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Abstract. We introduce optical Flow transFormer, dubbed as Flow-
Former, a transformer-based neural network architecture for learning
optical flow. FlowFormer tokenizes the 4D cost volume built from an im-
age pair, encodes the cost tokens into a cost memory with alternate-group
transformer (AGT) layers in a novel latent space, and decodes the cost
memory via a recurrent transformer decoder with dynamic positional
cost queries. On the Sintel benchmark, FlowFormer achieves 1.144 and
2.183 average end-ponit-error (AEPE) on the clean and final pass, a
17.6% and 11.6% error reduction from the best published result (1.388
and 2.47). Besides, FlowFormer also achieves strong generalization per-
formance. Without being trained on Sintel, FlowFormer achieves 0.95
AEPE on the Sintel training set clean pass, outperforming the best pub-
lished result (1.29) by 26.9%.

1 Introduction

Optical flow targets at estimating per-pixel correspondences between a source
image and a target image, in the form of a 2D displacement field. In many down-
stream video tasks, such as action recognition [45, 36, 60], video inpainting [28,
49, 13], video super-resolution [30, 5, 38], and frame interpolation [50, 33, 20], op-
tical flow serves as a fundamental component providing dense correspondences
as valuable clues for prediction.

A general assumption adopted in optical flow estimation is that the appear-
ance of corresponding locations in the two images induced from optical flows
remains unchanged. Traditionally, optical flow is modeled as an optimization
problem that maximizes visual similarities between cross-image corresponding
locations with regularization terms. With the rapid development of deep learning
and emerging training data, this field has been significantly advanced by deep
convolutional neural network-based methods. The recent methods compute costs
(i.e. visual similarities) between feature pairs, upon which flows are regressed.
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Most successful architecture designs in optical flow are achieved via better de-
signs of cost encoding and decoding. PWC-Net [42] and RAFT [46] are two
recent representative deep learning-based methods. PWC-Net [42] builds hierar-
chical local cost volumes with warped features and progressively estimates flows
from such local costs. RAFT [46] forms an H×W ×H×W 4D cost volume that
measures similarities between all pairs of pixels of the H ×W image pair and
iteratively retrieves local costs within local windows for regressing flow residuals.

Recently, transformers have attracted much attention for their ability of mod-
eling long-range relations, which can benefit optical flow estimation. Perceiver IO
[24] is the pioneering work that learns optical flow regression with a transformer-
based architecture. However, it directly operates on pixels of image pairs and
ignores the well-established domain knowledge of encoding visual similarities to
costs for flow estimation. It thus requires a large number of parameters and
∼ 80× training examples to capture the desired input-output mapping. We
therefore raise a question: can we enjoy both advantages of transformers and the
cost volume from the previous milestones? Such a question calls for designing
novel transformer architectures for optical flow estimation that can effectively
aggregate information from the cost volume. In this paper, we introduce the novel
optical Flow TransFormer (FlowFormer) to address this challenging problem.

FlowFormer adopts an encoder-decoder architecture for cost volume encoding
and decoding. After building a 4D cost volume, FlowFormer consists of two main
components: 1) a cost volume encoder that embeds the 4D cost volume into a
latent cost space and fully encodes the cost information in such a space, and 2) a
recurrent cost decoder that estimates flows from the encoded latent cost features.
Compared with previous works, the main characteristic of our FlowFormer is to
adapt the transformer architectures to effectively process cost volumes, which
are compact yet rich representations widely explored in optical flow estimation
communities, for estimating accurate optical flows.

A naive strategy to transform the 4D cost volume with transformers is di-
rectly tokenizing the 4D cost volume and applying transformers. However, such a
strategy needs to use thousands of tokens, which is computationally unbearable.
To tackle this challenge, we propose two key designs in our cost encoder. We
propose a two-step tokenization: 1) converting each of the 2D cost maps, which
records visual similarities between one source pixel and all target pixels, from
the 4D cost volume into patches as commonly done in transformer networks,
and 2) further projecting cost-map patches of each cost map into K latent cost
tokens. In this way, the H ×W × H ×W 4D cost volume can be transformed
into H×W ×K tokens. Secondly, instead of performing self-attention among all
tokens, we alternatively conduct attention over tokens within the same cost map
and tokens across different cost maps. In other words, an interweaving stack of
aggregations of latent cost tokens belonging to the same source pixel and those
across different source pixels. Combining these two designs, FlowFormer encodes
the cost volume into compact and globally aware latent cost tokens, dubbed as
the cost memory.
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Classical transformer architectures, such as DETR [4], decodes information
from the encoded memory via stacked cross-attention layers. In contrast to them,
inspired by RAFT, our cost decoder adopts only a recurrent attention layer
that formulates the cost decoding as a recurrent query process with dynamic
positional cost queries: based on current estimated flows, we query the cost
memory for regressing the flow residuals. In each iteration, we compute the
corresponding positions in the target image for all source pixels according to
current flows and then dynamically update positional cost queries with such
positions. Then, we fetch cost features from the cost memory via cross-attention
and use a shared gated recurrent unit (GRU) head for residual flow regression.
Moreover, RAFT only utilizes a shallow CNN as the image feature encoder. We
find that our FlowFormer can be benefited from using an ImageNet-pretrained
transformer backbone.

