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Abstract. Many learning-based algorithms have been developed to solve
the inverse problem of coded aperture snapshot spectral imaging (CASSI).
However, CNN-based methods show limitations in capturing long-range
dependencies. Previous Transformer-based methods densely sample to-
kens, some of which are uninformative, and calculate multi-head self-
attention (MSA) between some tokens that are unrelated in content. In
this paper, we propose a novel Transformer-based method, coarse-to-
fine sparse Transformer (CST), firstly embedding HSI sparsity into deep
learning for HSI reconstruction. In particular, CST uses our proposed
spectra-aware screening mechanism (SASM) for coarse patch selecting.
Then the selected patches are fed into our customized spectra-aggregation
hashing multi-head self-attention (SAH-MSA) for fine pixel clustering
and self-similarity capturing. Comprehensive experiments show that our
CST significantly outperforms state-of-the-art methods while requiring
cheaper computational costs. https://github.com/caiyuanhao1998/MST
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1 Introduction

Hyperspectral images (HSIs), which contain multiple continuous and narrow
spectral bands, can provide more detailed information of the captured scene
than normal RGB images. Based on the inherently rich and detailed spec-
tral signatures, HSIs have been widely applied to many computer vision tasks
and graphical applications, e.g., image classification [26,58,102], object track-
ing [30,40,76,77], remote sensing [4,62,74,96], medical imaging [1,54,65], etc.

To collect HSI cubes, traditional imaging systems scan the scenes with mul-
tiple exposures using 1D or 2D sensors. This imaging process is time-consuming
and limited to static objects [38]. Thus, conventional imaging systems cannot
capture dynamic scenes. Recently, researchers have developed several snapshot
compressive imaging (SCI) systems to capture HSIs, where the 3D HSI cube
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Fig. 1: Diagram of our coarse-to-fine learning scheme. (a) The image is firstly
partitioned into patches. Then the informative patches (yellow) are screened out.
(b) Tokens with correlated content are clustered into the same bucket (B1 ∼ B5).

is compressed into a single 2D measurement [10,11,59,79]. Among these SCI
systems, coded aperture snapshot spectral imaging (CASSI) stands out as a
promising solution and has become an active research direction [31,37,64,79].
CASSI systems modulate HSI signals at different wavelengths by a coded aper-
ture (physical mask) and then vary the modulation by a disperser, i.e., to shift
the modulated images at different wavelengths to different spatial locations on
the detector plane. Subsequently, a reconstruction algorithm is used to restore
the 3D HSI cube from the 2D compressive image, which is a core task in CASSI.

To solve this ill-posed inverse problem, traditional methods [51,83,94] mainly
depend on hand-crafted priors and assumptions. The main drawbacks of these
model-based methods are that they need to tweak parameters manually, leading
to poor generality and slow reconstruction speed. In recent years, deep learning
methods have shown the potential to speed up the reconstruction and improve
restoration quality for natural images [5,34,35,36,71,98,99,100,101,103,104]. Thus,
convolutional neural networks (CNNs) have been used to learn the underlying
mapping function from the measurement to the HSI signal. Nonetheless, these
CNN-based methods show limitations in capturing long-range dependencies.

In the past few years, the natural language processing (NLP) model Trans-
former [78] has achieved great success in computer vision. Transformer provides
a powerful model that excels at exploring global inter-dependence between dif-
ferent regions to alleviate the constraints of CNN-based methods. Yet, directly
applying vision Transformers to HSI reconstruction encounters two main issues.
Firstly, HSI signals exhibit high spatial sparsity as shown in Fig. 1 (a). Some
dark regions are almost uninformative. However, previous local [52] or global [22]
Transformers process all spatial pixel vectors inside non-overlapping windows or
global images into tokens without screening and then feed the tokens into the
multi-head self-attention (MSA) mechanism. Many regions with limited infor-
mation are sampled, which degrades the model efficiency and limits the recon-
struction performance. Secondly, previous Transformers linearly project all the
tokens into query, key, and value, and then perform matrix multiplication for
calculating MSA without clustering. Yet, some of the tokens are not related in
content. Attending to all these tokens at once lowers down the cost-effectiveness
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of model and may easily lead to over-smooth results [45]. Besides, the compu-
tational complexity of global Transformer [22] is quadratic to the spatial dimen-
sions, which is nontrivial and sometimes unaffordable. MST [6] calculates MSA
along the spectral dimension, thus circumventing the HSI spatial sparsity.

Hence, how to combine HSI sparsity with learning-based algorithms still re-
mains under-explored. This work aims to investigate this problem and cope with
the limitations of existing CNN-based and Transformer-based methods.

