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Abstract. We propose an unsupervised method for 3D geometry-aware
representation learning of articulated objects, in which no image-pose
pairs or foreground masks are used for training. Though photorealistic
images of articulated objects can be rendered with explicit pose con-
trol through existing 3D neural representations, these methods require
ground truth 3D pose and foreground masks for training, which are ex-
pensive to obtain. We obviate this need by learning the representations
with GAN training. The generator is trained to produce realistic images
of articulated objects from random poses and latent vectors by adver-
sarial training. To avoid a high computational cost for GAN training, we
propose an efficient neural representation for articulated objects based
on tri-planes and then present a GAN-based framework for its unsuper-
vised training. Experiments demonstrate the efficiency of our method
and show that GAN-based training enables the learning of controllable
3D representations without paired supervision.

Keywords: image synthesis, articulated objects, neural radiance fields,
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1 Introduction

3D models that allow free control over the pose and appearance of articulated
objects are essential in various applications, including computer games, media
content creation, and augmented/virtual reality. In early work, articulated ob-
jects were typically represented by explicit models such as skinned meshes. More
recently, the success of learned implicit representations such as neural radiance
fields (NeRF) [40] for rendering static 3D scenes has led to extensions for model-
ing dynamic scenes and articulated objects. Much of this attention has focused
on the photorealistic rendering of humans, from novel viewpoints and with con-
trollable poses, by learning from images and videos.

Existing methods for learning explicitly pose-controllable articulated repre-
sentations, however, require much supervision, such as videos with 3D pose/mesh
annotation and a mask for each frame. Preparing such data involves tremendous
annotation costs; thus, reducing annotation is very important. In this paper, we
propose a novel unsupervised learning framework for 3D pose-aware generative
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Fig. 1. Our ENARF-GAN is a geometry-aware, 3D-consistent image generation model
that allows independent control of viewpoint, object pose, and appearance information.
It is learned from unlabeled images and a prior distribution on object pose.

models of articulated objects, which are learned only from unlabeled images of
objects sharing the same structure and a pose prior distribution of the objects.

We exploit recent advances in 3D-aware GAN [56, 9, 44, 19, 8] for unsuper-
vised learning of the articulated representations. They learn 3D-aware image
generation models from images without supervision, such as viewpoints or 3D
shapes. The generator is based on NeRF [40] and is optimized with a GAN
objective to generate realistic images from randomly sampled viewpoints and
latent vectors from a prior distribution defined before training. As a result, the
generator learns to generate 3D-consistent images without any supervision. We
employ the idea for articulated objects by defining a pose prior distribution for
the target object and optimizing the GAN objective on randomly generated
images from random poses and latent variables. It becomes possible to learn a
generative model with free control of poses. We demonstrate this approach by
modeling the pose prior as a skeletal distribution [47, 59], while noting that other
models like meshes [53, 52] may bring potential performance benefits.

However, the direct application of existing neural articulated representations
to GANs is not computationally practical. While NeRF can produce high-quality
images, its processing is expensive because it requires network inference for every
point in space. Some methods [44, 19] reduce computational cost by volume
rendering at low resolution followed by 2D CNN based upsampling. Although
this technique achieves high-resolution images with real-time inference speed, it
is not geometry-aware (i.e., the surface mesh cannot be extracted). Recently, a
method which we call Efficient NeRF [8] overcomes the problem. The method
is based on an efficient tri-plane based neural representation and GAN training
on it. Thanks to the computational efficiency, it can produce relatively high-
resolution (128× 128) images with volumetric rendering. We extend the tri-plane
representation to articulated objects for efficient GAN training. An overview of
the method is visualized in Figure 1. The contributions of this work are as follows:

– We propose a novel efficient neural representation for articulated objects
based on an efficient tri-plane representation.
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– We propose an efficient implementation of deformation fields using tri-planes
for dynamic scene training, achieving 4 times faster rendering than NARF [47]
with comparable or better performance.

– We propose a novel GAN framework to learn articulated representations
without using any 3D pose or mask annotation for each image. The control-
lable 3D representation can be learned from real unlabeled images.

