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Abstract. To meet the needs of practical applications, current deep
learning-based methods focus on using a single model to handle JPEG
images with different compression qualities, while few of them consider
the auxiliary effects of the compression quality information. Recently,
several methods estimate quality factors in a supervised learning man-
ner to guide their network to remove JPEG artifacts. However, they
may fail to estimate unseen compression types, affecting the subsequent
restoration performance. To remedy this issue, we propose an unsuper-
vised compression quality representation learning strategy for the blind
JPEG artifacts removal. Specifically, we utilize contrastive learning to
obtain discriminative compression quality representations in the latent
feature space. Then, to fully exploit the learned representations, we de-
sign a compression-guided blind JPEG artifacts removal network, which
integrates the discriminative compression quality representations in an
information lossless way. In this way, our single network can flexibly han-
dle various JPEG compression images. Experiments demonstrate that
our method can adapt to different compression qualities to obtain dis-
criminative representations and outperform state-of-art methods.

Keywords: JPEG Artifacts Removal, Unsupervised Representation Learn-
ing, Contrastive Learning, Image Restoration

1 Introduction

Due to the explosive growth of images and videos on the website, lossy compres-
sion has become a widely adopted strategy to save transmission bandwidth and
storage. JPEG compression [1], which uses discrete cosine transform (DCT), is
a popular compression standard due to the ease and speed of its application.
First, the JPEG compression divides the image into 8×8 blocks. Then a discrete
cosine transform is implemented to obtain DCT coefficients. After the critical
lossy step of quantizing and rounding the coefficients on each block, the informa-
tion is lost, and complex artifacts inevitably appear in the compressed images.
These artifacts not only cause visual discomfort but also lead to the performance
degradation of subsequent computer vision tasks.
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Fig. 1: An illustration of the other supervised method with our unsupervised
compression quality representation learning method. In our method, the same
color represents the same compression quality. We use the t-SNE [3] approach
to cluster the output compression quality representations.

To mitigate the impact of JPEG compression artifacts, many methods have
been proposed. Generally, these methods can be roughly divided into model-
based methods and deep learning (DL)-based methods. Model-based methods
are primarily based on the filter design [2], they are usually limited to solving
certain artifacts (e.g., blocking and ringing artifacts). In recent years, thanks
to the rapid development of deep learning network, which has powerful non-
linear mapping capabilities, DL-based methods achieve better performance and
dominate the field of JPEG artifacts removal.

However, most of the existing DL-based methods [4–7] train a specific net-
work for each compression quality, which significantly limits the practicability
of the network. Several blind JPEG compression artifacts removal methods [8,9]
employ a single model to handle different compression qualities. However, these
methods ignore the compression quality, and thus cannot explicitly reflect the
degradation degree. Parts of the methods take into account compression qual-
ities, but they all have certain shortcomings. For example, DCT-based meth-
ods [10, 11] use a quantization table to guide the restoration of the image, but
when the image is compressed multiple times, the quantization table informa-
tion is incomplete. Wang et al. [12] utilize the ranker of image compression
qualities but treat them to design loss functions instead of adding them into the
JPEG artifacts removal network, which cannot fully exploit the distinguishable
compression quality information. Jiang et al. [13] predicte quality factors in a
supervised way which requires label quality factors. But the supervised manner
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is difficult to generalize to the unseen compression quality. When the prediction
deviates from the accurate compression, the recovery performance will drop.

Unlike previous approaches, we manage to obtain the discriminative com-
pression quality representation rather than predict the exact quality factor.
Motivated by the success of contrastive learning [14–16], we propose an un-
supervised contrastive learning strategy to obtain compression quality repre-
sentations, which can fully mine the discrepancy between different compression
qualities. Specifically, as shown in Fig. 1, we learn discriminative compression
quality representations in the latent feature space by utilizing the variations of
different JPEG compression images. In order to fully exploit this information,
the learned representations are integrated into the JPEG artifacts removal net-
work in an information lossless way to guide the network training. In this way,
our network is able to flexibly process JPEG images with different compression
qualities. Compared with directly predicting quality factors in a supervised way,
our method does not require ground truth information of specific quality factors,
which is accomplished in an unsupervised manner. Therefore, our method has a
better generalization ability so that it is more applicable to unseen compression
qualities, e.g., real-world scenes(Fig. 2). Not only seen images but also unseen
compressed images can be well recovered using our method.