In this paper, we propose a novel method, coarse-to-fine sparse Transformer
(CST), for HSI reconstruction. Our CST composes two key techniques. Firstly,
due to the large variation in HSI informativeness of spatial regions, we propose a
spectra-aware screening mechanism (SASM) for coarse patch selecting. To be spe-
cific, in Fig. 1 (a), our SASM partitions the image into non-overlapping patches
and then detects the patches that are informative of HSI representations. Subse-
quently, only the detected patches (yellow) are fed into the self-attention mecha-
nisms to decrease the inefficient calculation of uninformative regions (green) and
promote the model cost-effectiveness. Secondly, instead of using all projected
tokens at once like previous Transformers, we aim to calculate self-attention
of tokens that are closely related in content. Toward this end, we customize
spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel
clustering as shown in Fig. 1 (b). SAH-MSA learns to cluster tokens into dif-
ferent groups (termed buckets in this paper) by searching similar elements that
produce the max inner product. Tokens inside each bucket are considered closely
related in content. Then the MSA operation is applied within each bucket. Fi-
nally, with the proposed techniques, we enable a coarse-to-fine learning scheme
that embeds the HSI spatial sparsity into learning-based methods. We establish
a series of small-to-large CST families that outperform state-of-the-art (SOTA)
methods while requiring much cheaper computational costs.

The main contributions of this work can be summarized as follows:

– We propose a novel Transformer-based method, CST, for HSI reconstruction.
To the best of our knowledge, it is the first attempt to embed the HSI spatial
sparsity nature into learning-based algorithms for this task.

– We present SASM to locate informative regions with HSI signals.
– We customize SAH-MSA to capture interactions of closely related patterns.
– Our CST with much lower computational complexity significantly surpasses

SOTA algorithms on all scenes in simulation. Moreover, our CST yields more
visually pleasant results than existing methods in real HSI restoration.

2 Related Work

2.1 Hyperspectral Image Reconstruction

Conventional HSI reconstruction methods [3,27,50,51,83,94] rely on hand-crafted
image priors. Nonetheless, these traditional model-based methods suffer from
low reconstruction speed and poor generalization ability. Recently, CNNs have
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been used to solve the inverse problem of spectral SCI. These CNN-based al-
gorithms can be divided into three categories, i.e., end-to-end (E2E) meth-
ods, deep unfolding methods, and plug-and-play (PnP) methods. E2E algo-
rithms [6,29,33,64,67,89] apply a deep CNN as a powerful model to learn the E2E
mapping function of HSI restoration. Deep unfolding methods [7,28,37,57,63,82]
employ multi-stage CNNs trained to map the measurements into the desired
signal. Each stage contains two parts, i.e., linear projection and passing the
signal through a CNN functioning as a denoiser. PnP methods [13,72,95] plug
pre-trained CNN denoisers into model-based methods to solve the HSI recon-
struction problem. Nevertheless, these CNN-based algorithms show limitations
in capturing long-range spatial dependencies and modeling the non-local self-
similarity. Besides, the sparsity property of HSI representations is not well ad-
dressed, posing a low-efficiency problem to HSI reconstruction models.

2.2 Vision Transformer

Transformer [78] is proposed for machine translation in NLP. Recently, it has
gained much popularity in computer vision because of its superiority in model-
ing long-range interactions between spatial regions. Vision Transformer has been
widely applied in image classification [2,14,22,23,32,43,73,86,87], object detec-
tion [12,19,20,25,68,69,93,108], semantic segmentation [17,52,55,75,88,92,97,107],
human pose estimation [8,39,44,46,49,56,60,106], and so on. Besides high-level vi-
sion, Transformer has also been used in image restoration [6,9,15,21,47,48,80,84].
For example, Cai et al. [6] propose the first Transformer-based model MST for
HSI reconstruction. MST treats spectral maps as tokens and calculates the self-
attention along the spectral dimension. However, existing Transformers densely
sample tokens, some of which corresponding to the regions with limited informa-
tion, and calculate MSA between some tokens that are unrelated in content. How
to embed HSI spatial sparsity into Transformer to boost the model efficiency still
remains under-studied. Our work aims to fill this research gap.