2 Related Work

Articulated 3D Representations. The traditional approach for modeling
pose-controllable 3D representations of articulated objects is by skinned mesh [25,
26, 31], where each vertex of the mesh is deformed according to the skeletal pose.
Several parametric skinned mesh models have been developed specifically for
humans and animals [37, 23, 51, 48, 73]. For humans, the skinned multi-person
linear model (SMPL) [37] is commonly used. However, these representations
can only handle tight surfaces with no clothing and cannot handle non-rigid or
topology-changing objects such as clothing or hair. Some work alleviates the
problem by deforming the mesh surface or using a detailed 3D body scan [1, 20].
Recently, implicit 3D shape representations have achieved state-of-the-art per-
formance in pose-conditioned shape reconstruction. These methods learn neural
occupancy/indicator functions [11, 39] or signed distance functions [49] of ar-
ticulated objects [13, 6, 61, 10]. Photorealistic rendering of articulated objects,
especially for humans, is also achieved with 3D implicit representations [52, 47,
59, 2, 65, 35]. However, all these models require ground truth 3D pose and/or
object shape for training. Very recently, methods have been proposed to repro-
duce the 3D shape and motion of objects from video data without using 3D
shape and pose annotation [67, 68, 46]. However, they either do not allow free
control of poses or are limited to optimizing for a single object. An SMPL mesh-
based generative model [18] and image-to-image translation methods [14, 57, 7,
36] can learn pose controllable image synthesis models for humans. However, the
rendering process is completely in 2D and thus is not geometry-aware.
Implicit 3D representations. Implicit 3D representations are memory effi-
cient, continuous, and topology free. They have achieved the state-of-the art in
learning 3D shape [11, 39, 49], static [58, 40, 4] and dynamic scenes [54, 33, 50],
articulated objects [53, 13, 6, 61, 10, 52, 47, 59, 2, 65, 35], and image synthesis [56,
9]. Although early works rely on ground truth 3D geometry for training [11, 39,
49], developments in differentiable rendering have enabled learning of networks
from only photometric reconstruction losses [58, 69, 40]. In particular, neural ra-
diance fields (NeRF) [40] applied volumetric rendering on implicit color and
density fields, achieving photorealistic novel view synthesis of complex static
scenes using multi-view posed images. Dynamic NeRF [54, 33, 50] extends NeRF
to dynamic scenes, but these methods just reenact the motion in the scene
and cannot repose objects based on their structure. Recently, articulated repre-
sentations based on NeRF have been proposed [53, 47, 59, 52, 65, 66, 35]. These
methods can render images conditioned on pose configurations. However, all of
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them require ground truth skeletal poses, SMPL meshes, or foreground masks
for training, which makes them unsuitable for in-the-wild images.

Another NeRF improvement is the reduction of computational complexity:
NeRF requires forward computation of MLPs to compute color and density for
every point in 3D. Thus, the cost of rendering is very high. Fast NeRF algo-
rithms [16, 70, 55, 41] reduce the computational complexity of neural networks
by creating caches or using explicit representations. However, these methods can
only be trained on a single static scene. Very recently, a hybrid explicit and im-
plicit representation was proposed [8]. In this representation, the feature field is
constructed using a memory-efficient explicit representation called a tri-plane,
and color and density are decoded using a lightweight MLP. This method can
render images at low cost and is well suited for image generation models.

