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Abstract. Video shadow detection aims to generate consistent shadow
predictions among video frames. However, the current approaches suffer
from inconsistent shadow predictions across frames, especially when the
illumination and background textures change in a video. We make an
observation that the inconsistent predictions are caused by the shadow
feature inconsistency, i.e., the features of the same shadow regions show
dissimilar proprieties among the nearby frames. In this paper, we present
a novel Shadow-Consistent Correspondence method (SC-Cor) to en-
hance pixel-wise similarity of the specific shadow regions across frames
for video shadow detection. Our proposed SC-Cor has three main advan-
tages. Firstly, without requiring the dense pixel-to-pixel correspondence
labels, SC-Cor can learn the pixel-wise correspondence across frames in
a weakly-supervised manner. Secondly, SC-Cor considers intra-shadow
separability, which is robust to the variant textures and illuminations in
videos. Finally, SC-Cor is a plug-and-play module that can be easily inte-
grated into existing shadow detectors with no extra computational cost.
We further design a new evaluation metric to evaluate the temporal sta-
bility of the video shadow detection results. Experimental results show
that SC-Cor outperforms the prior state-of-the-art method, by 6.51% on
IoU and 3.35% on the newly introduced temporal stability metric.

Keywords: Shadow detection, video understanding, and correspondence
learning.

1 Introduction

Shadows in natural images or videos present different colors and brightness.
Known where the shadow is, we can infer light source directions [26, 36], scene
geometry [22, 35, 21], and camera locations or parameters [21]. Therefore, shadow
detection has attracted a lot of attention and achieved remarkable progress.
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Fig. 1: Comparison of correspondences and results of TVSD [7] and Ours. We
compute the brightness of four selected frames. Green and blue values indicate
the non-shadow and shadow regions respectively. Given a query shadow region
in the t-th frame, i.e., the orange pentagram, we find the most similar features in
nearby frames for the query, and regard the found features as its correspondences.
“TVSD-Corr” and “Ours-Corr” indicate the correspondences found by TVSD [7]
and our method respectively. “TVSD-result” and “Our-result” refer to the results
predicted by TVSD and our method. It is clear that the found correspondences
in the (t + 3)-th frame are in non-shadow regions (dark areas). This shadow
features inconsistency, i.e., features of the same shadow region may be dissimilar
across frames, would result inconsistent prediction (red boxes). Our method can
address the shadow feature inconsistency, and generate the contiguous results.

However, most of the recent methods [55, 23, 45, 33, 8, 16, 56] detect shadows from
single images while shadow detection over dynamic scenes, i.e., in videos, is less
explored.

To explore the powerful representation capability of deep learning for video
shadow detection (VSD), Chen et al. [7] collect a large-scale video shadow de-
tection (ViSha) dataset covering various scenarios. Then, a global contrastive
objective is applied on the frame-level, which enhances the similarity between
frames in the same video and push away the representations of frames from
different videos. However, video shadow detection is a fine-grained pixel-level
detection task, this frame-level semantic constraint may ignore shadow details,
i.e., the same shadow regions across frames show dissimilar, resulting in inconsis-
tent predictions; see red boxes in Fig. 1 (d). Video data has the inherent property
of temporal consistency, where the nearby frames are expected to contain sim-
ilar shadow regions. Hence, we aim to explore both frame-level accuracy and
temporal-level consistency for video shadow detection. In this paper, we make
a critical observation that this inconsistent prediction is caused by the shadow
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Fig. 2: (a)Supervised contrastive learning pulls close all pixels in shadow regions,
which is too strict to generate complete shadow detection; see Fig. 6 and Table 2
for details. (b) We aims to leverage correspondence learning to consider intra-
shadow separability. Unlike existing correspondence learning [31, 20] that require
pixel-to-pixel labels among video frames, for each pixel in the shadow, we only
know its corresponding pixel is within a shadow region in another frame, denoted
as pixel-to-set correspondence learning.

feature inconsistency, i.e., the features of the same shadow regions show dissim-
ilar proprieties among the nearby frames. For example, due to the illumination
change (see Fig. 1 (a)), the extracted features in a specific shadow region may
show higher similarity with dark non-shadow regions in the nearby frames; see
orange pentagram in the (t+ 3)-th frame in Fig. 1 (c).