3 Mathematical Model of CASSI

The input HSI is denoted as F ∈ RH×W×Nλ , where H, W , and Nλ refer to the
HSI’s height, width, and number of wavelengths, respectively. Firstly, a coded
aperture M∗ ∈ RH×W is used to modulate F along the channel dimension:

F′(:, :, nλ) = F(:, :, nλ)⊙M∗, (1)

where F′ ∈ RH×W×Nλ indicates the modulated signals, nλ ∈ [1, . . . , Nλ] indexes
the spectral wavelengths, and ⊙ represents the element-wise product. After un-
dergoing the disperser, F′ becomes tilted and could be treated as sheared along
the y-axis. We denote this tilted data cube as F′′ ∈ RH×(W+d(Nλ−1))×Nλ , where
d refers to the step of spatial shifting. Suppose λc is the reference wavelength,
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which means that F′′(:, :, nλc
) works like an anchor image that is not sheared

along the y-axis. Then the dispersion can be formulated as

F′′(u, v, nλ) = F′(x, y + d(λn − λc), nλ), (2)

where (u, v) locates the coordinate on the sensoring detector, λn represents the
wavelength of the nλ-th channel, and d(λn − λc) refers to the spatial shifting
offset of the nλ-th channel on F′′. Eventually, the data cube is compressed into
a 2D measurement Y ∈ RH×(W+d(Nλ−1)) by integrating all the channels as

Y =

Nλ∑
nλ=1

F′′(:, :, nλ) +G, (3)

where G ∈ RH×(W+d(Nλ−1)) is the random noise generated during the imaging
process. Given the 2D measurement Y captured by CASSI, the core task of HSI
reconstruction is to restore the 3D HSI data cube F as mentioned in Eq. (1).

4 Method

As shown in Fig. 2. CST consists of two key components, i.e., spectra-aware
screening mechanism (SASM) for coarse patch selecting and spectra-aggregation
hashing multi-head self-attention (SAH-MSA) for fine pixel clustering. Fig. 2
(a) depicts SASM and the network architecture of CST. Fig. 2 (b) shows the
basic unit of CST, spectra-aware hashing attention block (SAHAB). Fig. 2 (c)
illustrates our SAH-MSA, which is the most important component of SAHAB.

4.1 Network Architecture

Given a 2D measurement Y ∈ RH×(W+d(Nλ−1)), we reverse the dispersion in
Eq. (2) and shift back Y to obtain an initialized input signal H ∈ RH×W×Nλ as

H(x, y, nλ) = Y(x, y − d(λn − λc)).

Then H concatenated with the 3D physical mask M ∈ RH×W×Nλ (copy the
physical mask M∗ Nλ times) passes through a conv1×1 (convolutional layer
with kernel size = 1×1) to generate the initialized feature X ∈ RH×W×Nλ .

Firstly, a sparsity estimator is developed to process X into a sparsity mask
Ms ∈ RH×W and shallow feature X0 ∈ RH×W×C . The sparsity estimator is de-
tailed in Sec. 4.2. Secondly, the shallow feature X0 passes through a three-stage
symmetric encoder-decoder and is embedded into deep feature Xd ∈ RH×W×C .
The i-th stage of encoder or decoder contains Ni SAHABs. As shown in Fig. 2
(b), SAHAB consists of two layer normalization (LN), an SAH-MSA, and a Feed-
Forward Network (FFN). The encoder features are aggregated with the decoder
features via the identity connection. Finally, a conv3 × 3 is applied to Xd to
produce the residual HSIs R ∈ RH×W×Nλ . Then the reconstructed HSIs X′ can
be obtained by the sum of R and X , i.e., X′ = X+R.

In our implementation, we change the combination (N1,N2,N3) in Fig. 2
(a) to establish CST families with small, medium, and large model sizes and
computational costs. They are CST-S (1,1,2), CST-M (2,2,2), and CST-L (2,4,6).
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Fig. 2: Framework of CST. (a) Spectra-aware screening mechanism (SASM) and
the architecture of CST. (b) The components of spectra-aware hashing attention
block (SAHAB), which is the basic unit of CST. (c) Spectra-aggregation hashing
multi-head self-attention (SAH-MSA) is the key component of SAHAB.

4.2 Spectra-Aware Screening Mechanism

The original global Transformer [22] samples all tokens on the feature map while
the window-based local Transformer [52] samples all tokens inside every non-
overlapping window. These Transformers sample many uninformative regions to
calculate MSA, which degrades the model efficiency. To cope with this problem,
we propose SASM for coarse patch selecting, i.e., screening out regions with
dense HSI information to produce tokens. In this section, we introduce SASM
in three parts, i.e., sparsity estimator, sparsity loss, and patch selection.

Sparsity Estimator. As shown in Fig. 2 (a), the sparsity estimator adopts a
U-shaped structure including a two-stage encoder, an ASSP module [16], and
a two-stage decoder. Each stage of the encoder consists of two conv1×1 and
a strided depth-wise conv3×3. Each stage of the decoder contains a strided
deconv2×2, two conv1×1, and a depth-wise conv3×3. The sparsity estimator
takes the initialized feature X as the input to produce shallow feature X0 and
sparsity mask Ms that localizes and screens out informative spatial regions with
HSI representations. We achieve this by minimizing our proposed sparsity loss.