In this work, we propose an unsupervised learning framework for articulated
objects. We extend tri-planes to articulated objects for efficient training.
Generative 3D-aware image synthesis Advances in generative adversarial
networks (GANs) [17] have made it possible to generate high-resolution, pho-
torealistic images [29, 30, 28]. In recent years, many 3D-aware image genera-
tion models have been proposed by combining GANs with 3D generators that
use meshes [60], voxels [64, 72, 15, 22, 42, 43], depth [45], or implicit representa-
tions [56, 9, 44, 19, 8]. These methods can learn 3D-aware generators without 3D
supervision. Among these, image generation methods using implicit functions,
thanks to their continuous and topology-free properties, have been successful in
producing 3D-consistent and high-quality images. However, fully implicit mod-
els [56, 9] are computationally expensive, making the training of GANs ineffi-
cient. Therefore, several innovations have been proposed to reduce the rendering
cost of generators. Neural rendering-based methods [44, 19] reduce computation
by performing volumetric rendering at low resolution and upsampling the ren-
dered feature images using a 2D CNN. Though this enables the generation of
high-resolution images at a faster rate, 2D upsampling does not consider 3D con-
sistency and cannot generate detailed 3D geometry. Very recently, a hybrid of
explicit and implicit methods [8] has been developed for 3d geometry-aware im-
age generation. Instead of using a coordinate-based implicit representation, this
method uses tri-planes, which are explicit 3D feature representations, to reduce
the number of forward computations of the network and to achieve volumetric
rendering at high resolution.

The existing research is specific to scenes of static objects or objects that
exist independently of each other, and do not allow free control of the skeletal
pose of the generated object. Therefore, we propose a novel GAN framework for
articulated objects.

3 Method

Recent advances in implicit neural rendering [59, 47] have made it possible to
generate 3D-aware pose-controllable images of articulated objects from images
with accurate 3D pose and foreground mask annotations. However, training such
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models from only in-the-wild images remains challenging since accurate 3D pose
annotations are generally difficult to obtain for them. In the following, we first
briefly review Neural Articulated Radiance Field (NARF) [47], then propose
an adversarial-based framework, named ENARF-GAN, to efficiently train the
NARF model without any paired image-pose and foreground mask annotations.

3.1 Neural Articulated Radiance Field Revisited

NARF is an implicit 3D representation for articulated objects. It takes a kine-
matic 3D pose configuration of an articulated object o = {lk, Rk, tk}k=1:K as
input and predicts the color and the density of any 3D location x, where lk is
the length of the kth part, and Rk and tk are its rotation and translation matri-
ces, respectively. Given the pose configuration o, NARF first transforms a global
3D position x into several local coordinate systems defined by the rigid parts of
the articulated object. Specifically, the transformed local location xl

k for the kth

part is computed as xl
k = (Rk)−1(x− tk) for k ∈ {1, ...,K}.

NARF first trains an extra lightweight selector S in the local space to de-
cide which part a global 3D location x belongs to. Specifically, it outputs the
probability pk of x belonging to the kth part. Then NARF computes color c and
density σ at the location x from a concatenation of local locations masked by
the corresponding part probability pk.

c, σ = G(Cat({γ(xl
k) ∗ pk}k=1:K)), (1)

where γ is a positional encoding [40], Cat is the concatenation operation, and G
is an MLP network. The RGB color C and foreground mask value M for each
pixel are generated by volumetric rendering [40]. The network is trained with a

reconstruction loss between the generated and ground truth color Ĉ and mask
M̂,

Lsupervised =
∑

r∈R

(
||C− Ĉ||22 + ||M− M̂||22

)
, (2)

where R is the set of rays in each batch. Please refer to the original NARF
paper [47] for more details.

3.2 Unsupervised Learning by Adversarial Training

In this work, we propose a method for efficient and unsupervised training of
the NARF model from unposed image collections. Without loss of generality,
we consider humans as the articulated objects here. To this end, we first de-
fine a human pose distribution O. For one training iteration, our NARF based
generator G takes a latent vector z and a sampled human pose instance o from
O as input and predicts a synthesized image C. Following standard adversarial
training of GANs, a discriminator D is used to distinguish the synthesized image
C from real ones C̃. Formally, the training objectives of the generator LG

adv and
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Fig. 2. Overview of (a) Efficient NARF (ENARF) and (b) GAN training.

discriminator LD
adv are defined as follows,

LG
adv = −E [log(D(G(z, o)))] ,LD

adv = −E
[
log(D(C̃)) + log(1−D(G(z, o)))

]
.

(3)
An overview of this method is illustrated in Figure 2 (b).

