Unsupervised Learning of Efficient
Geometry-Aware Neural Articulated
Representations: Supplemental Material

Atsuhiro Noguchi! Xiao Sun? Stephen Lin? Tatsuya Haradal3

! The University of Tokyo 2 Microsoft Research Asia 3 RIKEN

Q

ENARF

Global Local Canonical £ pk O Density

location location location [\
Lookup

£=> piti—
¢ k

X X, ¢ .
Rt O Rpgo T
Tri-plane Tri-plane y(t) Time
features part prob.

¢ Color

>

D-ENARF Gaee
3|12 I 0 Densit;
Global Local Canonical £ p"' f:Z kfk_g E gl Y
location location location [\ p Qe g =~ ¢ Color
x o o |Lookup " 5|5
Ry, ty, kTRt Tk
Tri-plane Cat{y(t), {Ry ' Ri}r=2:x}
Cat{y(t), {Ry ' Ri}rezrc} part prob. Time Joint rotation
[Ga Defor I
W Tri-plane
TY, T2, Y% features

deformation

Fig. A. Network details of ENARF and D-ENARF. MConv denotes Modulated Con-
volution [10].

A ENARF Implementation details

A.1 Model Details

Figure A illustrates the learning pipeline of our ENAFR and D-ENAFR mod-
els. The decoder network Gge. is implemented with a modulated convolution as
in [10]. For the ENARF model, G4cc is conditioned on the time input ¢ with
positional encoding (%) to handle time-dependent deformations. Following [13],
we use 10 frequencies in the positional encoding. For the D-ENARF model, ro-
tation matrices are additionally used as input to handle pose-dependent defor-
mations. To reduce the input dimension, we input the relative rotation matrices
for each part to the root part R;. To efficiently learn the deformation field in
our D-ENARF model, additional tri-plane deformation A are learned with a
StyleGANZ2 [10] based generator G a,

A= Ga(Cat{(t),{R 'R} h—2:i }). (1)

Each channel represents the relative transformation from the canonical frame in
pixels for each tri-planes. The learned deformation field is used to deform the

2 A. Noguchi et al.

canonical features to handle the non-rigid deformation for each time and pose.
The deformed tri-plane feature F” is formulated as,

F;;'L/(X) = ny([xw + Agy(X)z, Xy + Agy(X)y, X.]) (2)
Fy;z(x) = Fyo([Xa, Xy + Ayz(X)y, Xz + Ay (x):])
Fg/cz(x) = Fm([xx =+ sz(x)w,xy,xz + sz(x)z}),

where x = [x;,%y,x;]|. Intuitively, (x,,x,) is the 2D projection of x on the
F,, plane, and A,,(x) produces the 2D translation vector for (x,,x,) on the
F,, plane. However, this operation requires two look-up tri-planes learned from
A and F for every 3D location x, which is expensive. Therefore, we make an
approximation of this by first computing the value of the deformed tri-plane F’
at every pixel grid location using Equation 2, then sampling features from F’
using Equation 7 in the main paper. The increased computational cost is thus
proportional to the resolution of F’, which is much smaller than the number of
3D points x.

We used the coarse-to-fine sampling strategy as in [13] to sample the ren-
dering points on camera rays. Instead of using two separate models to predict
points at coarse and fine stages respectively [13], we use a single model to predict
sampled points at both stages. Specifically, for each ray, 48 and 64 points are
sampled at the coarse and fine stages, respectively.

A.2 Efficient Implementation

For efficiency, we introduce a weak shape prior for the part occupancy probability
p* in Section 3.3 of the main paper. Specifically, if a 3D location x§ in the
canonical space is outside of a cube with one side of 2a located at the center
of the part p§, we set p* to 0, namely, p¥ « 0 if max(|x{ — p§|) > a. We
set a to % meter for all parts. This weak shape prior is used for all NARF-
based methods. Since we do not have to compute the intermediate feature fj
(in Equation 7 in the main paper) for the points with part probability py = 0,
the overall computational cost for feature generation is significantly reduced. We
implement this efficiently by (1) gathering the valid (py > 0) canonical positions
x{ and compute intermediate features f; for them, (2) multiplying by pF, and
(3) summing up the feature for each part py * f;, with a scatter_add operation.