Our contributions can be summarized as fourfold. 1) We propose a novel
transformer-based neural network architecture, FlowFormer, for optical flow es-
timation, which achieves state-of-the-art flow estimation performance. 2) We
design a novel cost volume encoder, effectively aggregating cost information into
compact latent cost tokens. 3) We propose a recurrent cost decoder that recur-
rently decodes cost features with dynamic positional cost queries to iteratively
refine the estimated optical flows. 4) To the best of our knowledge, we vali-
date for the first time that an ImageNet-pretrained transformer can benefit the
estimation of optical flow.

2 Related Work

Optical Flow. Traditionally, optical flow was modeled as an optimization prob-
lem that maximizes visual similarity between image pairs with regularizations
[17, 1, 2, 40]. Major improvements in this era came from better designs of sim-
ilarity and regularization terms. The rise of deep neural networks significantly
advanced this field. FlowNet [12] was the first end-to-end convolutional net-
work for optical flow estimation. Its successive work, FlowNet2.0 [23], adopted
a stacked architecture with warping operation, performing on par with state-of-
the-art (SOTA) methods. Then a series of works, represented by SpyNet [37],
PWC-Net [42, 43], LiteFlowNet [21, 22] and VCN [53], employed coarse-to-fine
and iterative estimation methodology. These models inherently suffered from
missing small fast-motion objects in coarse stage. To remedy this issue, Teed
and Deng [46] proposed RAFT [46], which performs optical flow estimation in
a coarse-and-fine (i.e. multi-scale search window in each iteration) and recur-
rent manner. Based on RAFT architecture, many works [25, 48, 26, 57, 16] were
proposed to either reduce the computational costs or improve the flow accu-
racy. Recently, optical flow was extended to more challenging settings, such as
low-light [61], foggy [52], and lighting variations [18].

Among these explorations, visual similarity is computed by the correlation
of high dimensional features encoded by a convolutional neural network, and
the cost volume that contains visual similarity of pixels pairs acts as a core
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component supporting optical flow estimation. However, their cost information
utilization lacks effectiveness. We propose FlowFormer that aggregates the cost
volume in a latent space with transformers [47]. Perceiver IO [24] pioneered the
use of transformers [47, 11, 4] that is able to establish long-range relationship
in optical flow and achieved state-of-the-art performance. It ignored the cost
volume, showing the strong expressive capacity of transformer architecture at
the cost of ∼ 80× training examples. In contrast, we propose to keep cost volume
as a compact similarity representation and push search space to the extreme
by globally aggregating similarity information via a transformer architecture.
Such global encoding operation is especially beneficial in the hard cases of large
displacement and occlusion.

Transformers for Computer Vision. Transformers achieved great success
in Natural Language Processing [47, 9, 10], which inspired the development of
self-attention for image classification [34, 11, 8]. Since then, transformer-based
architectures has been introduced into many other vision tasks, such as detec-
tion [4], point cloud processing [15, 58], image restoration [6, 31], video inpaint-
ing[56, 32], visual grounding [54], etc, and achieves state-of-the-art in most tasks.
The appealing performance is generally attributed to the long-range modeling
capacity, which is also a desired property in optical flow estimation. One of the
challenges that vision transformers are faced with is the large number of visual
tokens because the computational cost quadratically increases along with the
token number. Twins [8] proposed a spatially separable self-attention (SS Self-
Attention) layer that propagates information over tokens arranged in a 2D plane.
We also adopt the SS Self-Attention in the cost volume encoder to propagate
information inter-cost-maps. Perceiver IO [24] proposed a general transformer
backbone, which although requires a large amount of parameters, achieves state-
of-the-art optical flow performance. Visual correspondence tasks [44, 19, 7, 27, 51]
is a main stream in computer vision. Recently, transformers also lead a trend in
such tasks [39, 44, 7, 27], which is more related to ours.

