style transfer [14], which show that non-normalized feature maps contain
high-level ”style” information, we use non-normalized feature maps for context
preserving via ”bypassing norm”. The principle difference between SPM and
SPADE is illustrated in Figure 2(a) and their details are described in the section
3. Specifically, we first generate two parallel pairs of modulation parameters from
semantic maps and a pair of modulation parameters from feature maps. Then we
fuse them through the first modulation operation to generate two context-aware
modulation parameters. The second stage modulation uses the context-aware
modulation parameters to modulate feature maps. Through two-stage modula-
tion, SPM can effectively integrate external semantic maps while preserving the
image-specific context style.

SPM involves feature maps into the modulation process for preserving contex-
tual style. For image editing tasks, the input is empty in the edited region. The
contextual information of the known region is gradually transferred to the edited
region through the enlargement of the receptive field of the generator. In order
to make the edited region more effectively perceive the contextual style to gen-
erate context-aware modulation parameters of SPMs, we build a coarse-to-fine
structure to decompose the editing process into multiple scales in a progressive
manner. Specifically, we employ multiple generators to receive inputs of different
scales. A downsampled version of the input image is fed into the first generator
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to produce the coarsest result, which contains the coarse-grained image-specific
style of the edited region. Subsequent generators can utilize previous results to
effectively preserve the contextual style via SPM and refine the detailed textures.
Our contributions are summarized as follows:

• We propose a context style-preserved modulation for the semantic image
editing task, which can inject the layout of the external semantic label map
while preserving the image-specific context style. The experiment shows the
remarkable effect of SPM for alleviating the inconsistency.

• We build the progressive generative adversarial networks with SPMs for
coarse-to-fine generation of edited regions.

• Extensive qualitative and quantitative experiments conducted on several
benchmark datasets indicate that our model outperforms the state-of-the-art
methods, especially in the sense of contextual style consistency.

2 Related Works

2.1 Image-to-Image Translation

Image translation attempts to learn a mapping from a source domain to a target
domain. It can be applied to various tasks, such as image synthesis [48,46,47],
image editing [11,3,18], style transfer [7,14], image inpainting [34,45,44], image
extension [38,43], and image super-resolution [24,25]. Existing works utilize dif-
ferent conditional inputs as source domains such as semantic label maps, scene
layouts, key points, and edge maps. Among them, the most relevant subtask is
semantic image synthesis, which aims at generating photo-realistic images con-
ditioned on semantic label maps.

Semantic image synthesis has achieved remarkable progress benefitting from
GAN [8]. Pix2pix [17] is the seminal work based on cGAN framework [30]. The
following work Pix2pixHD [41] is devoted to generating high-resolution images.
SPADE [33] proposes a spatially-adaptive normalization that learns transforma-
tion parameters from the semantic layout to modulate the activations in normal-
ization layers. CLADE [37] proposes a lightweight class-adaptive normalization
to improve the efficiency of SPADE. Semantic image synthesis has been applied
to different downstream tasks in recent works, such as semantic image editing
[32], semantic view synthesis [13], and portrait editing [53,26].

2.2 Semantic Image Editing

Semantic image editing refers to users providing semantic label maps as a clue to
edit the local region of a given image at pixel level. Semantic concepts are more
intuitive and fundamental image features than colors, edges, key points, and
textures. By manipulating the semantic label map, users can easily edit the image
content in many ways, including re-painting, adding, removing, and out-painting
semantic objects. Semantic image editing has not been fully developed because



Context-Consistent Semantic Image Editing with SPM 5

it is challenging. Semantic image editing requires that the edited content not
only has high fidelity but also must be consistent with the style of the remaining
region. HIM [11] is the earliest attempt at this task. HIM can only operate
on one foreground target each time. Furthermore, HIM requires a full semantic
label map of the entire image as input, which is inconvenient for users. SESAME
[32] only inputs the semantic label map of the edited region, making the image
editing tool more practical. SESAME builds its generator with SPADE and uses
a new discriminator to process the semantic and image information in separate
streams. Although the previous methods can synthesize plausible results, they
ignore the consistency of the context between the edited region and the known
region. In contrast, our work is dedicated to reducing this inconsistency.