A.3 Training Details

We use the Adam [11] optimizer with an equalized learning rate [8] of 0.001.
The learning rate decay rate is set to 0.99995. The ray batch sizes are set to
4096 for ENARF and 512 for NARF. The ENARF model is trained for 100,000
iterations and the NARF model is trained for 200,000 iterations with a batch
size 16. The training takes 15 hours on a single A100 GPU for ENARF and 24
hours for NARF.

ENARF-GAN 3

Novel view Novel pose

Ground Truth ENARF w/MLPsel. w/o sel. Ground Truth ENARF w/ MLP sel. w/o sel.

Fig. B. Ablation study on selector.

B Ablation Study on Selector (Section 4.1)

To show the effectiveness of the tri-plane based selector, we compared our model
with a model without the selector and a model with an MLP based selector. In
the model without a selector, we simply set p* = % In the MLP based selector,
we used a two-layer MLP with a hidden layer dimension of 10 for each part,
as in NARF [14]. The quantitative and qualitative comparisons are provided
in Table 1 in the main paper and Figure B, respectively. The model without
a selector cannot generate clear and sharp images because the feature of any
location to compute the density and color is evenly contributed by all parts.
The MLP based selector helps learn independent parts. However, the generated
images look blurry compared to ours. Moreover, it requires much more GPU
memory and FLOPS for training and testing. In summary, the proposed tri-
plane based selector is superior in terms of both effectiveness and efficiency.

C Ablation Study on View Dependency

Following Efficient NeRF [4], our model does not take the view direction as
input, i.e. the color is not view dependent. We note that this implementation
is inconsistent with the original NeRF [13] model that takes the view direction
as an input. Here, we do an ablation study on the view dependent input in
our model. Specifically, the positional encoding is added to the view direction

4 A. Noguchi et al.

Table A. Quantitative comparison on dynamic scenes.

Novel view

PSNR# SSIM{ LPIPS|

Novel pose
PSNR1 SSIM1 LPIPS]

ENARF
D-ENARF

31.94 0.9655 0.04792
32.93 0.9713 0.03718

29.66 0.953 0.05702
30.06 0.9396 0.05205

ENARF w/ view
D-ENARF w/ view

29.98 0.9603 0.05129
31.05 0.9668 0.04162

28.42 0.9497 0.06005
29.3 0.9563 0.04711

Novel view Novel pose

v

Ground Truth ~ ENARF ENARF D-ENARF D-ENARF Ground Truth ENARF ENARF D-ENARF D-ENARF
w/ view w/ view w/ view w/ view

Fig. C. Ablation study on view direction.

~(d) and additionally used as the input of Gge.. Experimental results indicate
that additional view direction input leads to darker images and degrades the
performance. We thus do not use view direction as input of our models by default.
Quantitative and qualitative comparisons are provided in Table A and Figure C,
respectively.

D Comparison with NeuralActor

In this section, we compare ENARF with another state-of-the-art human im-
age synthesis model NeuralActor [12]. Since the training code of NeuralActor is
not publically available, we trained ENARF and D-ENARF on two sequences
(S1, S2) of the DeepCap dataset [7] following NeuralActor. We then compared
them with the corresponding results reported in the NeuralActor paper. Neu-
ralActor uses richer supervision, such as the ground truth UV texture map of
SMPL mesh for each frame. The qualitative results on novel pose synthesis are
shown in Figure D. Without deformation modeling, ENARF tends to produce
jaggy images and performs the worst due to the enormous non-rigid deforma-

ENARF-GAN 5

33333333334

ENARF D-ENARF Neural Actor ENARF D-ENARF Neural Actor

Fig. D. Qualitative results in novel pose synthesis, compared between ENARF, D-
ENARF, and NeuralActor [12]. The results of NeuralActor are drawn directly from
Figure 4 of the original NeuralActor paper [12]. The results of ENARF and D-ENARF
are generated using similar poses and views as in NeuralActor.

tion in training frames. D-ENARF can alleviate the problem by learning the
deformation field and can produce plausible results. Compared to NeuralActor,
D-ENARF does not generate fine details such as wrinkles in clothing or facial
expressions. Still, this gap is acceptable, given that NeuralActor uses GT SMPL
meshes and textures for training. We cannot reproduce the quantitative evalua-
tion of NeuralActor [12] (in Table 2) because some implementation details, such
as the foreground cropping method, are not publicly available. We thus skip the
quantitative comparison with NeuralActor.