3 Method

The task of optical flow estimation requires to output a per-pixel displacement
field f : R2 → R2 that maps every 2D location x ∈ R2 of a source image Is to its
corresponding 2D location p = x+f(x) of a target image It. To take advantage of
the recent vision transformer architectures as well as the 4D cost volumes widely
utilized by previous CNN-based optical flow estimation methods, we propose
FlowFormer, a transformer-based architecture that encodes and decodes the 4D
cost volume to achieve accurate optical flow estimation. In Fig. 1, we show the
overview architecture of FlowFormer, which processes the 4D cost volumes from
siamese features with two main components: 1) a cost volume encoder that
encodes the 4D cost volume into a latent space to form cost memory, and 2) a
cost memory decoder for predicting a per-pixel displacement field based on the
encoded cost memory and contextual features.
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Fig. 1: Architecture of FlowFormer. FlowFormer estimates optical flow in three
steps: 1) building a 4D cost volume from image features. 2) A cost volume
encoder that encodes the cost volume into the cost memory. 3) A recurrent
transformer decoder that decodes the cost memory with the source image context
features into flows.

3.1 Building the 4D Cost Volume

A backbone vision network is used to extract anH×W×Df feature map from an
input HI ×WI × 3 RGB image, where typically we set (H,W ) = (HI/8,WI/8).
After extracting the feature maps of the source image and the target image, we
construct an H ×W × H ×W 4D cost volume by computing the dot-product
similarities between all pixel pairs between the source and target feature maps.

3.2 Cost Volume Encoder

To estimate optical flows, the corresponding positions in the target image of
source pixels need to be identified based on source-target visual similarities en-
coded in the 4D cost volume. The built 4D cost volume can be viewed as a series
of 2D cost maps of size H ×W , each of which measures visual similarities be-
tween a single source pixel and all target pixels. We denote source pixel x’s cost
map as Mx ∈ RH×W . Finding corresponding positions in such cost maps is gen-
erally challenging, as there might exist repeated patterns and non-discriminative
regions in the two images. The task becomes even more challenging when only
considering costs from a local window of the map, as previous CNN-based optical
flow estimation methods do. Even for estimating a single source pixel’s accurate
displacement, it is beneficial to take its contextual source pixels’ cost maps into
consideration.

To tackle this challenging problem, we propose a transformer-based cost vol-
ume encoder that encodes the whole cost volume into a cost memory. Our cost
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volume encoder consists of three steps: 1) cost map patchification, 2) cost patch
token embedding, and 3) cost memory encoding. We elaborate the details of the
three steps as follows.

Cost map patchification. Following existing vision transformers, we patchify
the cost mapMx ∈ RH×W of each source pixel x with strided convolutions to ob-
tain a sequence of cost patch embeddings. Specifically, given an H×W cost map,
we first pad zeros at its right and bottom sides to make its width and height mul-
tiples of 8. The padded cost map is then transformed by a stack of three stride-2
convolutions followed by ReLU into a feature map Fx ∈ R⌈H/8⌉×⌈W/8⌉×Dp . Each
feature in the feature map stands for an 8× 8 patch in the input cost map. The
three convolutions have output channels of Dp/4, Dp/2, Dp, respectively.

Patch Feature Tokenization via Latent Summarization. Although the
patchification results in a sequence of cost patch feature vectors for each source
pixel, the number of such patch features is still large and hinders the efficiency
of information propagation among different source pixels. Actually, a cost map
is highly redundant because only a few high costs are most informative. To
obtain more compact cost features, we further summarize the patch features
Fx of each source pixel x via K latent codewords C ∈ RK×D. Specifically,
the latent codewords query each source pixel’s cost-patch features to further
summarize each cost map into K latent vectors of D dimensions via the dot-
product attention mechanism. The latent codewords C ∈ RK×D are randomly
initialized, updated via back-propagation, and shared across all source pixels.
The latent representations Tx for summarizing Fx are obtained as

Kx = Conv1×1 (Concat(Fx,PE)) ,

Vx = Conv1×1 (Concat(Fx,PE)) ,

Tx = Attention(C,Kx,Vx).

(1)

Before projecting the cost-patch features Fx to obtain keys Kx and values Vx,
the patch features are concatenated with a sequence of positional embeddings
PE ∈ R⌈H/8⌉×⌈W/8⌉×Dp . Given a 2D position p, we encode it into a positional
embedding of length Dp following COTR [27]. Finally, the cost map of the source
pixel x can be summarized into K latent representations Tx ∈ RK×D by con-
ducting multi-head dot-product attention with the queries, keys, and values.
Generally, K ×D ≪ H ×W and the latent summarizations Tx therefore pro-
vides more compact representations than each H ×W cost map for each source
pixel x. For all source pixels in the image, there are a total of (H ×W ) 2D cost
maps. Their summarized representations can consequently be converted into a
latent 4D cost volume T ∈ RH×W×K×D.