2.3 Modulation Technique

Modulation, also called denormalization, is an effective way to inject external
control information. Unlike the unconditional normalization technique, such as
BN [16], IN [40], and GN [42], modulation techniques require external data
and follow a similar operating flow. First, feature maps are normalized to zero
mean and unit deviation using an unconditional normalization layer. Then the
normalized feature maps are modulated with scaling and shifting parameters
learned from external data. Modulation techniques were initially applied to style
transfer tasks, such as AdaIN [14] and later adopted in various vision tasks
[21,15,35]. AdaIN only learns global style representation. [33] proposes SPADE
for semantic image synthesis to handle external data with spatial dimensions.
However, the previous methods only consider the external conditional input and
ignore the internal contextual information, which is a fatal disadvantage for our
task. This paper proposes a new modulation scheme that can aggregate internal
context style and external semantic layout. The experimental results show that
the proposed method can effectively preserve the context style and improve
consistency for semantic image editing.

3 Approach

We describe our approach from bottom to top. We first analyze the limitations of
SPADE for semantic image editing and introduce SPM proposed in this paper.
Then, we introduce how to build a progressive architecture based on SPM.

3.1 Rethinking SPADE for Semantic Image Editing

SPADE is a state-of-the-art modulation technology remarkably successful in se-
mantic image synthesis, as shown in Figure 2(b). F i ∈ RN×C×H×W is the input
feature maps of the i-th layers. N is the number of samples in one batch. C is
the number of channels. H and W represent the height and width, respectively.
SPADE learns two modulation parameters, scaling parameters γ and shifting
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parameters β, via two convolutional layers from the given semantic label map
S. First, F i is normalized in a channel-wise manner:

F̄ i =
F i − µi

σi
(1)

where µi ∈ RN×C×1×1 and σi ∈ RN×C×1×1 are the channel-wise means and
standard deviations of F i. Then, we perform the modulation operation:

F̃ i = (1+ γ)⊙ F̄ i + β (2)

Previous work [32] applies SPADE for semantic image editing. However,
SPADE is ill-fitted for semantic image editing for the following two reasons:
First, SPADE can only generate image-independent modulation parameters from
the given external semantic label map. Thus, if two edited images are given the
same semantic label map, SPADE will generate the same modulation parame-
ters. This is unreasonable because SPADE ignores image-specific style. Second,
for semantic image editing, the generator can only see the semantic layout of
the edited region, and the semantic labels of the rest known regions are set to a
fixed value. Therefore, SPADE cannot learn effective parameters on the known
region. If we naively transfer SPADE to semantic image editing, the above two
limitations will cause style inconsistency and unpleasant boundaries.

3.2 Style-Preserved Modulation

To solve the issues mentioned above, we propose a two-stage modulation mecha-
nism for style preserving, as shown in Figure 2(c). The first stage of modulation
aims to integrate the context style and the external semantic layout. The second
stage of modulation is to inject the fused information into feature maps.

In the first modulation, we generate two kinds of parameters: Four seman-
tic modulation parameters and two context modulation parameters. Semantic
modulation parameters include two groups: (γs1 , βs1) and (γs2 , βs2). The context
modulation parameters (γc, βc) are generated from the original feature maps
without passing through the normalization layer. The previous style transfer
works [14] revealed that the style of the image could be washed away by nor-
malization layers. The non-normalized feature maps can retain the context style
more. So, we use the original feature maps to generate two context modula-
tion parameters. Finally, we perform the first modulation to generate the fused
modulation parameters γf and βf :

γf = (1+ γs2)⊙ γc + βs2 (3)

βf = (1+ γs1)⊙ βc + βs1 (4)

where ⊙ denotes element-wise multiplication. All modulation parameters have
the same shape as the feature maps F i.
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Fig. 3: Overview of the progressive architecture.

In the second modulation, we use fused modulation parameters to modulate
the normalized feature maps F̄ i.