Sparsity Loss. To supervise Ms, we need a reference that can tell where the
spatially sparse HSI information on the HSI is. Since the background is dark and
uninformative, the regions with HSI representations are roughly equivalent to
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the regions that are hard to reconstruct. This statement can be verified by the
visual analysis of sparsity mask in Sec. 5.4. Therefore, we design our reference
signal M∗

s ∈ RH×W by averaging the differences between the reconstructed HSIs
X′ and the ground-truth HSIs X∗ along the spectral dimension to avoid bias as

M∗
s =

1

Nλ

Nλ∑
nλ=1

|X′(:, :, nλ)−X∗(:, :, nλ)|. (4)

Subsequently, our sparsity loss Ls is constructed as the mean squared error
between the predicted sparsity mask Ms and the reference sparsity mask M∗

s as

Ls = ||Ms −M∗
s||2. (5)

By minimizing Ls, the sparsity estimator is encouraged to detect the foreground
hard-to-reconstruct regions with HSI representations. In addition, the overall
training objective L is the weighted sum of Ls and L2 loss as

L = L2 + λ · Ls = ||X′ −X∗||2 + λ · ||Ms −M∗
s||2, (6)

where X∗ represents the ground-truth HSIs and λ refers to the hyperparameter
that controls the importance balance between L2 and Ls.

Patch Selection. Our SASM partitions the feature map into non-overlapping
patches at the size of M × M . Then the patches with HSI representations are
screened out by the predicted sparsity maskMs and fed into SAH-MSA as shown
in Fig. 2 (b). To be specific, Ms is firstly downsampled by average pooling and

then binarized into Md ∈ R H
M ×W

M . We use a hyperparameter, sparsity ratio σ,
to control the binarization. More specifically, we select the top k patches with
the highest values on the downsampled sparsity mask. k is controlled by σ that
k = ⌊(1 − σ)HW

M2 ⌋. Each pixel on Md corresponds to an M × M patch on the
feature map and its 0-1 value classifies whether this patch is screened out. Then
Md is applied to the SAH-MSA of each SAHAB. When Md is used in the i-th
stage (i > 1), an average pooling operation is exploited to downsample Md into

1
2i−1 size to match the spatial resolution of the feature map of the i-th stage.

4.3 Spectra-Aggregation Hashing Multi-head Self-Attention.

Previous Transformers calculate MSA between all the sampled tokens, some
of which are even unrelated in content. This may lead to inefficient computa-
tion that lowers down the model cost-effectiveness and easily hamper conver-
gence [108]. The sparse coding methods [24,61,90,91,105] assume that image sig-
nals can be represented by a sparse linear combination over dictionary signals.
Inspired by this, we propose SAH-MSA for fine pixel clustering. SAH-MSA
enforces a sparsity constraint on the MSA mechanism. In particular, SAH-MSA
only calculates self-attention between tokens that are closely correlated in con-
tent, which addresses the limitation of previous Transformers.
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Our SAH-MSA learns to cluster tokens into different buckets by searching
elements that produce the max inner product. As shown in Fig. 2 (c), We denote
a patch feature map asXp ∈ RM×M×C that is screened out by the sparsity mask.
We reshape Xp into Xr ∈ RN×C , where N = M ×M is the number of elements.
Subsequently, we use a hash function to aggregate the information in spectral
wise and map a C-dimensional element (pixel vector) x ∈ RC into an integer
hash code. We formulate this hash mapping h : RC → Z as

h(x) = ⌊a · x+ b

r
⌋, (7)

where r ∈ R is a constant, a ∈ RC and b ∈ R are random variables satisfying a =
(a1, a2, ..., aC) with ai ∼ N (0, 1) and b ∼ U(0, r) follows a uniform distribution.
Then we sort the elements in Xr according to their hash codes. The i-th sorted
element is denoted as xi ∈ RC . Then we split the elements into buckets as

Bi = {xj : im+ 1 ≤ j ≤ (i+ 1)m}, (8)

where Bi represents the i-th bucket. Each bucket has m elements. There are
M×M

m buckets in total. With our hash clustering scheme, the closely content-
correlated tokens are grouped into the same bucket. Therefore, the model can
reduce the computational burden between content-unrelated elements by only
applying the MSA operation to the tokens within the same bucket. More specif-
ically, for a query element q ∈ Bi, our SAH-MSA can be formulated as