Attention in the latent cost space. The aforementioned two stages transform
the original 4D cost volume into a latent and compact 4D cost volume T. How-
ever, it is still too expensive to directly apply self-attention over all the vectors
in the 4D volume because the computational cost quadratically increases with
the number of tokens. As shown in Fig. 2, we propose an alternate-group trans-
former layer (AGT) that groups the tokens in two mutually orthogonal manners



FlowFormer: A Transformer Architecture for Optical Flow 7

𝐻×𝑊

𝐾

Intra-cost-map SA Inter-cost-map SA

𝐻×𝑊 𝐓𝐱 𝐾 𝐓"𝐓 Updated 𝐓

𝐻×𝑊×(𝐾×𝐷) 𝐾×(𝐻×𝑊×𝐷) 𝐻×𝑊×𝐾×𝐷

Fig. 2: Alternate-Group Transformer Layer. The alternate-group transformer
layer (AGT) alternatively groups tokens in T into H ×W groups that contains
K tokens (Tx) and K groups that contains H × W tokens (Ti), and encode
tokens inside groups via self-attention and ss self-attention [8] respectively.

and apply attentions in the two groups alternatively, which reduces the cost of
attention while still being able to propagate information among all tokens.

The first grouping is conducted for each source pixel, i.e., each Tx ∈ RK×D

forms a group and the self-attention is conducted within each group.

Tx = FFN(Self-Attention(Tx(1), . . . ,Tx(K)) for all x in Is, (2)

where Tx(i) denotes the i-th latent representation for encoding the source pixel
x’s cost map. After the self-attention is conducted between all K latent tokens
for each source pixel x, updated Tx are further transformed by a feed-forward
network (FFN) and then re-organized back to form the updated 4D cost volume
T. Both the self-attention and FFN sub-layers adopt the common designs of
residual connection and layer normalization of transformers. This self-attention
operation propagates the information within each cost map and we name it as
intra-cost-map self-attention.

The second way groups all the latent cost tokens T ∈ RH×W×K×D into K
groups according to the K different latent representations. Each group would
therefore have (H ×W ) tokens of dimension D for information propagation in
the spatial domain via the spatially separable self-attention (SS-SelfAttention)
proposed in Twins [8],

Ti = FFN(SS-SelfAttention(Ti)) for i = 1, 2, . . . ,K, (3)

where we slightly abuse the notation and denote Ti ∈ R(H×W )×D as the i-th
group. The updated Ti’s are then re-organized back to obtain the updated 4D la-
tent cost volume T. Moreover, visually similar source pixels should have coherent
flows, which has been validated by previous methods [25, 7]. Thus, we integrate
appearance affinities between different source pixels into SS-SelfAttention via
concatenating the source image’s context features t with the cost tokens when
generating queries and keys. We call this layer inter-cost-map self-attention layer
as it propagates information of cost volume across different source pixels. Note
that these two operations are different from CATs [7], which augmented corre-
lations ‘intra’ a level of cost map and ‘inter’ multi-level correlation layers.
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The above self-attention operations’ parameters are shared across different
groups and they are sequentially operated to form the proposed alternate-group
attention layer. By stacking the alternate-group transformer layer multiple times,
the latent cost tokens can effectively exchange information across source pixels
and across latent representations to better encode the 4D cost volume. In this
way, our cost volume encoder transforms the H ×W ×H ×W 4D cost volume
to H ×W ×K latent tokens of length D. We call the final H ×W ×K tokens
as the cost memory, which is to be decoded for optical flow estimation.

3.3 Cost Memory Decoder for Flow Estimation

Given the cost memory encoded by the cost volume encoder, we propose a cost
memory decoder to predict optical flows. Since the original resolution of the
input image is HI ×WI , we estimate optical flow at the H ×W resolution and
then upsample the predicted flows to the original resolution with a learnable
convex upsampler [46]. However, in contrast to previous vision transformers that
seek abstract semantic features, optical flow estimation requires recovering dense
correspondences from the cost memory. Inspired by RAFT [46], we propose to
use cost queries to retrieve cost features from the cost memory and iteratively
refine flow predictions with a recurrent attention decoder layer.
Cost memory aggregation. For predicting the flows of the H × W source
pixels, we generate a sequence of (H × W ) cost queries, each of which is re-
sponsible for estimating the flow of a single source pixel via co-attention on
the cost memory. To generate the cost query Qx for a source pixel x, we first
compute its corresponding location in the target image given its current esti-
mated flow f(x) as p = x+ f(x). We then retrieve a local 9× 9 cost-map patch
qx = Crop9×9(Mx,p) by cropping costs inside the 9× 9 local window centered
at p on the cost map Mx. The cost query Qx is then formulated based on
the features FFN(qx) that encoded from the local costs qx and p’s positional
embedding PE(p), which can aggregate information from source pixel x’s cost
memory Tx via cross-attention,

Qx = FFN (FFN(qx) + PE(p)) ,

Kx = FFN (Tx) , Vx = FFN (Tx) ,

cx = Attention(Qx,Kx,Vx).