The main contributions of our paper are as follows:
1. We propose a new framework for blind JPEG artifacts removal By taking

advantage of the potential compression quality information in JPEG compressed
images, our model can work well with all compressed quality JPEG images.

2. We propose an unsupervised manner to extract the discriminative com-
pression quality representation hidden in the JPEG images, then integrate these
learned representations into the compression quality-guided JPEG artifacts re-
moval network in an information lossless way to guide the restoration of images
with different compression qualities.

3. Experiments demonstrate that our network can flexibly handle various
compression qualities and achieve state-of-the-art performance both in seen and
unseen JPEG images, e.g., improving 0.3dB in terms of PSNR on the widely
used BSDS500 dataset of RGB channels.

2 Related Work

2.1 JPEG Artifacts Removal

There are mainly model-based and DL-based methods for JPEG artifacts re-
moval. The earlier methods perform filtering operations to achieve compression
artifacts removal. Foi et al. [2], based on shape-adaptive transformations pro-
vide image filtering algorithms, clean edges are reconstructed, and no intro-
duce unpleasant ring artifacts. Because it has a natural ill-posed characteristic,
Probabilistic-Prior Methods play an important role. Many effective priors, e.g.,
non-local similarity [17], low-rank [18,19], sparse coding [20], and adaptive DCT
transformations [2], are explored. In recent years, DL-based methods have made
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Fig. 2: (a)(b) Visualization of different compression quality representations for
LIVE1 with quality in [10, 100] in steps of 10. (c)(d) Generalization Capa-
bilities Visualization of unseen compression quality representations for LIVE1
with quality in [5, 95] in steps of 10 and the real-world dataset(Twitter).

significant progress in JPEG artifacts removal due to the powerful nonlinear
mapping capability. ARCNN [4], proposed by Dong et al., is a pioneering work
that uses only four layers of CNN. Wang et al. [21] introduce a DCT domain prior
to facilitating the JPEG artifacts removal. Mao et al. [22] use a deep encoding-
decoding structure to exploit the rich dependencies of deep features. Some work
also embeds traditional priors into deep networks, e.g., multi-scale constraints [5]
and wavelet signal structures [7]. Zhang et al. [8] achieve blind JPEG artifact
removal using BN [23] and residual learning [24]. Since GANs [25] can be used to
generate realistic textures, Galteri et al. [26] demonstrate that the GAN is able
to produce more realistic details than MSE or SSIM based networks. Ehrlish et
al. [10] also utilize the GAN loss to generate significantly more visually pleasing
results. Zhang et al. [27] achieve effective image restoration by super-imposing
local and non-local attention blocks to construct a residual non-local attention
network. Zini et al. [9] exploit RRDB to remove JPEG artifacts in a blind way.
Recently, there have been some attempts to use compressed quality information.
Kim et al. [28] utilize the estimated quality factor for JPEG artifacts removal.
AGARNet [29] estimates the pixel-wise quality factor in achieving using a sin-
gle network to cover a wide range of quality factors. Wang et al. [12] propose
compression quality ranker-guided networks. Jiang et al. [13] use a supervised
way to predict the compression quality factor directly and embed the predicted
quality factor into the subsequent network to guide the JPEG artifacts removal.

Although some methods take the compression qualities into account, they
do not fully exploit this information or are limited by the supervised learning
method. We propose an unsupervised compression quality representation learn-
ing strategy and make adequate exploitation of the learned representations to
achieve restoration of all compressed quality JPEG images.

2.2 Contrastive Learning

Unsupervised learning [30–35] is a popular learning technique that does not
rely on the label. Unsupervised contrastive learning [36–38] is the most popular
method for generating discriminative representation via distinguishing positive
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and negative samples in an unsupervised way. In computer vision tasks, there
are many flexible choices of positive and negative samples, which allows for the
great application of contrastive learning. Although contrastive learning has been
widely used in high-level tasks, it has not been widely applied in low-level tasks,
especially in the field of JPEG artifacts removal. In this paper, we utilize contrast
learning to obtain discriminative compression quality representations to guide
our single model in processing JPEG images of all compression qualities.