However, this training would be computationally expensive. The rendering
cost of NARF is heavy because computation is performed for many 3D locations
in the viewed space. Even though in supervised training, the time and memory
cost of computing the reconstruction loss could be reduced by evaluating it over
just a small proportion of the pixels [47], the adversarial loss in Equation 3
requires the generation of the full image for evaluation. As a result, the amount
of computation becomes impractical.

In the following, we propose a series of changes in feature computation and
the selector to address this issue. Note that these changes not only enable the
GAN training but also greatly improve the efficiency of the original NARF.

3.3 Efficiency Improvements on NARF

Recently, Chan et al. [8] proposed a hybrid explicit-implicit 3D-aware network
that uses a memory-efficient tri-plane representation to explicitly store features
on axis-aligned planes. With this representation, the efficiency of feature extrac-
tion for a 3D location is greatly improved. Instead of forwarding all the sampled
3D points through the network, the intermediate features of arbitrary 3D points
can be obtained via simple lookups on the tri-planes. The tri-plane representation
can be more efficiently generated with Convolutional Neural Networks (CNNs)
instead of MLPs. The intermediate features of 3D points are then transformed
into the color and density using a lightweight decoder MLP. The decoder signif-
icantly increases the non-linearity between features at different positions, thus
greatly enhancing the expressiveness of the model.

Here, we adapt the tri-plane representation to NARF for more efficient train-
ing. Similar to [8], we first divide the original NARF network G into an inter-
mediate feature generator (the first linear layer of G) W and a decoder network
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Gdec. Then, Equation 1 is rewritten as follows.

c, σ = Gdec(f) , where f = W (Cat({γ(xl
k) ∗ pk|k ∈ {1, ...,K}})), (4)

where f is an intermediate feature vector of input 3D location x. However, re-
implementing the feature generator W to produce the tri-plane representation is
not straightforward because its input, a weighted concatenation of xl

k, does not
form a valid location in a specific 3D space. We make two important changes to
address this issue. First, we decompose W into K sub-matrices {Wk}, one for
each part, where each one takes the corresponding local position xl

k as input and
outputs an intermediate feature for the kth part. Then, the intermediate feature
in Equation 4 can be equivalently rewritten as follows.

f =

K∑

k=1

pk ∗ fk , where fk = Wk(γ(x
l
k)), (5)

where fk is a feature generated in the local coordinate system of the kth part.
Now, Wk(γ(x

l
k)) can be directly re-implemented by tri-planes F . However, the

computational complexity of this implementation is still proportional to K. In
order to train a single tri-plane for all parts, the second change is to further
transform the local coordinates xl

k into a canonical space defined by a canonical
pose oc, similar to Animatable NeRF [52].

xc
k = Rc

kx
l
k + tck = Rc

k(R
k)−1(x− tk) + tck, (6)

where Rc
k and tck are the rotation and translation matrices of the canonical

pose. Intuitively, xc
k is the corresponding point location of x transformed into

the canonical space when x is considered to belong to the kth part. Finally, the
tri-plane feature F is learned in the canonical space. The feature extraction for
location x is achieved by retrieving the 32-dimensional feature vector fk on the
tri-plane F at xc

k for all parts, then taking a weighted sum of those features as
in Equation 5,

f =

K∑

k=1

pk ∗ fk , where fk =
∑

ij∈{xy,yz,xz}

Fij(x
c
k). (7)

F∗∗(a) is a retrieved feature vector from each axis-aligned plane at location a.
We estimate the RGB color c and density σ from f using a lightweight decoder

network Gdec consisting of three FC layers with a hidden dimension of 64 and
output dimension of 4. We apply volume rendering [40] on the color and density
to output an RGB image C and a foreground mask M.

Although we efficiently parameterize the intermediate features, the probabil-
ity pk needs to be computed for every 3D point and every part. In the original
NARF, though lightweight MLPs are used to estimate the probabilities, they
are still computationally infeasible.