SAH-MSA(q,Bi) =

N∑
n=1

Wn headn(q,Bi), (9)

where N is the number of attention heads. Wn ∈ RC×d and W′
n ∈ Rd×C are

learnable parameters, where d = C
N denotes the dimension of each head. Anqk

and headn refer to the attention and output of the n-th head, formulated as

Anqk = softmax
k∈Bi

(
qTUT

nVnk√
d

), headn(q,Bi) =
∑
k∈Bi

AnqkW
′
nk, (10)

where Un and Vn ∈ Rd×C are learnable parameters. With our hashing scheme,
the similar elements are at small possibility to fall into different buckets. This
probability can be further reduced by conducting multiple rounds of hashing in
parallel [42]. Br

i denotes the i-th bucket of the r-th round. Then for each head,
the multi-round output is the weighted sum of each single-round output, i.e.,

headn(q,Bi) =

R∑
r=1

wr
n headn(q,B

r
i ), (11)

where R refers to the round number and wr
n represents the weight importance of

the r-th round in the n-th head, which scores the similarity between the query
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Table 1: Comparisons of Params, FLOPS, PSNR (upper entry in each cell), and
SSIM (lower entry in each cell) of different methods on 10 simulation scenes
(S1∼S10). Best results are in bold. * denotes setting the sparsity ratio to 0.

Algorithms Params GFLOPS S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Avg