3 Proposed Method

We propose a blind JPEG artifacts removal network, which consists of two parts:
Unsupervised Compression Quality Encoder and Compression Quality-guided
JPEG Artifacts Removal Network, as shown in Fig. 3. Our network is trained in
two stages. First, we train a compression quality encoder in an unsupervised way
to generate discriminative representations for different compression qualities.
Second, based on the learned compression quality representations, we design the
compression quality-guided JPEG artifacts removal network. In the next section,
we describe the network structure and training strategy in detail.

3.1 Unsupervised Compression Quality Encoder

The goal of unsupervised representation learning [35, 36] is to learn an encoder
that converts input data to general-purpose representations. Unsupervised con-
trastive learning [30, 37, 38], which is trained by positive and negative samples,
intends to generate similar representations for similar data and to make the rep-
resentations of different data as different as possible. In order to achieve this goal,
the InfoNCE loss [32] is often used to measure the similarity of representations,
which uses the dot product measure of similarity:

Lq = −log
exp(q · k+/τ)∑Nneg

i=1 exp(q · k−i /τ)
, (1)

where k+ denotes a positive sample similar to q, k− denotes a negative sample
not similar to q, · represents the dot product,Nneg is the total number of negative
samples and τ is a temperature hyper-parameter.

In this paper, we use the unsupervised contrast learning method to extract
discriminative compression quality representations of JPEG images. To achieve
this goal, we set the patch on the same image to have the same JPEG com-
pression quality and the patch from the different images to have different JPEG
compression qualities. Multiple patches can be cropped from each image, where
patches from the same image can be used as positive samples, while patches
from different images can be used as negative samples.

In the training phase of the compression quality encoder, we randomly select
a mini-batch consisting of B images with different compression qualities. Then,
two patches are randomly cropped from each JPEG compression image, denoted
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Fig. 3: The architecture of the proposed framework for blind JPEG artifacts re-
moval. The training is divided into two stages. First, we train the compression
quality encoder and generate discriminative compression quality representations.
Second, we integrate the learned discriminative compression quality represen-
tations into the JPEG artifacts removal network in an information lossless way
to handle various JPEG compression images flexibly.
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Fig. 4: Multi-scale Information Lossless Fusion Module. It consists of two parts:
(a) Encoder Feature Fusion Module, (b) Invertible Neural Module.

as p1i and p2i , where pi indicates that the patch is from the ith JPEG compression
image. Then they are fed into the compression quality encoder to get compression
quality representations c1i and c2i . For each image, we set c1i as a query and c2i as
a positive sample, and the compression representation c1j and c2j (i̸=j) of patches

from other JPEG compressed quality images as negative samples. c1i should be as
similar to c2i as possible and as different from c1j and c2j as possible. Recent studies
have shown that a large number of negative samples are crucial in unsupervised
contrast representation learning. Following MoCo [16], we utilize a queue to store
negative samples. The queue stores multiple representations of recent training
images, and is dynamically, constantly updating, with representations of the
latest images entering the queue and representations of the oldest images leaving
the queue. The loss function of the compression quality encoder is:

LCQE =

B∑
i=1

−log
exp(c1i · c2i /τ)∑Nneg

j=1 exp(c1i · c
1,2
j /τ)

, (2)
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where the numerator represents the dot product of query and positive sample,
and the denominator represents the dot product of query and all negative sam-
ples in the queue, where the dot product is used to measure the relative distance.

We use a multi-scale feature extraction network as an encoder network, as
shown in Fig. 3. The output of each scale of the compression quality encoder is
denoted as E0, E1, E2 and E3, respectively. We provide the detailed network
structure in the supplementary material. To demonstrate that our compression
quality encoder learns discriminative representations, we visualize the features in
the compression quality encoder network using the t-SNE [3] method, as shown
in Fig. 2. Our network can obtain discriminative representations on various com-
pression qualities, including unseen degradation types.

3.2 Compression Quality-Guided JPEG Artifact Removal Network

After obtaining compression quality representations, to fully exploit this infor-
mation, we design a compression quality-guided JPEG artifacts removal network,
which integrates the learned compression quality representations in an informa-
tion lossless way. The network contains multi-scale information lossless feature
fusion module and restoration decoder, as shown in Fig. 3.