Therefore, we propose an efficient selector network using tri-planes. Since pk

is used to mask out features of irrelevant parts, this probability can be a rough
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approximation of the shape of each part. Thus the tri-plane representation is ex-
pressive enough to model the probability. We useK separate 1-channel tri-planes
to represent P k, the part probability projected to each axis-aligned plane. We re-
trieve the three probability values (pkxy, p

k
xz, p

k
yz) = (P k

xy(x
c
k), P

k
xz(x

c
k), P

k
yz(x

c
k))

of the kth part by querying the 3D location in the canonical space xc
k. The prob-

ability pk that xc
k belongs to the kth part is approximated as pk = pkxyp

k
xzp

k
yz.

In this way, the features F and part probabilities P are modeled efficiently
with a single tri-plane representation. The tri-plane is represented by a (32 +
K)×3 channel image. The first 96 channels represent the tri-plane features in the
canonical space. The remaining 3K channels represent the tri-plane probability
maps for each of the K parts. We call this approach Efficient NARF, or ENARF.

3.4 GAN

To condition the generator on latent vectors, we utilize a StyleGAN2 [30] based
generator to produce tri-plane features. We condition each layer of the proposed
ENARF by the latent vector with a modulated convolution [30]. Since the pro-
posed tri-plane based generator can only represent the foreground object, we use
an additional StyleGAN2 based generator for the background.

We randomly sample latent vectors for our tri-plane generator and back-
ground generator: z = (ztri, zENARF, zb) ∼ N (0, I), where ztri, zENARF, and zb
are latent vectors for the tri-plane generator, ENARF, and background genera-
tor, respectively. The tri-plane generator Gtri generates tri-plane feature F and
part probability P from randomly sampled ztri and bone length {lk}k=1:K . Gtri

takes lk as inputs to account for the diversity of bone lengths.

F, P = Gtri(ztri, {lk}k=1:K) (8)

The ENARF based foreground generator GENARF generates the foreground RGB
image Cf and mask Mf from the generated tri-planes, and the background
generator Gb generates background RGB image Cb.

Cf ,Mf = GENARF(zENARF, {lk, Rk, tk}k=1:K),Cb = Gb(zb) (9)

The final output RGB image is C = Cf +Cb ∗ (1−Mf ), which is a composite
of Cf and Cb. To handle the diversity of bone lengths, we replace Equation 6

with one normalized by the length of the bone: xc
k =

lck
lk
Rc

kxk + tck, where lck is

the bone length of the kth part in the canonical space.
We optimize these generator networks with GAN training. We use a bone

loss in addition to an adversarial loss on images, R1 regularization on the dis-
criminator [38], and L2 regularization on the tri-planes. The bone loss ensures
that an object is generated in the foreground. Based on the input pose of the
object, a skeletal image B is created, where pixels with skeletons are 1 and others
are 0, and the generated mask M at pixels with skeletons is made close to 1:

Lbone =
∑

r∈R(1−M)2B∑
r∈R B . Additional details are provided in the supplement. The

final loss is the linear combination of these losses.
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3.5 Dynamic Scene Overfitting

Since ENARF is an improved version of NARF, we can directly use it for single
dynamic scene overfitting. For training, we use the ground truth 3D pose and
foreground mask of each frame and optimize the reconstruction loss in Equa-
tion 2.

If the object shape is strictly determined by the poses that comprise the kine-
matic motion, we can use the same tri-plane features for the entire sequence and
directly optimize them. However, real-world objects have time or pose-dependent
non-rigid deformation such as clothing and facial expression change in a single
sequence. Therefore, the tri-plane features should change depending on time
and pose. We use a technique based on deformation fields [54, 50] proposed in
time-dependent NeRF, also known as Dynamic NeRF. Deformation field based
methods learn a mapping network from observation space to canonical space and
learn the NeRF in the canonical frame. Since learning the deformation field with
an MLP is expensive, we also approximate it with tri-planes. We approximate
the deformation in 3D space by independent 2D deformations in each tri-plane.
First, a StyleGAN2 [30] generator takes positionally encoded time t and a ro-
tation matrix of each part Rk and generates 6-channel images representing the
relative 2D deformation from the canonical space of each tri-plane feature. We
deform the tri-plane feature based on the generated deformation. Please refer to
the supplement for more details. We use constant tri-plane probabilities P for
all frames since the object shares the same coarse part shape throughout the
entire sequence. The remaining networks are the same. We refer to this method
as D-ENARF.