(4)

The cross-attention summarizes information from the cost memory for each
source pixel to predict its flow. As Qx is dynamically updated in terms of the fed
position at each iteration, we call it as dynamic positional cost query. We note
that keys and values can be generated at the beginning and re-used in subsequent
iterations, which saves computation as a benefit of our recurrent decoder.
Recurrent flow prediction. Our cost decoder iteratively regresses flow resid-
uals ∆f(x) to refine the flow of each source pixel x as f(x) ← f(x) + ∆f(x).
We adopt a ConvGRU module and follow the similar design to that in GMA-
RAFT [25] for flow refinement. However, the key difference of our recurrent
module is the use of cost queries to adaptively aggregate information from the
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cost memory for more accurate flow estimation. Specifically, at each iteration,
the ConvGRU unit takes as input the concatenation of retrieved cost features
and cost-map patch Concat(cx,qx), the source-image context feature tx from
the context network, and the current estimated flow f , and outputs the predicted
flow residuals as follows,

∆f(x) = ConvGRU(Concat(cx,qx), tx, f(x)). (5)

The flows generated at each iteration are unsampled to the size of the source
image via a convex upsampler following [46] and supervised by ground-truth
flows at all recurrent iterations with increasing weights.

4 Experiment

We evaluate our FlowFormer on the Sintel [3] and the KITTI-2015 [14] bench-
marks. Following previous works, we train FlowFormer on FlyingChairs [12] and
FlyingThings [35], and then respectively finetune it for Sintel and KITTI bench-
mark. Flowformer achieves state-of-the-art performance on both benchmarks.
Experimental setup. We use the average end-point-error (AEPE) and F1-
All(%) metric for evaluation. The AEPE computes mean flow error over all valid
pixels. The F1-all, which refers to the percentage of pixels whose flow error is
larger than 3 pixels or over 5% of length of ground truth flows. The Sintel dataset
is rendered from the same model but in two passes, i.e. clean pass and final pass.
The clean pass is rendered with smooth shading and specular reflections. The
final pass uses full rendering settings including motion blur, camera depth-of-
field blur, and atmospheric effects.
Implementation details. The image feature encoder of our final FlowFormer
is chosen as the first two stages of ImageNet-pretrained Twins-SVT [8], which
encodes an image into Df = 256-channel feature map of 1/8 image size. The
cost volume encoder patchifies each cost map to a Dp = 64-channel feature
map and further summarizes the feature map to N = 8 cost tokens of K =
128 dimensions. Then, the cost volume encoder encodes the cost tokens with
3 AGT layers. Following previous optical flow training procedure [25], we pre-
train FlowFormer on FlyingChairs [12] for 120k iterations with a batch size of 8,
and on FlyingThings [35] for 120k iterations with a batch size of 6 (denoted as
‘C+T’). After pre-training, we finetune FlowFormer on the data combined from
FlyingThings, Sintel, KITTI-2015, and HD1K [29] (denoted as ‘C+T+S+K+H’)
for 120k iterations with a batch size of 6. To achieve the best performance on the
KITTI benchmark, we also further finetune FlowFormer on the KITTI-2015 for
50k iterations with a batch size of 6. We use the one-cycle learning rate scheduler.
The highest learning rate is set as 2.5×10−4 on FlyingChairs and 1.25×10−4 on
the other training sets. As positional encodings used in transformers are sensitive
to image size, we crop the image pairs for flow estimation and tile them to obtain
complete flows following Perceiver IO [24]. We use fixed Gaussian weights for
tile, which will be detailed in the supplementary materials.
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Training Data Method
Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)

Clean Final F1-epe F1-all Clean Final F1-all

A+S+K+H
Perceiver IO [24] - - - - 1.81 2.42 4.98
PWC-Net [42] - - - - 2.17 2.91 5.76
RAFT [46] - - - - 1.95 2.57 4.23