Multi-scale Information Lossless Fusion Module. In order to better inte-
grate the discriminative representations learned by the compression quality en-
coder into the subsequent JPEG artifacts removal network, we use a multi-scale
information lossless fusion module for this operation. First, since the features at
different scales of the network are closely related, we try to fuse feature maps
from multi-scales in the comparison quality encoder as much as possible. Specif-
ically, we feed the output of each scale into the Encoder Feature Fusion Module
(EFFM) and resize them to the same scales. E1 and E2 incorporate feature maps
from nearby scales. If these feature maps were to be directly concatenated into
the network afterward, this would result in a large number of operations, so to
reduce the computational effort we introduce two convolution operations to fuse
them, the output feature maps are denoted E

′

1 and E
′

2. The formulations are as:

E
′

1 = EFFM [E0, E1, E2], (3)

E
′

2 = EFFM [E1, E2, E3], (4)

where EFFM includes convolution and resizes operations, [·] represents con-
catenation along the channel dimension, as shown in Fig. 4(a).

In order to fully exploit the learned discriminative compression quality fea-
ture representations, we use invertible fusion modules designed based on in-
vertible neural architecture [39, 40] to preserve all information about the input
features. Compared to simple concatenation operations, the invertible neural
network [41–43] is information lossless in the processes of the transformation. In
our work, a total of three invertible fusion modules are used, corresponding to
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Fig. 5: Visualization of the intermediate feature maps of our Compression Quality
Encoder at JPEG images with different compression qualities.

the outputs of the last three scales in the compression quality encoder. Invert-
ible networks require the input to be divided into two parts, we set the feature
maps from the EFFM and subsequent restoration decoder as inputs, noted as E
and D, respectively. Take one module as an example, it performs the following
operations:

F1 = E + ϕ1(D), (5)

F2 = D ⊙ exp(ϕ2(F1)) + ϕ3(F1), (6)

F = Concat(F1, F2), (7)

where exp(·) and ⊙ indicate exponential function and dot product operation,
respectively. As shown in Fig. 4(b), we choose residual blocks to perform ϕ1, ϕ2

and ϕ3, each residual block is composed of two 3×3 convolutions layers with the
LeakyReLU activation function [44] in the middle.

Restoration Decoder. The outputs of each invertible neural module are fed
into the local recovery module referenced from the RNAN [27]. The network
then applies a 1×1 convolution layer to restore the feature maps to the original
image channel. Finally, we use global residual learning to connect the input and
output images to achieve faster training.

3.3 Loss function

MAE Loss. We adopt the Mean Absolute Error (MAE) loss to reduce the
distance between the predicted image Ipre and the ground truth Igt, which is
defined as:

LMAE =
1

N

N∑
i=1

∥ Iipre − Iigt ∥1, (8)

where N is the number of training samples within a mini-batch.

FFT loss. Since the quantization operation of JPEG compression results in the
loss of high-frequency information in the image, we further employ the difference
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Table 1: Quantitative comparisons of different methods on grayscale JPEG
images. PSNR / SSIM / PSNR-B format. The best and the second best results
are boldfaced and underlined, respectively.

Dataset Quality JPEG ARCNN [4] DnCNN [8] MWCNN [7] DCSC [46]

Classic5

10 27.82/0.760/25.21 29.03/0.793/28.76 29.40/0.803/29.13 30.01/0.820/29.59 29.62/0.810/29.30

20 30.12/0.834/27.50 31.15/0.852/30.59 31.63/0.861/31.19 32.16/0.870/31.52 31.81/0.864/31.34

30 31.48/0.867/28.94 32.51/0.881/31.98 32.91/0.886/32.38 33.43/0.893/32.62 33.06/0.888/32.49

40 32.43/0.885/29.92 33.32/0.895/32.79 33.77/0.900/33.23 34.27/0.906/33.35 33.87/0.902/33.30

LIV E1

10 27.77/0.773/25.33 28.96/0.808/28.68 29.19/0.812/28.90 29.69/0.825/29.32 29.34/0.818/29.01