F̃ i = (1+ γf )⊙ F̄ i + βf (5)

Through two-stage modulation process, SPM overcomes the two shortcom-
ings of SPADE: First, the fused modulation parameters integrate the external
semantic layout and retain the internal context style. Second, the fused mod-
ulation parameters can generate meaningful modulation parameters for known
regions.

3.3 Progressive Editing Architecture

We propose a progressive architecture for image editing based on SPM, called
SPMPGAN. Our model has three inputs: (1) The input image I ∈ R256×256×3

which contains only known pixels with masked edited region; (2) the local se-
mantic map S providing the semantic layouts of the edited region; and (3) the
corresponding mask map M whose value is 0 in the non-edited region and 1 in
the edited region. Our progressive architecture consists of a pyramid of genera-
tors {G1, G2, G3} and discriminators {D1, D2, D3} with an image pyramid of I:
{I1, I2, I3}, where In is a downsampled version of I by a factor 23−n, mask pyra-
mid of M : {M1,M2,M3}, and semantic map pyramid of S: {S1, S2, S3}. Each
generator Gn is trained with an associated discriminator Dn. Gn learns to gen-
erate realistic new content in the edited region and try to fool the corresponding
discriminator. Dn attempts to distinguish the edited result and the real image.
We adopt an encoder-decoder architecture with skip connections [36] for all gen-
erators, as shown in Figure 3. Each generator adds a down-sampling layer in
the encoder and an up-sampling layer in the decoder on the previous generator.
Inspired by[45], the discriminators are composed of several convolutional layers
with 5 × 5 convolution kernel and spectral normalization [31]. The number of
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layers of D1, D2, and D3 are 4, 5, and 6, respectively. Thus, each Dn has the re-
ceptive field with the size of the input In and captures the entire image’s feature.
The generation process starts at the coarsest G1 and sequentially passes through
G2 and G3 to the original scale. Specifically, the original input I is downsampled
to 64×64 to get G1’s input: IG1 = I1, and G1’s output is O1. Then, we combine
the upsampled O1 with I2 as G2’s input: IG2 = O1 ⊙M2 + I2 ⊙ (1−M2). All
generators and discriminators have independent weights.

3.4 Training

We train our progressive model in an end-to-end manner. The training objective
for the n-th generator is comprised of a reconstruction loss and an adversarial
loss Ladv. The reconstruction loss consists of L1 distance loss L1 and perceptual
loss Lp [19]. We employ the hinge version adversarial loss [2,29]. The overall loss
can be written as:

L = L1 + 10.0Lp + Ladv (6)

4 Experiments

4.1 Datasets

ADE20K-room ADE20K [51] has over 20,000 images together with detailed
semantic labels of 150 classes. We select a subset of the ADE20K comprised of
Bedroom, Hotel Room, and Living Room. This subset is called ADE20K-room.
We resize all the images with their longer sides no more than 384 and their
shorter sides no less than 256. We crop them to 256 × 256 when training. This
dataset has 2246 images for training and 255 for testing.

ADE20K-landscape We also selected the landscape subclass from ADE20K
and use the same preprocessing approach. The difference is that this dataset has
only background and no foreground objects. The training set and the testing set
contain 1689 images and 155 images, respectively.

Cityscapes [5] The dataset collects streetscapes of 50 German cities, which
contains 33 semantic categories. The training and testing set has 2975 and 500
images, respectively, with a resolution of 2048×1024. We downsample all images
to 512× 256 and crop them to 256× 256 patches.

4.2 Baselines

Semantic image editing methods. We employ two existing works [11,32] as
baselines. HIM [11] introduces a two-stage method for image editing. They first
predict semantic layout from object bounding boxes. Then, they generate new
content according to the predicted semantic layout. Because in our setting, the
ground truth semantic layout of the edited region is known, we directly input
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Fig. 4: Visual comparison with other methods.

the ground truth layout to the second stage of HIM to get the results. SESAME
[32] has similar settings with our work.