C+T

HD3 [55] 3.84 8.77 13.17 24.0 - - -
LiteFlowNet [21] 2.48 4.04 10.39 28.5 - - -
PWC-Net [42] 2.55 3.93 10.35 33.7 - - -
LiteFlowNet2 [22] 2.24 3.78 8.97 25.9 - - -
S-Flow [57] 1.30 2.59 4.60 15.9
RAFT [46] 1.43 2.71 5.04 17.4 - - -
FM-RAFT [26] 1.29 2.95 6.80 19.3 - - -
GMA [25] 1.30 2.74 4.69 17.1 - - -
Ours 0.95 2.35 4.09 14.72 - - -

C+T+S+K+H

LiteFlowNet2 [22] (1.30) (1.62) (1.47) (4.8) 3.48 4.69 7.74
PWC-Net+ [43] (1.71) (2.34) (1.50) (5.3) 3.45 4.60 7.72
VCN [53] (1.66) (2.24) (1.16) (4.1) 2.81 4.40 6.30
MaskFlowNet [59] - - - - 2.52 4.17 6.10
S-Flow [57] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64
RAFT [46] (0.76) (1.22) (0.63) (1.5) 1.94 3.18 5.10
FM-RAFT [26] (0.79) (1.70) (0.75) (2.1) 1.72 3.60 6.17
GMA [25] - - - - 1.40 2.88 5.15
Ours (0.48) (0.74) (0.53) (1.11) 1.14 2.18 4.68

RAFT* [46] (0.77) (1.27) - - 1.61 2.86 -
GMA* [25] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 -

Table 1: Experiments on Sintel [3] and KITTI [14] datasets. * denotes that
the methods use the warm-start strategy [46], which relies on previous image
frames in a video. ‘A’ denotes the autoflow dataset. ‘C + T’ denotes training
only on the FlyingChairs and FlyingThings datasets. ‘+ S + K + H’ denotes
finetuning on the combination of Sintel, KITTI, and HD1K training sets. Our
FlowFormer achieves best generalization performance (C+T) and ranks 1st on
the Sintel benchmark (C+T+S+K+H).

4.1 Quantitative Experiment

We evaluate FlowFormer on the well-known Sintel and KITTI benchmarks as
shown in Tab. 1. GMA [25], an improved version of RAFT [46], is the most com-
petitive flow estimation method at present. After being trained on FlyingChairs
and FlyingThings, we evaluate the generalization performance of FlowFormer
on the training set of Sintel and KITTI-2015. By further finetuning FlowFormer
on the combination of HD1K, Sintel and KITTI training sets, we compare the
dataset-specific accuracy of optical flow models. Autoflow [41] is a dataset that
provides training data covering various challenging visual disturbance, but its
training code is not released yet.

Generalization performance. We train FlowFormer on the FlyingChairs and
FlyingThings (C+T), and evaluate it on the training set of Sintel and KITTI-
2015. This settings evaluates the generalization performance of optical flow mod-
els. FlowFormer ranks 1st among all compared methods on both benchmarks.
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FlowFormer achieves 0.95 and 2.35 on the clean and final pass of Sintel. On
the KITTI-2015 training set, FlowFormer achieves 4.09 F1-epe and 14.72 F1-all.
Compared to GMA, FlowFormer reduces 26.9% and 14.2% errors on Sintel clean
and final, and 13.9% errors on KITTI-2015 F1-all, which shows its extraordinary
generalization performance.
Sintel benchmark. We finetune the pretrained FlowFormer on the combina-
tion of training data of FlyingThings, HD1K, Sintel and KITTI-2015, and then
evaluate it on the Sintel test set. FlowFormer achieves 1.14 and 2.18 on the
Sintel clean and final, 17.6% and 11.6% lower error compared to GMA∗, which
ranks both 1st on the Sintel benchmark. It is noteworthy that RAFT∗ and
GMA∗ use the warm-start strategy that requires image sequences while Flow-
Former does not. Compared with GMA, which also does not use the warm-start,
FlowFormer obtains 18.6% and 24.3% error reduction. RAFT trained on the
autoflow dataset (A+S+K+H) significantly outperforms RAFT trained on the
C+T+S+K+H on final pass because autoflow provides training image pairs that
are more challenging. We believe training FlowFormer with autoflow can achieve
better accuracy but it is not released yet.
KITTI-2015 benchmark. We further finetune the FlowFormer on the KITTI-
2015 training set after the Sintel finetuning stage and evaluate it on the KITTI
test set. FlowFormer achieves 4.68, ranking 2nd on the KITTI-2015 benchmark.
S-Flow [57] obtains slightly smaller error than FlowFormer on KITTI (−0.85%),
which, however, is significantly worse on Sintel (31.6% and 22.5% larger error
on clean and final pass). S-Flow finds corresponding points by computing the
coordinate expectation weighted by refined cost maps. Images in the KITTI
dataset are captured in urban traffic scenes, which contains objects that are
mostly rigid. Flows on rigid objects are rather simple, which is easier for cost-
based coordinate expectation, but the assumption can be easily violated in non-
rigid scenarios such as Sintel.