To address this problem, we aim to enhance temporal pixel-wise similarity
for the specific shadow regions across frames, thus improving the detection ac-
curacy and consistency in shadow videos; see Figs. 1 (e) and (f). The supervised
contrastive learning aims to increase intra-class compactness and inter-class sep-
arability, and has been used for image classification [24] or semantic segmen-
tation [54, 51]. An intuitive way is to use the supervised contrastive learning to
pull close pixels in shadow regions across frames, and push away shadowed pixels
and non-shadowed pixels. However, as objects move and illumination changes,
the same shadow region may appear on backgrounds with different textures
across frames. Simply adopting the supervised contrastive learning for video, i.e.,
pulling close all pixels in shadows, leads to incomplete shadow regions; see Fig. 6
and Table 2 for the comparison results.

Hence, in this paper, we leverage the correspondence learning to learn a more
fine-grained pixel-wise similarity. i.e., only encouraging a pixel to be similar
with its corresponding pixels in nearby frames. However, unlike the existing
correspondence learning [31, 20, 11] that requires pixel-to-pixel correspondence
labels across video frames, we do not need the pixel-wise correspondence labels.
To this end, we present a novel Shadow-Consistent Correspondence method,
namely SC-Cor, to learn the dense shadow correspondence in a pixel-to-set
way, based on a key prior knowledge that a corresponding (pixel) of shadow is
within a shadow region (set) in another frame; see Fig. 2 (a). Different from
the supervised contrastive learning [54, 24, 51], our proposed SC-Cor keeps the
pixel most similar to the anchor in the shadow region and considers inter-shadow
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separability, which is robust to the variant textures and illuminations in videos.
Note that our SC-Cor is a plug-and-play module and is only used in the training
process. Therefore, SC-Cor can be easily applied to any deep-learning-based
video/image shadow detection method without additional computational cost in
testing.

Finally, existing metrics only evaluate the performance of VSD in frame-
level, e.g., frame-level Balance Error Rate (BER), and ignores the temporal
consistency of shadow predictions. To this end, we introduce a new evaluation
metric, temporal stability (TS), which computes the intersection over union score
between the adjacent frames, thus helping to evaluate the temporal consistency
of shadow predictions in videos. Below, we summarize the major contributions
of this work:

– We present a novel and plug-and-play shadow-consistent correspondence
(SC-Cor) method for video shadow detection. Compared with the existing
pixel-to-pixel learning, our proposed SC-Cor is learned in a pixel-to-set way,
without requiring pixel-wise correspondence labels.

– To fairly evaluate the temporal consistency of different shadow detection
approaches, we introduce a new evaluation metric, which evaluates the flow-
warped IoU between the adjacent video frames.

– We evaluate our SC-Cor on the benchmark dataset for video shadow de-
tection and the experimental results show that our method clearly outper-
forms various state-of-the-art approaches in terms of both frame-level and
temporal-level evaluation metrics.