TwIST [3] - -
25.16
0.700

23.02
0.604

21.40
0.711

30.19
0.851

21.41
0.635

20.95
0.644

22.20
0.643

21.82
0.650

22.42
0.690

22.67
0.569

23.12
0.669

GAP-TV [94] - -
26.82
0.754

22.89
0.610

26.31
0.802

30.65
0.852

23.64
0.703

21.85
0.663

23.76
0.688

21.98
0.655

22.63
0.682

23.10
0.584

24.36
0.669

DeSCI [50] - -
27.13
0.748

23.04
0.620

26.62
0.818

34.96
0.897

23.94
0.706

22.38
0.683

24.45
0.743

22.03
0.673

24.56
0.732

23.59
0.587

25.27
0.721

λ-net [67] 62.64M 117.98
30.10
0.849

28.49
0.805

27.73
0.870

37.01
0.934

26.19
0.817

28.64
0.853

26.47
0.806

26.09
0.831

27.50
0.826

27.13
0.816

28.53
0.841

HSSP [81] - -
31.48
0.858

31.09
0.842

28.96
0.823

34.56
0.902

28.53
0.808

30.83
0.877

28.71
0.824

30.09
0.881

30.43
0.868

28.78
0.842

30.35
0.852

DNU [82] 1.19M 163.48
31.72
0.863

31.13
0.846

29.99
0.845

35.34
0.908

29.03
0.833

30.87
0.887

28.99
0.839

30.13
0.885

31.03
0.876

29.14
0.849

30.74
0.863

DIP-HSI [66] 33.85M 64.42
32.68
0.890

27.26
0.833

31.30
0.914

40.54
0.962

29.79
0.900

30.39
0.877

28.18
0.913

29.44
0.874

34.51
0.927

28.51
0.851

31.26
0.894

TSA-Net [64] 44.25M 110.06
32.03
0.892

31.00
0.858

32.25
0.915

39.19
0.953

29.39
0.884

31.44
0.908

30.32
0.878

29.35
0.888

30.01
0.890

29.59
0.874

31.46
0.894

DGSMP [37] 3.76M 646.65
33.26
0.915

32.09
0.898

33.06
0.925

40.54
0.964

28.86
0.882

33.08
0.937

30.74
0.886

31.55
0.923

31.66
0.911

31.44
0.925

32.63
0.917

HDNet [33] 2.37M 154.76
35.14
0.935

35.67
0.940

36.03
0.943

42.30
0.969

32.69
0.946

34.46
0.952

33.67
0.926

32.48
0.941

34.89
0.942

32.38
0.937

34.97
0.943

MST-S [6] 0.93M 12.96
34.71
0.930

34.45
0.925

35.32
0.943

41.50
0.967

31.90
0.933

33.85
0.943

32.69
0.911

31.69
0.933

34.67
0.939

31.82
0.926

34.26
0.935

MST-M [6] 1.50M 18.07
35.15
0.937

35.19
0.935

36.26
0.950

42.48
0.973

32.49
0.943

34.28
0.948

33.29
0.921

32.40
0.943

35.35
0.942

32.53
0.935

34.94
0.943

MST-L [6] 2.03M 28.15
35.40
0.941

35.87
0.944

36.51
0.953

42.27
0.973

32.77
0.947

34.80
0.955

33.66
0.925

32.67
0.948

35.39
0.949

32.50
0.941

35.18
0.948

CST-S 1.20M 11.67
34.78
0.930

34.81
0.931

35.42
0.944

41.84
0.967

32.29
0.939

34.49
0.949

33.47
0.922

32.89
0.945

34.96
0.944

32.14
0.932

34.71
0.940

CST-M 1.36M 16.91
35.16
0.938

35.60
0.942

36.57
0.953

42.29
0.972

32.82
0.948

35.15
0.956

33.85
0.927

33.52
0.952

35.28
0.946

32.84
0.940

35.31
0.947

CST-L 3.00M 27.81
35.82
0.947

36.54
0.952

37.39
0.959

42.28
0.972

33.40
0.953

35.52
0.962

34.44
0.937

33.83
0.959

35.92
0.951

33.36
0.948

35.85
0.954

CST-L∗ 3.00M 40.10
35.96
0.949

36.84
0.955

38.16
0.962

42.44
0.975

33.25
0.955

35.72
0.963

34.86
0.944

34.34
0.961

36.51
0.957

33.09
0.945

36.12
0.957

element q and the elements belonging to bucket Br
i . w

r
n can be obtained by

wr
n =

∑
k∈Br

i
Anqk∑R

r̂=1

∑
k∈Br̂

i
Anqk

. (12)

5 Experiment

5.1 Experiment Settings

The same with TSA-Net [64], 28 wavelengths from 450 nm to 650 nm are derived
by spectral interpolation manipulation for simulation and real experiments.
Synthetic Data. Two HSI datasets, CAVE [70] and KAIST [18], are adopted
for simulation experiments. CAVE contains 32 HSIs with spatial size 512×512.
KAIST is composed of 30 HSIs with spatial size 2704×3376. Similar to [6,37,64],
CAVE is used for training and 10 scenes from KAIST are selected for testing.
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RGB Image Measurement
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 Twist, corr: 0.9902
 DGSMP, corr: 0.9036
 CST-L, corr: 0.9937

Fig. 3: Reconstructed simulation HSI comparisons of Scene 2 with 4 out of 28
spectral channels. 7 SOTA methods and CST-L are included. Please zoom in.

Real Data. We adopt the real HSI dataset collected by TSA-Net [64].
Evaluation Metrics. We use peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM) [85] as metrics to evaluate HSI reconstruction methods.
Implementation Details. Our CST models are implemented by Pytorch. They
are trained with Adam [41] optimizer (β1 = 0.9 and β2 = 0.999) using Cosine
Annealing scheme [53] for 500 epochs. The learning rate is initially set to 4×10−4.
In simulation experiments, patches at the spatial size of 256×256 are randomly
cropped from the 3D HSI cubes with 28 channels as training samples. For real
HSI reconstruction, we set the spatial size of patches to 660×660 with the same
size of the real physical mask. We set the shifting step d in the dispersion to 2.
The batch size is set to 5. r and m in Eq. (7) and (8) are set to 1 and 64. The
training data is augmented with random rotation and flipping.

5.2 Quantitative Results

We compare our CST with SOTA methods, including three model-based meth-
ods (TwIST [3], GAP-TV [94], and DeSCI [50]), six CNN-based methods (λ-
net [67], HSSP [81], DNU [82], PnP-DIP-HSI [66], TSA-Net [64], DGSMP [37]),
and a recent Transformer-based method (MST [6]). For fairness, we test all these
algorithms with the same settings as [6,37]. The results on 10 simulation scenes
are reported in Tab. 1. As can be seen: (i)When we set the sparsity ratio to 0, our
best model CST-L∗ achieves very impressive results, i.e., 36.12 dB in PSNR and
0.957 in SSIM, showing the effectiveness of our method. (ii) Our CST families
significantly outperform other SOTA algorithms while requiring cheaper compu-
tational costs. Particularly, when compared to the recent best Transformer-based
method MST, our CST-S, CST-M, and CST-L achieve 0.45, 0.37, and 0.67 dB
improvements while costing 1.29G, 1.16G, and 0.34G less FLOPS than MST-S,
MST-M, and MST-L. When compared to CNN-based methods, our CST ex-
hibits extreme efficiency advantages. For instance, CST-L outperforms DGSMP,
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RGB Image

Measurement TwiST GAP-TV DeSCI 𝜆-Net HSSP TSA-Net DGSMP CST-L

476.5 nm

536.5 nm

584.5 nm

648.0 nm

Fig. 4: Reconstructed real HSI comparisons of Scene 1 with 4 out of 28 spectral
channels. 7 SOTA methods and CST-L are included. Zoom in for a better view.