4.2 Qualitative Experiment

We visualize flows that estimated by our FlowFormer and GMA of three ex-
amples in Fig. 3 to qualitatively show how FlowFormer outperforms GMA. As
transformers can encode the cost information at a large perceptive field, Flow-
Former can distinguish overlapping objects via contextual information and thus
reduce the leakage of flows over boundaries. Compared with GMA, the flows
that are estimatd by FlowFormer on boundaries of the bamboo and the human
body are more precise and clear. Besides, FlowFormer can also recover motion
details that are ignored by GMA, such as the hair and the holes on the box.

4.3 Ablation Study

We conduct a series of ablation experiments in Tab. 2. We start from RAFT
as the baseline, which directly regresses residual flows with the multi-level cost
retrieval (MCR) decoder, and gradually replace its components with our pro-
posed components. We first replace RAFT’s MCR decoder with the latent cost
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(a) Input (b) FlowFormer (Ours) (c) GMA

Fig. 3: Qualitative comparison on the Sintel test set. FlowFormer greatly reduces
the flow leakage around object boundaries (pointed by red arrows) and clearer
details (pointed by blue arrows).

tokenization (LCT) part of our encoder and the cost memory decoder (CMD)
(denoted as ‘MCR→LCT+CMD’). Note that our cost memory decoder cannot
be used alone on top of the 4D cost volume of RAFT because of the too large
number of tokens. It must be combined with our latent cost tokens (Tx from
Eq. (1)). Encoding K = 8 latent tokens of D = 128 dimensions for each source
pixel achieves the best performance. Based on LCT+CMD with K = 8 and
D = 128, we replace RAFT’s CNN image feature encoder with Twins-SVT (de-
noted as ‘CNN→Twins’). We then further add attention layers of the proposed
cost volume encoder to encode and update latent cost tokens. The proposed
Alternate-Group Transformer (AGT) layer consists of two types of attention,
i.e., intra-cost-map attention and inter-cost-map attention. We first add a single
intra-cost-map attention layer (denoted as ‘+Intra.’), and then add the inter-
cost-map attention (denoted as ‘AGT×1 (+Intra.+Inter.)’, which is equivalent
to adding a single AGT layer. We then test on increasing the number of AGT
layers to 2 and 3. Following RAFT, all models are trained on FlyingChairs [12]
with 100k iterations and FlyingThings [35] with 60k iterations, and then evalu-
ated on the training set of Sintel [3] and KITTI-2015 [14].

MCR → LCT+MCD. The number of latent tokens K and token dimension D
determine how much cost volume information the cost tokens can encode. From
K = 4, D = 32 to K = 8, D = 128, the AEPE decreases because the cost tokens
summarizes more cost map information and benefits the residual flow regression.
The latent cost tokens are capable of summarizing whole-image information and
our MCD can absorb interested information from them through co-attention,
while the MCR decoder of RAFT only retrieves multi-level costs inside flow-
guided local windows. Therefore, even without our AGT layers in our encoder,
LCT+MCD still shows better performance than MCR decoder of RAFT.
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Experiment Method
Sintel (train) KITTI-15 (train)

Params.
Clean Final F1-epe F1-all

baseline RAFT 1.53 2.99 5.73 18.29 5.3M

MCR→LCT+CMD
K = 4, D = 32 1.66 2.93 5.60 19.67 5.5M
K = 8, D = 32 1.58 2.90 5.50 18.71 5.5M
K = 8, D = 128 1.44 2.80 5.22 17.64 5.6M

CNN → Twins
CNN 1.44 2.80 5.22 17.64 5.6M
Twins from Scratch 1.44 2.86 5.38 17.58 14.0M
Pretrained Twins 1.29 2.72 4.82 16.16 14.0M

Cost Encoding

None 1.29 2.72 4.82 16.16 14.0M
+Intra. 1.29 2.89 4.74 15.71 14.1M
AGT×1 (+Intra.+Inter.) 1.20 2.85 4.57 15.46 15.2M
AGT×2 1.16 2.66 4.70 16.01 16.4M
AGT×3 1.10 2.57 4.45 15.15 17.6M

Table 2: Ablation study. We gradually change one component of the RAFT at
a time to obtain our FlowFormer model. MCR→LCT+CMD: replacing RAFT’s
decoder with OUR latent cost tokens + cost memory decoder. CNN→Twins:
replacing RAFT’s CNN encoder with Twins-SVT transformer. Cost Encoding:
adding intra-cost-map and inter-cost-map to form an Alternate-Group Trans-
former layer in the encoder. 3 AGT layers are used in our final model.