20 30.07/0.851/27.57 31.29/0.873/30.76 31.59/0.880/31.07 32.04/0.889/31.51 31.70/0.883/31.18

30 31.41/0.885/28.92 32.67/0.904/32.14 32.98/0.909/32.34 33.45/0.915/32.80 33.07/0.911/32.43

40 32.35/0.904/29.96 33.61/0.920/33.11 33.96/0.925/33.28 34.45/0.930/33.78 34.02/0.926/33.36

BSDS500

10 27.80/0.768/25.10 29.10/0.804/28.73 29.21/0.809/28.80 29.61/0.820/29.14 29.32/0.813/28.91

20 30.05/0.849/27.22 31.28/0.870/30.55 31.53/0.878/30.79 31.92/0.885/31.15 31.63/0.880/30.92

30 31.37/0.884/28.53 32.67/0.902/31.94 32.90/0.907/31.97 33.30/0.912/32.34 32.99/0.908/32.08

40 32.30/0.903/29.49 33.55/0.918/32.78 33.85/0.923/32.80 34.27/0.928/33.19 33.92/0.924/32.92

Dataset Quality RNAN [27] RDN [47] QGAC [48] FBCNN [13] Ours

Classic5

10 29.96/0.819/29.42 30.03/0.819/29.59 29.84/0.812/29.43 30.12/0.822/29.80 30.16/0.822/29.85

20 32.11/0.869/31.26 32.19/0.870/31.53 31.98/0.869/31.37 32.31/0.872/31.74 32.37/0.873/31.84

30 33.38/0.892/32.35 33.46/0.893/32.59 33.22/0.892/32.42 33.54/0.894/32.78 33.60/0.895/32.89

40 34.27/0.906/33.40 - 34.05/0.905/33.12 34.35/0.907/33.48 34.43/0.908/33.58

LIV E1

10 29.63/0.824/29.13 29.70/0.825/29.37 29.51/0.825/29.13 29.75/0.827/29.40 29.80/0.827/29.44

20 32.03/0.888/31.12 32.10/0.889/31.29 31.83/0.888/31.25 32.13/0.889/31.57 32.19/0.890/31.63

30 33.45/0.915/32.22 33.54/0.916/32.62 33.20/0.914/32.47 33.54/0.916/32.83 33.62/0.918/32.91

40 34.47/0.930/33.66 - 34.16/0.929/33.36 34.53/0.931/33.74 34.62/0.931/33.84

BSDS500

10 29.08/0.805/28.48 29.24/0.808/28.71 29.46/0.821/28.97 29.67/0.821/29.22 29.70/0.822/29.27

20 31.25/0.875/30.27 31.48/0.879/30.45 31.73/0.884/30.93 32.00/0.885/31.19 32.06/0.886/31.27

30 32.70/0.907/31.33 32.83/0.908/31.60 33.07/0.912/32.04 33.37/0.913/32.32 33.45/0.914/32.41

40 33.47/0.923/32.27 - 34.01/0.927/32.81 34.33/0.928/33.10 34.42/0.929/33.22

between the predicted image and the ground truth in the frequency domain [45]
to optimize our network. The frequency loss is defined as:

LFFT =
1

N

N∑
i=1

∥FFT(Iipre)− FFT(Iigt)∥1, (9)

where FFT stands for fast Fourier transform, which converts an image to the
frequency domain. The total loss function is defined as:

Ltotal = LMAE + λLFFT. (10)

In our experiment, we set λ equal to 0.1.

4 Experiments

4.1 Experimental Datasets and Implementation details

Datasets. In our experiments, we use a total of six datasets: DIV2K [49],
BSDS500 [50], LIVE1 [51], Classic5 [52], ICB [48] and Twitter [4]. 900 images
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Table 2: Perceptual metrics results of LIPIS↓ / FID↓.
Dataset Classic5 LIVE1

Quality Q10 Q20 Q30 Q40 Q10 Q20 Q30 Q40

FBCNN 0.1543/103.85 0.1072/46.98 0.0817/31.53 0.0665/23.66 0.1603/69.47 0.0924/32.78 0.0637/21.87 0.0479/15.50

Ours 0.1545/101.68 0.1062/43.08 0.0806/30.19 0.0651/22.44 0.1633/65.92 0.0923/32.03 0.0630/20.79 0.0469/14.72

from the training and validation sets of DIV2K and 200 images from the training
sets of BSDS500 are used for training. The test set of BSDS500, Classic5, LIVE1,
ICB and Twitter are used for testing. We used the Y channel of YCbCr space
for grayscale image recovery and the RGB channel for color image recovery.