Image synthesis methods. Our experiments also include several image gener-
ation methods for comparison. These recent works [41,33,37,50] can be directly
transferred to our task via only modifying their generators’ input. It is worth
mentioning that some recent works cannot be simply adapted for our task. For
example, SEAN [53] requires a full segmentation map to calculate their style
codes. CoCosNetv2 [52] requires a full segmentation map to perform their do-
main alignment. However, our task can only see local semantic label maps.

4.3 Implementation Details

To obtain a more flexible model, we employ five types of masks for training:
Free-form mask, extension mask, outpainting mask, instance mask, and class
mask. The extension mask is the right half of the input. For the outpainting
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Fig. 5: Visual results of addition and removal objects.

mask, we randomly retain a 128× 128 patch as the known region. The instance
mask contains only a single foreground target, and the class mask drops all the
pixels belonging to a semantic class. During training, each mask is randomly
selected and sent to the network at each iteration. We use Adam optimizers [23]
for both the generator and the discriminators with momentum β1 = 0.5 and
β2 = 0.999. The learning rates for the generator and the discriminators are set
to 0.0001 and 0.0004, respectively. All models are trained for 500 epochs on all
datasets. The batch size is set to the maximum value to fit the memory size of
a single NVIDIA RTX 3090 GPU.

4.4 Semantic Image Editing

We compare our results with state-of-the-art methods using free-form masks,
extension masks, and outpainting masks on the three benchmarks. Figure 4 pro-
vides some visual comparisons. Pix2pixHD[41] and HIM[11] only use semantic
label maps as conditions in the input layer, and they often generate artifacts.
SPADE[33], CLADE[37], and SESAME[32] can synthesize reasonable structures
and realistic textures, but they severely suffer from style inconsistencies leading
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Table 1: Quantitative comparison with different mask types (↑: Higher is better; ↓:
Lower is better). In the leftmost column, M, F, E, and O represent Mask Type, Free-
Form Mask, Extension Mask, and Outpainting Mask, respectively.

M Method
ADE20k-Room ADE20k-Landscape Cityscapes

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

F

pix2pixHD 23.72 0.107 27.49 33.90 0.120 28.30 15.28 0.090 58.69
SPADE 27.65 0.124 27.47 41.92 0.134 28.41 15.83 0.099 59.10
CLADE 30.77 0.126 25.91 46.59 0.139 26.39 17.06 0.103 57.72
Co-Mod 27.37 0.111 27.52 32.35 0.124 28.60 15.88 0.097 56.50
HIM 28.64 0.133 28.04 35.89 0.116 28.43 15.58 0.093 58.99

SESAME 21.73 0.101 27.50 30.30 0.116 28.28 12.89 0.082 58.88
SPMPGAN 18.83 0.090 28.22 23.11 0.105 28.73 11.90 0.084 58.80

E

pix2pixHD 38.08 0.223 27.32 56.15 0.242 28.10 26.14 0.176 58.55
SPADE 36.43 0.211 27.62 68.96 0.277 28.44 25.78 0.194 59.01
CLADE 41.77 0.242 25.67 65.33 0.267 26.39 25.29 0.195 58.09
Co-Mod 38.61 0.231 27.13 53.96 0.249 28.09 29.27 0.188 56.44
HIM 40.69 0.239 27.61 52.14 0.234 28.42 25.20 0.180 58.91

SESAME 36.43 0.211 27.62 48.16 0.232 28.31 20.30 0.168 59.08
SPMPGAN 32.61 0.199 27.73 45.10 0.217 28.48 19.46 0.167 59.10

O

pix2pixHD 52.14 0.323 27.49 82.56 0.360 28.30 39.50 0.253 58.72
SPADE 47.72 0.305 27.40 88.79 0.389 28.30 33.97 0.268 59.07
CLADE 52.45 0.346 25.47 86.77 0.388 24.49 34.19 0.276 57.49
Co-Mod 51.45 0.325 26.54 79.77 0.360 26.70 50.29 0.264 55.39
HIM 54.51 0.337 28.19 77.18 0.352 28.57 36.27 0.252 58.99