4 Experiments

Our experimental results are presented in two parts. First, in Section 4.1, we com-
pare the proposed Efficient NARF (ENARF) with the state-of-the-art methods
[47, 52] in terms of both efficiency and effectiveness, and we conduct ablation
studies on the deformation modeling and the design choices for the selector.
Second, in Section 4.2, we present our results of using adversarial training on
ENARF, namely, ENARF-GAN, and compare it with baselines. Then, we discuss
the effectiveness of the pose prior and the generalization ability of ENARF-GAN.

4.1 Training on a Dynamic Scene

Following the training setting in Animatable NeRF [52], we train our ENARF
model on synchronized multi-view videos of a single moving articulated object.
The ZJU mocap dataset [53] consisting of three subjects (313, 315, 386) is used
for training. We use the same pre-processed data provided by the official im-
plementation of Animatable NeRF. All images are resized to 512× 512. We use
4 views and the first 80% of the frames for training, and the remaining views
or frames for testing. In this setting, the ground truth camera and articulated
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Table 1. Quantitative comparison on dynamic scenes.

Cost Novel view Novel pose
#Memory #FLOPS Time(s) PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Animatable NeRF [52] - - 0.42 28.28 0.9484 0.05818 29.09 0.9507 0.05706
NARF [47]. 283.9GB 15.9T 2.17 30.62 0.9625 0.05228 29.51 0.959 0.05208

ENARF 27.0GB 71.7G 0.47 31.94 0.9655 0.04792 29.66 0.953 0.05702
D-ENARF 27.6GB 354G 0.49 32.93 0.9713 0.03718 30.06 0.9396 0.05205
ENARF w/o selector 23.0GB 70.2G 0.43 29.16 0.9493 0.07234 27.9 0.9377 0.08316
ENARF w/ MLP selector 83.2GB 337G 1.13 32.27 0.9684 0.04633 29.74 0.9573 0.05228

object poses, as well as the ground truth foreground mask, are given for each
frame. More implementation details can be found in the supplement.

First, we compare our method with the state-of-the-art supervised methods
NARF [47] and Animatable NeRF [52]. Our comparison with Neural Actor [35]
is provided in the supplement. Note that our method and NARF [47] take ground
truth kinematic pose parameters (joint angles and bone lengths) as inputs, while
Animatable NeRF needs the ground truth SMPL mesh parameters. In addition,
Animatable NeRF requires additional training on novel poses to render novel-
pose images, which is not necessary for our model.

Table 1 shows the quantitative results. To compare the efficiency between
models, we examine the GPU memory, FLOPS, and the running time used to
render an entire image of resolution 512×512 on a single A100 GPU as evaluation
metrics. To compare the quality of synthesized images under novel view and novel
pose settings, PSNR, SSIM [63], and LPIPS [71] are used as evaluation metrics.
Table 1 shows that the proposed Efficient NARF achieves competitive or even
better performance compared to existing methods with far fewer FLOPS and 4.6
times the speed of the original NARF. Although the runtime of ENARF is a bit
slower than Animatable NeRF (0.05s), its performance is superior under both
novel view and novel pose settings. In addition, it does not need extra training on
novel poses. Our dynamic model D-ENARF further improves the performance
of ENARF with little increased overhead in inference time, and outperforms the
state-of-the-arts Animatable NeRF and NARF by a large margin. Qualitative
results for novel view and pose synthesis are shown in Figure 3. ENARF produces
much sharper images than NARF due to the more efficient explicit–implicit
tri-plane representation. D-ENARF, which utilizes deformation fields, further
improves the rendering quality. In summary, the proposed D-ENARF method
achieves better performance in both image quality and computational efficiency.