Training Settings. The compression quality of the training images is set to
[Q10, Q90] at step 10 and we randomly crop 256×256 patches from the images.
Note that our model is trained in two stages. For the first stage, when we train
the compression quality encoder, the learning rate is set to 0.001, and the number
of training epochs is set to 200, then we freeze the model weights. For the second
stage of training the JPEG artifacts removal network, the initial learning rate is
set to 0.0001 and decayed by a cosine annealing algorithm with T = 600. For the
optimization model, we set the epochs for 600 with a batch size of 8 and choose
the Adam optimizer [53] with β1 = 0.9 and β2 = 0.999. In addition, our single
model can handle multiple JPEG compression qualities. We train our model on
two NVIDIA GeForce GTX 3090 GPUs by using PyTorch.

Testing Settings. For grayscale images, we evaluate the performance of our
model on Classic5 [52], LIVE1 [51], Twitter [4] and the test set of BSDS500
[50]. During the standard testing phase, all test datasets are all applied JPEG
compression with compression quality factors of Q10, Q20, Q30 and Q40. During
the testing phase of the model generalizability capability, these test datasets are
compressed into Q15, Q25, Q35 and Q45. For color images, we do not use the
Classic5 [52] but the ICB [48] instead.

Evaluation Metrics. We use PSNR, SSIM(structural similarity) [54], and
PSNR-B(specially designed for JPEG artifacts removal) [55] to quantitatively
assess the performance of our JPEG artifacts removal model.

4.2 Experiments on Synthetic Datasets

Feature Maps Visualisation for Compression Quality Encoder. To
demonstrate the ability of our compression quality encoder to distinguish differ-
ent quality factors, we perform Grad-CAM [56] to visualize the learned feature
maps in Fig. 5. It is clear that our compression quality encoder generates different
feature maps for different compression qualities, which can provide discrimina-
tive information to guide subsequent JPEG artifacts removal.



JPEG Artifacts Removal via Contrastive Representation Learning 11

Table 3: Quantitative comparisons of different methods on color JPEG images.
PSNR / SSIM / PSNR-B format. The best and the second best results are
boldfaced and underlined, respectively.

Dataset Quality JPEG QGAC [48] FBCNN [13] Ours

LIV E1

10 25.69/0.743/24.20 27.62/0.804/27.43 27.77/0.803/27.51 27.80/0.805/27.57

20 28.06/0.826/26.49 29.88/0.868/29.56 30.11/0.868/29.70 30.23/0.872/29.85

30 29.37/0.861/27.84 31.17/0.896/30.77 31.43/0.897/30.92 31.58/0.900/31.13

40 30.28/0.882/28.84 32.05/0.912/31.61 32.34/0.913/31.80 32.53/0.916/32.04

BSDS500

10 25.84/0.741/24.13 27.74/0.802/27.47 27.85/0.799/27.52 27.91/0.803/27.59

20 28.21/0.827/26.37 30.01/0.869/29.53 30.14/0.867/29.56 30.31/0.872/29.74

30 29.57/0.865/27.72 31.33/0.898/30.70 31.45/0.897/30.72 31.69/0.901/30.96

40 30.52/0.887/28.69 32.25/0.915/31.50 32.36/0.913/31.52 32.66/0.918/31.82

ICB

10 29.44/0.757/28.53 32.06/0.816/32.04 32.18/0.815/32.15 32.05/0.813/32.04

20 32.01/0.806/31.11 34.13/0.843/34.10 34.38/0.844/34.34 34.32/0.842/34.31

30 33.20/0.831/32.35 35.07/0.857/35.02 35.41/0.857/35.35 35.37/0.856/35.35

40 33.95/0.840/33.14 32.25/0.915/31.50 36.02/0.866/35.95 35.99/0.860/35.97

QF=10

JPEG ARCNN DnCNN DCSC

RNAN RDN FBCNN Ours

Fig. 6: Visual comparisons of JPEG image “Classic5: barbara” with QF=10.