SESAME 47.72 0.305 27.40 72.28 0.344 28.13 28.27 0.237 58.75
SPMPGAN 41.52 0.288 27.85 63.32 0.328 27.56 27.63 0.233 58.53

to unpleasant boundaries. Because they only use the image-independent external
semantic map when injecting the semantic label map and completely ignoring
the context information. Co-Mod[50] also has the apparent texture inconsistency
as it lacked a specific design for the image editing tasks. The proposed method
can effectively integrate the contextual style and the semantic layout to produce
realistic textures while preserving the contextual style. Table 1 also shows the
quantitative comparison results. FID [10] has been widely demonstrated that it
is consistent with human visual perception. A lower FID value indicates that
results have higher fidelity. LPIPS[49] evaluates the similarity between the gen-
erated image and the corresponding ground truth in a pairwise manner. A lower
LPIPS indicates that the generated image is closer to the ground truth. mIoU is
employed in the semantic synthesis task [33] to evaluate the alignment between
the semantic label map and the generated result. Our method outperforms the
other methods in most evaluation metrics.

4.5 Addition and Removal of Objects

Our work is capable of adding or removing individual objects by modifying the
semantic label maps. Visual results are demonstrated in Figure 5. For the object
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Table 2: Addition and removal results for Cityscapes and ADE20k-Room.

Manipulation Method
ADE20k-Room Cityscapes

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

Addition

pix2pixHD 6.29 0.027 27.09 11.77 0.030 58.28
SPADE 5.66 0.027 27.17 10.48 0.031 58.66
CLADE 6.21 0.028 27.16 11.03 0.031 57.55
Co-Mod 5.75 0.026 27.23 11.28 0.031 56.40
HIM 9.80 0.046 27.22 11.41 0.030 58.75

SESAME 5.50 0.024 27.14 9.70 0.027 58.56
SPMPGAN 5.14 0.022 27.43 9.04 0.026 58.68

Removal

pix2pixHD 4.52 0.019 28.32 15.01 0.039 55.02
SPADE 3.96 0.019 28.35 15.48 0.040 55.04
CLADE 4.12 0.019 28.34 16.18 0.040 54.22
Co-Mod 4.03 0.019 28.33 15.05 0.041 55.10
HIM 7.44 0.035 28.33 15.10 0.040 55.11

SESAME 4.02 0.018 28.34 15.52 0.041 55.08
SPMPGAN 3.68 0.016 28.35 14.63 0.039 55.01

addition, we randomly select an instance of input and extract the boundary
boxes to generate its local semantic label map. For object removal, we delete a
instance and fill it with nearby background semantic class. Quantitative results
shown in Table 2 indicate that our method achieves the best results in style
preservation and fidelity.

4.6 Controllable Panorama Generation

A well-trained model can be used recursively to obtain panoramas. Specifically,
we employ the generated region of the previous step as the known region of the
next step in a sliding window manner. Thus, the input is extended to the right by
128 pixels in each step so that images with arbitrary width can be controllable
synthesized. Figure 1 shows a recursive generated result.
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Table 3: Ablation study with different mask types.

M Method
ADE20k-Room ADE20k-Landscape Cityscapes

FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑ FID↓ LPIPS↓ mIoU↑

F

w SPADE 23.27 0.098 27.60 34.71 0.118 28.39 14.20 0.091 58.80
w norm 20.51 0.098 27.58 29.87 0.111 28.31 12.64 0.085 58.78
w/o prog 20.47 0.096 27.42 25.87 0.109 28.42 13.07 0.089 58.73

w SPADE-L 24.11 0.098 27.61 34.68 0.116 28.43 14.40 0.090 58.79
SPMPGAN-S 18.93 0.090 28.24 23.21 0.106 28.70 11.89 0.084 58.82
SPMPGAN 18.83 0.090 28.22 23.11 0.105 28.73 11.90 0.084 58.80