Ablation Study To evaluate the effectiveness of the tri-plane based selector,
we compare our method against models using an MLP selector or without a
selector. A quantitative comparison is provided in Table 1, and a qualitative
comparison is provided in the supplement. Although an MLP based selector
improves the metrics a bit, it results in a significant increase in testing time. In
contrast, the model without a selector is unable to learn clean/sharp part shapes
and textures, because a 3D location will inappropriately be affected by all parts
without a selector. These results indicate that our tri-plane based selector is
efficient and effective.
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NARF ENARF D-ENARF

Fig. 3. Qualitative comparison of novel view and pose synthesis.

4.2 Unsupervised Learning with GAN

In this section, we train the proposed efficient NARF using GAN objectives
without any image-pose pairs or mask annotations.
Comparison with Baselines Since this is the first work to learn an articu-
lated representation without image-pose pairs or mesh shape priors, no exact
competitor exists. We thus compare our method against two baselines. The first
is a supervised baseline called ENARF-VAE, inspired by the original NARF [47].
Here, a ResNet50 [21] based encoder estimates the latent vectors z from images,
and the efficient NARF based decoder decodes the original images from esti-
mated latent vectors z and ground truth pose configurations o. These networks
are trained with the reconstruction loss defined in Equation 2 and the KL diver-
gence loss on the latent vector z. Following [47], ENARF-VAE is trained with
images with a black background. The second model is called StyleNARF, which
is a combination of the original NARF and the state-of-the-art high-resolution
3D-aware image generation model called StyleNeRF [19]. To reduce the com-
putational cost, the original NARF first generates low-resolution features using
volumetric rendering. Subsequently, a 2D CNN-based network upsamples them
into final images. Additional details are provided in the supplement. Please note
that ENARF-VAE is a supervised method and cannot handle the background,
and StyleNARF loses 3D consistency and thus cannot generate high-resolution
geometry.

We use the SURREAL dataset [62] for comparison. It is a synthetic human
image dataset with a resolution of 128 × 128. Dataset details are given in the
supplement. For the pose prior, we use the ground truth pose distribution of
the training dataset, where we randomly sample poses from the entire dataset.
Please note that we do not use image-pose pairs for these unsupervised methods.

Quantitative results are shown in Table 2. We measure image quality with
the Fréchet Inception Distance (FID) [24]. To better evaluate the quality of fore-
ground, we use an extra metric called FG-FID that replaces the background with
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Table 2. Quantitative comparison on generative models. * indicates that the methods
are modified from the cited papers.

FID↓ FG-FID↓ Depth↓ PCKh@0.5 ↑
ENARF-VAE [47]*. - 63.0 3.2 0.984
StyleNARF [19]*. 20.8 - 16.5 0.924

ENARF-GAN 22.6 21.3 8.8 0.947

ENARF-GAN CMU pri. 24.2 25.6 12.8 0.915
ENARF-GAN rand. pri. 25.9 37.0 13.8 0.887

w/ trunc. ψ = 0.4 26.5 24.1 8.0 0.884

BG+FG FG Geometry View Pose Latents BG+FG FG Geometry View Pose Latents

Fig. 4. Learned geometry and disentangled representations on the SURREAL dataset
by ENARF-GAN. For each of the generated results, the leftmost three columns show
the generated images with background, foreground, and corresponding geometry. The
rightmost three images show the results of changing only the viewpoint, object pose,
and latent variables for the same results, respectively.

black color, using the generated or ground truth mask. We measure depth plau-
sibility by comparing the real and generated depth map. Although there is no
ground truth depth for the generated images, the depth generated from a pose
would have a similar depth to the real depth that arises from the same pose. We
compare the L2 norm between the inverse depth generated from poses sampled
from the dataset and the real inverse depth of them. Finally, we measure the
correspondence between pose and appearance following the contemporary work
named GNARF [5]. We apply an off-the-shelf 2D human keypoint estimator [12]
to both generated and real images with the same poses and compute the Per-
centage of Correct Keypoints (PCK) between them, which is commonly used
for evaluating 2D pose estimators. We report the averaged PCKh@0.5 metric [3]
for all keypoints. Details are provided in the supplement. Qualitative results are
shown in Figure 5. Not surprisingly, ENARF-VAE produces the most plausi-
ble depth/geometry and learns the most accurate pose conditioning among the
three since it uses image-pose pairs for supervised training. However, compared
to styleNARF, its FID is worse and the images lack photorealism. styleNARF
achieves the best FID among the three, thanks to the effective CNN renderer.
However, it cannot explicitly render the foreground only or generate accurate
geometry of the generated images. In contrast, our method performs volumet-
ric rendering at the output resolution, and the generated geometry perfectly
matches the generated foreground image.