Y Channel JPEG Artifacts Removal. We first evaluate the effect of our
model on the Y-channel JPEG compressed images. For LIVE1 [51], Classic5 [52],
BSDS500 [50], we compared our model with a series of JPEG artifact removal
network: i.e., ARCNN [4], DnCNN [8], MWCNN [7], DCSC [46], RNAN [27],
RDN [47], QGAC [48] and FBCNN [13]. For quantitative evaluation, we use
PSNR, SSIM and PSNR-B, the results of them are presented in Table 1. As
can be seen that our proposed model outperforms all previous methods. This
proves the validity of our proposed model. Note that we use a single model for
all compression qualities, this allows for greater flexibility in our models, and our
method outperforms all those methods that train one model for one compression
quality. We show some visual results of the Classic5 recovery image in Fig. 6,
demonstrating the more pleasing visual effect of our method. Moreover, we utilize
LIPIS [57] and FID [58] to evaluate the perceptual performance in Table 2.
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Table 4: Quantitative comparisons of Generalization Capabilities. PSNR /
SSIM / PSNR-B format. The best results are boldfaced. Our model has not
seen the compression quality of the test phase during the training phase.

Dataset Training Quality(step) Testing Quality JPEG FBCNN [13] Ours

Classic5 Q10−Q90(10)

15 29.17/0.807/26.53 31.42/0.854/30.97 31.37/0.854/30.86

25 30.87/0.853/28.30 33.02/0.885/32.34 33.04/0.885/32.41

35 32.01/0.877/29.50 33.99/0.9015/33.20 34.05/0.902/33.30

45 32.84/0.892/30.37 34.72/0.9122/33.83 34.79/0.913/33.92

LIV E1 Q10−Q90(10)

15 29.13/0.822/26.65 31.15/0.866/30.69 31.12/0.867/30.53

25 30.81/0.871/28.29 32.91/0.905/32.26 32.95/0.905/32.26

35 31.93/0.896/29.48 34.09/0.925/33.33 34.15/0.925/33.40

45 32.778/0.912/30.43 34.96/0.936/34.12 35.04/0.937/34.22

BSDS500 Q10−Q90(10)

15 29.13/0.819/26.34 31.04/0.862/30.39 30.99/0.862/30.22

25 30.77/0.869/27.93 32.75/0.901/31.81 32.79/0.902/31.83

35 31.88/0.895/29.05 33.91/0.922/32.76 33.97/0.922/32.85

45 32.73/0.911/29.94 34.76/0.934/33.46 34.85/0.935/33.58

JPEG Residual of ARCNNGT Residual of DnCNN Residual of FBCNN Residual of OursResidual of JPEG

Fig. 7: Visual comparisons on real-world images from “Twitter” dataset.

RGB Channels JPEG Artifacts Removal. To evaluate the effectiveness of
our model on color images, we also trained our model on color images. We set
the number of input and output channels to 3, while the other model settings
remain unchanged. The test data set is selected LIVE1 [51] and test sets of
BSDS500 [50]. Quantitative results are shown in Table 3. It can be seen that our
method achieves better JPEG artifacts removal results on color images as well.

Study of Generalization Capabilities. Both our compression quality en-
coder and JPEG artifacts removal network are trained only on training data with
compression quality set to [Q10, Q90] at step 10. To explore whether our model
can perform well on unseen JPEG compressed quality images, we choose images
with compression qualities of Q15, Q25, Q35 and Q45. As shown in Table 4,
our single model consistently performs well on unseen compression qualities. All
these processes are performed on the Y-channel of LIVE1 [51], Classic5 [52] and
the test set of BSDS500 [50].
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Table 5: QuantitativeAblation Analysis on PSNR/SSIM/PSNR-B Values.The
dataset used in this experiment is Classic5.