CNN vs. Transformer Image Encoder. In the CNN→Twins experiment,
the AEPE of Twins trained from scratch is marginally worse than CNN, but the
ImageNet-pretraining is beneficial, because Twins is a transformer architecture
with larger receptive field and model capacity, which requires more training
examples for sufficient training.
Cost Encoding. In the cost volume encoder, we encode and update the latent
cost tokens with an intra-cost-map attention operation and an inter-cost-map
attention operation. The two operations form an Alternate-Group Transformer
(AGT) layer. Then we gradually increase the number of AGT layers to 3. From
no attention layer to AGT×3, the errors gradually decrease, which demonstrates
that encoding latent cost tokens with our AGT layers benefits flow estimation.
FlowFormer vs. GMA.We train all the models with the settings of GMA. The
full version of FlowFormer has 18.2M parameters, which is larger than GMA.
One of the causes is that FlowFormer uses the first two stages of ImageNet-
pretrained Twins-SVT as the image feature encoder while GMA uses a CNN.
We present an experiment to compare FlowFormer and GMA with aligned set-
tings in Tab. 3. We first provide a small version of FlowFormer using GMA’s
CNN image encoder and also set K = 4, D = 32, and AGT×1. Although the
smaller version of FlowFormer (denoted as ’Ours (small)’) has a significant per-
formance drop compared to the full version of FlowFormer, it still outperforms
GMA in terms of all metrics. We also design two enhanced GMA models and
compare them with the full version of FlowFormer to show that the performance
improvements are not simply derived from adding more parameters. The first
one is denoted as ‘GMA-L’, a large version of GMA and the second one is de-
noted as ‘GMA-Twins’ which also adopts the pretrained Twins as the image
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Method
Sintel (train) KITTI-15 (train)

parameters
Clean Final F1-epe F1-all

GMA [25] 1.30 (+30%) 2.74 (+12%) 4.69 (+15%) 17.1 (+16%) 5.9M
Ours (small) 1.20 (+20%) 2.64 (+8%) 4.57 (+12%) 16.62 (+13%) 6.2M
GMA-L [25] 1.33 (+33%) 2.56 (+4%) 4.40 (+8%) 15.93 (+8%) 17.0M

GMA-Twins [25] 1.15 (+15%) 2.73 (+11%) 4.98 (+22%) 16.82 (+14%) 14.2M
Ours 1.00 2.45 4.09 14.72 18.2M

Table 3: FlowFormer v.s. GMA. Ours (small) is a small version of FlowFormer
and uses the CNN image feature encoder of GMA. GMA-L is a large version
of GMA. GMA-Twins replace its CNN image feature encoder with pre-trained
Twins. (+x%) indicates that this model obtains x% larger error than ours.

encoder. In this experiment, we train all models on FlyingChairs with 120k it-
erations and FlyingThings with 120k iterations. Similar to reducing RAFT to
RAFT (small) [46], GMA-L enlarges GMA by doubling feature channels, which
has 17M parameters, comparable to FlowFormer. However, its performance de-
grades in Sintel clean, a 33% larger error than FlowFormer. GMA-Twins replaces
the CNN image encoder with the shallow Image-Net pre-trained Twins-SVT as
FlowFormer does. The largest improvement of GMA-Twins upon GMA is on the
Sintel clean, but it still has a 15% larger error than FlowFormer. GMA-Twins
does not lead to significant error reduction on other metrics and is even worse
on the KITTI-15. In conclusion, the performance improvement of FlowFormer
is not derived from more parameters but the novel design of the architecture.

5 Conclusion

We have proposed FlowFormer, a Transformer-based architecture for optical flow
estimation. FlowFormer summarizes the H ×W ×H ×W 4D cost volume built
from a pair of images as H×W ×K tokens of length D, and then efficiently and
effectively encodes the cost tokens via the alternate-group transformer (AGT).
Thanks to such design, the generated cost memory is able to grasp essential infor-
mation over the cost volume and obtain compact cost features. Finally, the cost
memory decoder absorbs cost information from the cost memory with dynamic
positional cost queries, which gets rid of the limitation of local windows, for
residual flow regression. To our best knowledge, FlowFormer is the first method
that deeply integrates transformers with cost volumes for optical flow estimation.
Thanks to the compact cost tokens and long-range relation modeling ability of
transformers, FlowFormer achieves state-of-the-art accuracy and shows strong
cross-dataset generalization.
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