TSA-Net, and λ-Net by 3.22, 4.39, and 7.32 dB while costing 79.8% (3.00 /
3.76), 6.8%, 4.8% Params and 4.3% (27.81 / 646.65), 25.3%, 23.6% FLOPS.
Surprisingly, even our smallest model CST-S surpasses DGSMP, TSA-Net, and
λ-Net by 2.08, 3.25, and 6.18 dB while requiring 31.9%, 2.7%, 1.9% Params
and 1.8%, 10.6%, 9.9% FLOPS. These results demonstrate the cost-effectiveness
superiority of our CST. This is mainly because CST embeds the HSI sparsity
into the learning-based model, which reduces the inefficient computation of less
informative dark regions and self-attention between content-unrelated tokens.

5.3 Qualitative Results

Simulation HSI Restoration. Fig. 3 compares the restored simulation HSIs
of our CST-L and seven SOTA algorithms on Scene 2 with 4 out of 28 spec-
tral channels. It can be observed from the reconstructed HSIs (right) and the
zoomed-in patches in the yellow boxes that CST is effective in producing per-
ceptually pleasant images with more sharp edge details while maintaining the
spatial smoothness of the homogeneous regions without introducing artifacts. In
contrast, other methods fail to restore fine-grained details. They either achieve
over-smooth results sacrificing structural contents and high-frequency details, or
generate blotchy textures and chromatic artifacts. Besides, Fig. 3 depicts the
spectral density curves (bottom-left) corresponding to the selected region of the
green box in the RGB image (top-left). CST achieves the highest correlation coef-
ficient with the ground-truth. This evidence demonstrates the spectral-dimension
consistency reconstruction effectiveness of our proposed CST.

Real HSI Restoration. We also evaluate our CST in real HSI reconstruction.
Following the setting of [6,37,64], we re-train our CST-L with all samples of



12 Yuanhao Cai∗ and Jing Lin∗ et al.

Table 2: Ablations. Models are trained on CAVE and tested on KAIST.
(a) Break-down ablation study.

Method Baseline + SAH-MSA + SASM

PSNR 32.57 35.53 35.31 (↓ 0.60 %)
SSIM 0.906 0.948 0.947 (↓ 0.10 %)
Params (M) 0.51 1.36 1.36 (↓ 0.00 %)
FLOPS (G) 6.40 24.60 16.91 (↓ 31.3 %)

(b) Ablation study of sparse mechanisms.

Method Baseline Random Sparsity Uniform Sparsity SASM

PSNR 32.57 34.37 34.33 35.31
SSIM 0.906 0.937 0.936 0.947
Params (M) 0.51 1.36 1.36 1.36
FLOPS (G) 6.40 16.89 16.89 16.91

(c) Ablation study of self-attention mechanisms.

Method Baseline G-MSA W-MSA Swin-MSA S-MSA SAH-MSA

PSNR 32.57 35.04 35.02 35.12 35.21 35.53
SSIM 0.906 0.944 0.943 0.945 0.946 0.948
Params (M) 0.51 1.85 1.85 1.85 1.66 1.36
FLOPS (G) 6.40 35.58 24.98 24.98 24.74 24.60

(d) Study of clustering scope.

Method Baseline Global Local

PSNR 32.57 35.33 35.53
SSIM 0.906 0.946 0.948
Params (M) 0.51 1.36 1.36
FLOPS (G) 6.40 24.60 24.60

the KAIST and CAVE datasets. To simulate real CASSI, 11-bit shot noise is
injected into the measurement during the training procedure. The reconstructed
HSI comparisons are depicted in Fig. 4. Our CST-L shows significant advantages
in fine-grained content restoration and real noise removal.

5.4 Ablation Study

We adopt the simulation HSI datasets [18,70] to conduct ablation studies. The
baseline model is derived by removing our SAH-MSA and SASM from CST-M.

Break-down Ablation. We firstly perform a break-down ablation to investi-
gate the effect of each component and their interactions. The results are listed in
Tab. 2a. The baseline model yields 32.57 dB in PSNR and 0.906 in SSIM. When
SAH-MSA is applied, the performance gains by 2.96 dB in PSNR and 0.042 in
SSIM, showing its significant contribution. When we continue to exploit SASM,
the computational cost dramatically declines by 31.3% (7.69 / 24.60) while the
performance only degrades by 0.6 % in PSNR and 0.1% in SSIM. This evidence
suggests that our SASM can reduce the computational burden while sacrificing
minimal reconstruction performance, thus increasing the model efficiency.