E Implementation Details of ENAFR-GAN

E.1 Bone Region Loss Lpone (Section 3.5)

One obvious positional constraint for the foreground object is that it should
be generated to cover at least the regions of bones defined by the input pose
configuration. This motivates us to propose a bone region loss Lyone on the
foreground mask M to facilitate model training. First, we create a skeletal image
B from an input pose configuration. Examples of B are visualized in Figure E.
The skeletal image B is an image in which each joint and its parent joint are
linked by a straight line of 1-pixel width. The bone region loss Lyone is then
defined to penalize any overlaps between the background region (1 — M) and the

bone regions.
> (1= M)?B
Ebone - Z B . (3)

We show the comparison results of training with or without Lyone in Table B
and Figure F. Although the foreground image quality is comparable, Figure F
shows that the generated images are not well aligned with the input pose without
Lyone. In Table B, we can see that PCKh@0.5 metric becomes worse without
Lbone-

E.2 Training Details of ENARF-GAN

We set the dimension of z,;; and z; to 512, and zgnarr to 256. We use the Adam
optimizer with an equalized learning rate [8] of 0.0004. We set the batch size to

6 A. Noguchi et al.

Fig. E. Examples of bone images.

Table B. Quantitative comparison on generative models. * indicates that the methods
are modified from the cited papers.

[FID] FG-FIDJ Depth] PCKh@0.51

ENARF-GAN 226 21.3 8.8 0.947
ENARF-GAN w/0 Lbone| 24.3 21.0 14.8 0.863

12 and train the model for 300,000 iterations. The training takes 4 days on a
single A100 GPU. In the testing phase, a 128 x128 image is rendered in 80ms
(about 12 fps) using a single A100 GPU.

E.3 Shifting Regularization

To prevent the background generator from synthesizing the foreground object,
we apply shifting regularization [3] for the background generator. We randomly
shift and crop the background images before overlaying foreground images on
them. If the background generator synthesizes the foreground object, the shifted
images can be easily detected by the discriminator D, which encourages the
background generator to focus only on the background. We generate 128 x 256
background images and randomly crop 128 x 128 images.

F Pose Consistency Metric

We follow the evaluation metric in the contemporary work GNARF (2] to evalu-
ate the consistency between the input pose and the pose of the generated image.
Specifically, we use an off-the-shelf 2D keypoint detector [5] pre-trained on the
MPII human pose dataset [1] to detect 2D keypoints in both generated and
real images with the same poses and compare the detected keypoints under the
metric of PCKh@0.5 [1]. We discard keypoints with low detection confidence
(< 0.8) and only compare keypoints that are confident in both generated and
real images.

G Truncation Trick (Section 4.2)

The truncation trick [9] can improve the quality of the images by limiting the
diversity of the generated images. Figure G shows the results of generating im-

ENARF-GAN 7

NARF-GAN w/o Lpone

1
LA
1 |

BG+FG FG Geometry Skeleton BG+FG FG Geometry Skeleton

Fig. F. Ablation study on Lyone. From left to right, generated images, foreground
images, geometry, and foreground images with input skeletons are visualized.

‘\\

BG+FG FG Geometry Skeleton Geometry Skeleton

Fig. G. Truncation trick.

ages with the truncation v for the tri-plane generator Gy, set to 1.0, 0.7, and
0.4. When truncation v is set to 1.0, multiple legs and arms will be generated.
Smaller 1) helps generate more plausible appearance and shapes of the object.