Models CQE
CQE

(pre-trained)

MILFM
FFT Loss

Compression Quality

INM EFFM Q10 Q20 Q30 Q40

model-1 ✓ 29.97/0.818/29.63 32.21/0.871/31.68 33.48/0.893/32.76 34.31/0.906/33.46

model-2 ✓ ✓ ✓ ✓ 30.04/0.820/29.73 32.26/0.871/31.78 33.52/0.894/32.85 34.36/0.907/33.57

model-3(a) ✓ ✓ ✓ ✓ 30.11/0.821/29.77 32.30/0.872/31.74 33.55/0.894/32.81 34.39/0.907/33.52

model-3(b) ✓ ✓ ✓ 30.09/0.821/29.72 32.30/0.872/31.72 33.54/0.894/32.78 34.37/0.907/33.48

model-4 ✓ ✓ ✓ ✓ 30.03/0.819/29.66 32.21/0.871/31.69 33.50/0.893/32.77 34.32/0.906/33.51

Ours ✓ ✓ ✓ ✓ ✓ 30.16/0.822/29.85 32.37/0.873/31.84 33.60/0.895/32.89 34.43/0.908/33.58

4.3 Experiments on Real-World Compression Qualities

To avoid taking up too much storage and transmission resources, social platforms
such as Twitter often compress uploaded images, which inevitably reduces visual
feelings of users. To test the performance of our model on real data, we use the
Twitter dataset to test the real image directly using the model we trained on
the synthetic datasets. Since the real images were too large in resolution, we
first crop images and then feed them into the network. We show in Fig. 7 the
visual residual maps of other methods and ours to increase the distinction of
the visualization. Note that the residual map means the difference between the
estimated result and its ground truth. It is clear that our method achieves the
better visual result. This result shows that our method works better than other
methods on unseen JPEG compressed quality images.

4.4 Ablation Analysis

We remove some parts of the network that we designed and report their effect.
We choose Q10 of the Classic5 dataset to report the results. For all ablation
experiments, quantitative results are presented in Table 5.

Effect of Compression Quality Encoder(CQE). The compression quality
encoder generates discriminative representations that provide recovery guidance
for subsequent JPEG artifacts removal networks. To demonstrate the effective-
ness of compression quality encoder, we compare two-stage joint training and
two-stage separate training strategies: (1) remove the entire compression qual-
ity encoder, denoted as model-1, (2) train the entire network directly without
removing the compression quality encoder, but without pre-training, denoted
as model-2. The results of the quantitative evaluation show that networks that
remove the compression quality representation learning encoder would cause the
network performance to drop. Moreover, we show the second option in which
the compression quality encoder visualizes the clustered feature maps with and
without the pre-trained weights in the supplementary material.

Effect of Multi-scale Information Lossless Fusion Module(MILFM).
With the compression quality encoder and the extracted compression quality
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feature representations, we utilize the multi-scale information lossless feature
fusion module to integrate them with the subsequent JPEG artifacts removal
network. To demonstrate the effectiveness of this fusion module, we replace INM
with the concatenation operation and convolution layers, denoted as model-3(a).
Moreover, we replace INM and EFFM with the concatenation operation and
convolution layers to achieve feature fusion, denoted as model-3(b). In this way,
the network does not make much difference in terms of the number of parameters.
As can be seen from the PSNR values taken, the performance of the model will
drop if the concatenation operation and convolution layers are used as the fusion
module. On the contrary, better JPEG artifacts removal results can be achieved
by using the multiscale information lossless fusion module.

Effect of FFT loss. In order to better recover the lost high-frequency infor-
mation, we introduced the FFT Loss. To test the capability of this loss function,
we removed this Loss without changing the other parts of the model, which was
noted as model-4. It is seen from the experimental results that the recovery of
the model decreased due to the disappearance of the FFT loss.

5 Conclusions

In this paper, we propose an unsupervised JPEG compression quality represen-
tation learning to guide the blind JPEG artifacts removal. Rather than directly
predicting the exact quality factor, our approach focuses on mining the discrep-
ancy in compression quality of various compressed images. Moreover, to fully
exploit the learned representations, we design a compression-guided blind JPEG
artifacts removal network, which specially integrates the learned discriminative
compression quality representations in an information lossless way. Experiments
demonstrate that our unsupervised compression quality learning strategy could
extract discriminative representations, and our network achieves state-of-the-art
performances for various types of JPEG compressed quality images.
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