Sparsity Scheme Comparison. We conduct ablation to study the effects of
sparsity schemes including: (i) random sparsity, i.e., the patches to be calculated
are randomly selected, (ii) uniform sparsity, i.e., the patches to be calculated are
uniformly distributed, and (iii) our SASM. The results are listed in Tab. 2b. Our
SASM yields the best results and drastically outperforms other schemes (over 0.9
dB). Additionally, we conduct visual analysis of the sparsity mask generated by
the three sparsity schemes. As depicted in Fig. 5, the sparsity mask produced by
our SASM generates more complete and accurate responses to the informative
regions with HSI information. In contrast, both random and uniform sparsity
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RGB Image Uniform Sparsity Random Sparsity SASM (Ours) RGB Image Uniform Sparsity Random Sparsity SASM (Ours)

Fig. 5: Visual analysis of uniform sparsity scheme, random sparsity scheme,
and our SASM. We visualize the sparsity masks produced by different sparsity
schemes. Yellow indicates the patch is selected while green means vice versa.

schemes are not aware of HSI signals and rigidly pick the preset positions. These
results demonstrate the superiority of our SASM in perceiving spatially sparse
HSI signals and locating regions with dense HSI representations.

Self-Attention Mechanism Comparison. We compare our SAH-MSA with
other self-attention mechanisms. The results are reported in Tab. 2c. The base-
line yields 32.57 dB with 0.51 M Params and 6.40 G FLOPS. We respectively
apply global MSA (G-MSA) [22], local window-based MSA (W-MSA) [52], Swin-
MSA [52], spectral-wise MSA (S-MSA) [6], and SAH-MSA. Our SAH-MSA yields
the most significant improvement but requires the cheapest FLOPS and Params.
Please note that we downscale the input feature of G-MSA into 1

4 size to avoid
memory bottlenecks. This evidence shows the cost-effectiveness advantage of
SAH-MSA, which is mainly because SAH-MSA applies MSA calculation be-
tween tokens that are closely related in content within each bucket while cutting
down the burden of computation between content-uncorrelated elements.

Clustering Scope. We study the effect of the scope of clustering, i.e., local
vs. global. Local means constraining the hash clustering operation inside each
M ×M patch while global indicates applying the hash clustering to the whole
image. In the beginning, we thought that expanding the receptive field would
improve the performance. However, the experimental results in Tab. 2d point
out the opposite. The model with local clustering scope performs better. We
now analyze the reason for this observation. The hash clustering is essentially a
linear dimension reduction (h : RC → Z) suffering from limited discriminative
ability. It is suitable for simple, linearly separable situations with a small number
of samples. When the clustering scope is enlarged from the local patch to the
global image, the number of tokens increases dramatically (M×M → H×W ). As
a result, the situation becomes more complex and may be linearly inseparable.
Thus, the hash clustering performance degrades. Then the elements clustered
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Fig. 6: Parameter analysis of sparsity ratio σ, round number R, patch size M ,
and loss weight λ. The vertical axis is PNSR. The circle radius is FLOPS.

into the same bucket are less content-related and the MSA calculation of each
bucket becomes less effective, leading to the degradation of HSI restoration.

Parameter Analysis. We adopt CST-M to conduct parameter analysis of
sparsity rate σ, round number R in Eq. (11), patch size M , and loss weight λ
in Eq. (6) as shown in Fig 6, where the vertical axis is PSNR and the circle
radius is FLOPS. As can be observed: (i) When increasing σ, the computational
cost declines but the performance is sacrificed. When σ is larger than 50%, the
performance degrades dramatically. (ii) When changing R from 1 to 6, the re-
construction quality increases. Nonetheless, when R ≥ 2, further increasing R
does not lead to a significant improvement. (iii) The two maximums are achieved
when M = 16 and λ = 2, respectively, without costing too much FLOPS. Since
our goal is not to pursue the best results with heavy computational burden sac-
rificing the model efficiency but to yield a better trade-off between performance
and computational cost, we finally set σ = 0.5, R = 2, M = 16, and λ = 2.

6 Conclusion

In this paper, we investigate a critical problem in HSI reconstruction, i.e., how
to embed HSI sparsity into learning-based algorithms. To this end, we propose a
novel Transformer-based method, named CST, for HSI restoration. CST firstly
exploits SASM to detect informative regions with HSI representations. Then
the detected patches are fed into our SAH-MSA to cluster spatially scattered to-
kens with closely correlated contents for calculating MSA. Extensive quantitative
and qualitative experiments demonstrate that our CST significantly outperforms
other SOTA methods while requiring cheaper computational costs. Additionally,
our CST yields more visually pleasing results with more fine-grained details and
structural contents than existing algorithms in real-world HSI reconstruction.
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