Using Different Pose Distribution Obtaining a ground truth pose distribu-
tion of the training images is not feasible for in-the-wild images or new categories.
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Fig. 5. Qualitative comparison on generative models.

Thus, we train our model with a pose distribution different from the training
images. Here, we consider two pose prior distributions. The first uses poses from
CMU Panoptic [27] as a prior, which we call the CMU prior. During training,
we randomly sample poses from the entire dataset. In addition, to show that our
method works without collecting actual human motion capture data, we also
create a much simpler pose prior. We fit a multi-variate Gaussian distribution
on each joint angle of the CMU Panoptic dataset, and we use randomly sampled
poses from the distribution for training. Each Gaussian distribution only defines
the rotation angle of each part, which can be easily constructed for novel objects.
We call this the random prior.

Quantitative and qualitative results are shown in Table 2 and Figure 5.
We can confirm that even when using the CMU prior, our model learns pose-
controllable 3D representations with just a slight sacrifice in image quality. When
using the random prior, the plausibility of the generated images and the quality
of the generated geometry are worse. This may be because the distribution of
the random prior is so far from the distribution of poses in the dataset that
the learned space of latent vectors too often falls outside the distribution of the
actual data. Therefore, we used the truncation trick [29] to restrict the diversity
of the latent space, and the results are shown in the bottom row of Table 2.
By using the truncation trick, even with a simple prior, we can eliminate latent
variables outside the distribution and improve the quality of the generated im-
ages and geometry. Further experimental results on truncation are given in the
supplement.
Additional Results on Real Images To show the generalization ability of
the proposed framework, we train our model on two real image datasets, namely
AIST++ [32] and MSCOCO [34]. AIST++ is a dataset of dancing persons with
relatively simple backgrounds. We use the ground truth pose distribution for
training. MSCOCO is a large scale in-the-wild image dataset. We choose images
capturing roughly the whole human body and crop them around the persons.
Since 3D pose annotations are not available for MSCOCO, we use poses in CMU
Panoptic as the pose prior. Note that we do not use any image-pose or mask
supervisions for training. Qualitative results are shown in Figure 6. Experimental
results with AIST++, which has a simple background, show that it is possible to
generate detailed geometry and images with independent control of viewpoint,
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BG+FG FG Geometry View Pose Latents BG+FG FG Geometry View Pose

AIST++

MSCOCO

Latents

Fig. 6. Qualitative results on AIST++ and MSCOCO.

pose, and appearance. For MSCOCO, two successful and two unsuccessful results
are shown in Figure 6. MSCOCO is a very challenging dataset because of the
complex background, the lack of clear separation between foreground objects
and background, and the many occlusions. Although our model does not always
produce plausible results, it is possible to generate geometry and control each
element independently. As an initial attempt, the results are promising.

5 Conclusion

In this work, we propose a novel unsupervised learning framework for 3D geometry-
aware articulated representations. We showed that our framework is able to learn
representations with controllable viewpoint and pose. We first propose a compu-
tationally efficient neural 3D representation for articulated objects by adapting
the tri-plane representation to NARF, then show it can be trained with GAN
objectives without using ground truth image-pose pairs or mask supervision.
However, the resolution and the quality of the generated images are still limited
compared to recent NeRF-based GAN methods; meanwhile, we assume that a
prior distribution of the object’s pose is available, which may not be easily ob-
tained for other object categories. Future work includes incorporating the neu-
ral rendering techniques proposed in 3D-aware GANs to generate photorealistic
high-quality images while preserving the 3D consistency and estimating the pose
prior distribution directly from the training data.
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