E

w SPADE 36.84 0.220 27.51 53.02 0.239 28.92 21.99 0.173 58.88
w norm 32.76 0.205 27.56 48.43 0.228 28.92 20.50 0.176 59.01
w/o prog 33.87 0.205 27.44 45.96 0.222 28.86 21.00 0.170 59.09

w SPADE-L 36.14 0.218 27.48 53.13 0.240 28.93 21.86 0.174 58.81
SPMPGAN-S 31.92 0.200 27.74 45.17 0.218 28.47 19.12 0.167 59.12
SPMPGAN 32.61 0.199 27.73 45.10 0.217 28.48 19.46 0.167 59.10

O

w SPADE 47.37 0.321 28.38 71.52 0.357 28.84 31.33 0.244 58.95
w norm 42.31 0.300 28.52 66.52 0.337 28.82 27.74 0.235 57.98
w/o prog 43.98 0.297 28.05 66.32 0.329 27.39 29.54 0.238 58.53

w SPADE-L 47.16 0.318 28.39 70.33 0.354 28.83 31.43 0.243 58.95
SPMPGAN-S 41.49 0.289 27.80 62.43 0.330 27.63 27.39 0.228 58.59
SPMPGAN 41.52 0.288 27.85 63.32 0.328 27.56 27.63 0.233 58.53

Table 4: Comparison of the number of parameters.

w SPADE w SPADE-L SPMPGAN SPMPGAN-S

ADE20k-Room 63.4 M 90.0 M 118.4 M 76.9 M

Cityscapes 57.8 M 81.5 M 112.7 M 74.0 M

4.7 Ablation Study

Style-preserved modulation

We study the importance of SPM for style preserving. We replace all SPMs
with SPADE blocks (”w SPADE”). The visual results are shown in Figure 6. It
can be observed that SPADE leads to unpleasant boundaries. This is because
SPADE completely ignores the image-specific context style and only uses lo-
cal semantic label maps to modulate feature maps. As a comparison, SPM can
relieve the inconsistency. The two-stage modulation can integrate the context
style and the external semantic label map. In addition, SPM can also help the
generator to synthesize more realistic texture details. We also study the influ-
ence of ”bypassing norm” for style preserving. Specifically, for the generation
of γc and βc in SPM, we replace original feature maps by normalized feature
maps (”w norm”). The experimental results show that the style preserving is
significantly weakened. It proves that the normalization operation washes away
context style. Therefore, we use the original feature maps without normalization
in SPM. Quantitative results are also demonstrated in Table 3.
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input G1 output G2 output G3 outputinput G1 output G2 output G3 output input G1 output G2 output G3 outputinput G1 output G2 output G3 output

Fig. 7: Outputs of all generators.

Effectiveness of progressive architecture

We conduct an ablation study to demonstrate the effectiveness of the pro-
gressive design for synthesizing high-quality results. We only use the last level
generator as the baseline (”w/o prog”). Figure 6(c) shows that without the pro-
gressive generation, the model will produce style inconsistency and unrealistic
textures. The outputs of the generators of all scales are shown in the Figure 7.
It can be seen, G1 synthesizes the global structure, and G2 and G3 produce the
sharper detail. Quantitative results are given in Table 3, which indicates that
progressive architecture contributes to performance improvement.

4.8 Study of Model Scale

This study demonstrates that our performance improvement stems from the
novel design of SPM rather than increasing parameters. As shown in Table 4,
our model follows SPADE to set the number of output channels Ch of the shared
layer to 128. We reduce Ch of all SPMs to 64 and keep the structure unchanged
(”SPMGAN-S”). We do not observe the performance drop. In addition, we insert
more SPADE blocks into ”w SPADE” to obtain a new baseline ”w SPADE-L” .
The experimental results are shown in the Table 3, ”w SPADE-L” does not ob-
tain performance gain by simply increasing the network scale and computational
consumption. The performance of ”SPMGAN-S” still significantly outperforms
”w SPADE-L” with fewer parameters.

5 Conclusion

This paper is dedicated to solving style inconsistency for the semantic editing
task. We propose a style-preserved modulation and a progressive architecture
that effectively injects the structure from semantic label maps while preserving
the context style. The key of SPM lies in effectively integrating contextual infor-
mation and semantic label maps. We also demonstrate the ability of our method
for various applications.
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