H StyleNARF (Section 4.2)

StyleNARF is a combination of NARF [14] and StyleNeRF [6]. To reduce the
computational complexity, it first generates low-resolution features with NARF
and then upsamples the features to a higher resolution with a CNN-based gen-
erator. Similar to ENARF, StyleNARF can only generate foreground objects, so
a StyleGAN2 based background generator Gy, is used as in ENARF-GAN. First,
we sample latent vectors from a normal distribution, z = (zNARF,zb7zup) ~
N(0,7), where znarr is a latent vector for NARF, zy, is a latent vector for back-
ground, and z,, is a latent vector for the upsampler. Then the NARF model
GNaARF generates low-resolution foreground feature Fy and mask My, and Gy,
generates background feature Fy.

Fy,M; = Gnarr(2eNARF, {6, Bi, tibo=1:x), Fo = Gp(zp). (4)

8 A. Noguchi et al.

The foreground and background are combined using the generated foreground
mask My at low resolution.

F:Ff+Fb*(1fo). (5)

The upsampler G, upsamples the feature F based on the latent vector z,;, and
generates the final output C.

C = Gup(F,zyp). (6)
All layers are implemented with Modulated Convolution [10].

I Datasets

We use images at resolution 128 x 128 for GAN training.

I.1 SURREAL

We crop the first frame of all videos to 180 x 180 and resize them to 128 x 128
so that the pelvis joint is centered. 68033 images are obtained.

1.2 AISTH+

The images are cropped to 600 x 600 so that the pelvis joint is centered and
then resized to 128 x 128. We sample 3000 frames for each subject, resulting in
90000 images in total.

1.3 MSCOCO

First, we select the persons whose entire body is almost visible according to the
2D keypoint annotations in MSCOCO. Each selected person is cropped by a
square rectangle that tightly encloses the person and it is resized to 128 x 128.
The number of collected samples is 38727.

J Pose Distribution

Two pose distributions are used in our experiments. One is the CMU pose distri-
bution, which consists of 390k poses collected in the CMU Panoptic dataset. We
follow the pose pre-processing steps in the SURREAL dataset, where the dis-
tance between the person and the camera is randomly distributed in a normal
distribution of mean 7 meters and variance 1 meter. The pose rotation around
the z-axis is uniformly distributed between 0 and 2.

Another pose distribution used in our experiments is a random pose distribu-
tion. First, a multivariate normal distribution is fitted to the angle distribution
of each joint under the 390k pose samples of the CMU Panoptic dataset. Then,
poses are randomly sampled from the learned multivariate normal distribution
and randomly rotated so that the pelvis joint is directly above the medial points
of the right and left plantar feet.

ENARF-GAN 9

References

10.

11.

12.

13.

14.

. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation:

New benchmark and state of the art analysis. In: CVPR (2014)

Bergman, A.W., Kellnhofer, P., Wang, Y., Chan, E.R., Lindell, D.B., Wetzstein,
G.: Generative neural articulated radiance fields. arXiv preprint arXiv:2206.14314
(2022)

Bielski, A., Favaro, P.: Emergence of object segmentation in perturbed generative
models. In: NeurIPS (2019)

Chan, E.R., Lin, C.Z., Chan, M.A., Nagano, K., Pan, B., De Mello, S., Gallo, O.,
Guibas, L., Tremblay, J., Khamis, S., et al.: Efficient geometry-aware 3D generative
adversarial networks. In: CVPR (2022)

Contributors, M.: Openmmlab pose estimation toolbox and benchmark.
https://github.com/open-mmlab/mmpose (2020)

Gu, J., Liu, L., Wang, P., Theobalt, C.: StyleNeRF: A style-based 3D aware gen-
erator for high-resolution image synthesis. In: ICLR (2022)

Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Deepcap:
Monocular human performance capture using weak supervision. In: CVPR (2020)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for im-
proved quality, stability, and variation. In: ICLR (2018)

. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative

adversarial networks. In: CVPR (2019)

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing
and improving the image quality of stylegan. In: CVPR (2020)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

Liu, L., Habermann, M., Rudnev, V., Sarkar, K., Gu, J., Theobalt, C.: Neural
actor: Neural free-view synthesis of human actors with pose control. In: ACM
SIGGRAPH Asia (2021)

Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In:
ECCV (2020)

Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In:
ICCV (2021)