2 Related Work

Image shadow detection. Early traditional methods are based on the hand-
crafted shadow features, e.g., intensity, chromaticity, physical properties, ge-
ometry, and textures [37]. Recently, deep-learning-based methods become the
mainstream algorithms for shadow detection [23, 40, 45, 33, 18, 16, 27, 56, 55, 9].
Khan et al. [23] build the first method based on deep neural network, which is a
seven-layer CNN that learns from super-pixel level features and object bound-
aries. Hu et al. [17] present a fast shadow detection network by designing a
detail enhancement module to refine shadow details. In the most recent work,
Zhu et al. [57] design a feature decomposition and re-weighting scheme, which
leverages intensity-variant and intensity-invariant features via self-supervision
to mitigate the susceptibility of the intensity cue. Except the general shadow
detection, Wang et al. [48, 47] detecte the shadow regions associated with the
objects simultaneously.
Video shadow detection. Early traditional video shadow detection (VSD)
methods adopt the hand-crafted spectral and spatial features [1, 19, 32] to detect
the shadow regions. To exploit the capability of deep-learning-based methods on
this task, Chen et al. [7] collect the first large-scale VSD dataset ViSha. To detect
the shadows in videos, they design a deep-learning-based method that contains
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a dual gated co-attention module and an auxiliary similarity loss to mine frame-
level consistency information between different videos. Hu et al. [15] capture
the temporal consistency by an optical-flow-based warping module to align and
combine features between video frames. However, due to lack of the temporal
pixel-level relation, these methods would suffer from shadow feature inconsis-
tency and generate temporal-inconsistent results. Unlike existing methods, this
paper presents a novel solution to learn pixel-wise consistency by formulating
the dense shadow correspondence objective. Our method is flexible and can be
easily integrated into many existing methods designed for both single-image and
video shadow detection methods.
Correspondence learning. Finding correspondences between pairs of images
is a fundamental task in computer vision [43, 39, 3, 42, 31, 20]. However, these
methods require pixel-level correspondence labels and can hardly be obtained in
videos. Hence, numerous works aim to learn temporal correspondence in the un-
supervised way [49, 50, 52]. These methods perform unsupervised correspondence
learning on videos and show obvious improvement on the obvious foreground ob-
jects. However, shadows are usually less obvious than the foreground, and may
show different appearances and deformation due to illumination and texture
changes. Our SC-Cor can address the above problems in a weakly supervised
way, which is proved by experiments (see Fig. 6 and Table 2). In this paper,
different from all of these methods, we aim to learn pixel-wise similarity in a
pixel-to-set way.
Contrastive learning. Contrastive learning pulls close an anchor and a pos-
itive sample, and pushes the anchor away from many negative samples, which
has show great success in self-supervised learning [6, 4, 13, 5, 11, 12, 10]. Recently,
the supervised contrastive learning aims to increase intra-class compactness and
inter-class separability to improve image classification [24, 28] or semantic seg-
mentation [54, 51]. However, as objects move and illumination changes, the same
shadow region may appear on backgrounds with different textures across frames.
The supervised contrastive learning, i.e., simply pulling close all pixels in shadow
regions is too strict, resulting in generating incomplete shadow regions; see Fig. 6
and Table 2 for details. Differently, our proposed SC-Cor aims to keep the pixel
most similar to the anchor in the shadow regions, which considers inter-class
separability due to the varying shadows in the videos.

3 Methodology

Fig. 3 (a) shows the training process of the overall SC-Cor framework, which can
generate temporal-consistent and accurate shadow detection results. Formally,
we denote a video sequence and the corresponding ground-truth (GT) masks as
{Vt}Tt=1 and {Yt}Tt=1, respectively, where T is the frame number of this video
sequence. Given two video frames, which are denoted as Vt and Vt+δ and δ is the
time interval, we feed them into two branches of the framework; see Fig. 3 (a).
Each branch contains a feature extractor, which is used to capture the spatial
features, i.e., Ft and Ft+δ of the input frames. Note that the weights in these two
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Fig. 3: (a) Illustration of the training process integrated with our shadow-
consistent correspondence (SC-Cor) learning objective. Given two frames from
one video, besides using the the segmentation loss Lseg to supervise their frame-
level predictions individually, we also enhance their temporal consistency by
SC-Cor, described in Section 3.1. (b) Illustration of the inference phase. The
proposed SC-Cor is only applied during training. We can improve the temporal
consistency as well as the frame-level accuracy without any extra parameters or
computation cost during inference.

feature extractors are shared. Then, we adopt shadow-consistent correspondence
(Fig. 4) to extract the temporal information of Ft and Ft+δ; see details in Sec. 3.1
and 3.2. Next, we send Ft and Ft+δ into the shared prediction head to obtain the
shadow detection results Ŷt and Ŷt+δ, which are supervised by the ground-truth
masks Yt and Yt+δ. Note that the SC-Cor module is flexible and is only used in
the training stage without any extra parameters introduced in the test stage, as
shown in Fig. 3 (b). Therefore, it can serve as a plug-and-play component and
can be used in many single-image or video shadow detection methods.

3.1 Shadow-Consistent Correspondence

To explore the temporal consistency for VSD, we aim to learn shadow corre-
spondence to capture the pixel-wise relations between shadows across frames
in the video, which acts as a regularizer to optimize the framework. As dis-
cussed in Sec. 1, instead of the dense pixel-to-pixel labels [39, 3], in this paper,
we only obtain the pixel-to-set labels. To learn dense shadow correspondence,
we introduce a novel shadow consistent correspondence method. The proposed
shadow-consistent correspondence contains three modules: (a) a shadow guid-
ance module, (b) a cross-frame correspondence module, and (c) a consistency
regularization, as shown in Fig. 4.

(a) Shadow guidance module. The shadow guidance module aims to obtain
a feature map that only contains feature vector on the shadow regions. Let
Ft ∈ RH×W×D be the feature map of the frame Vt, where D, H and W denote
the dimension, height, and width of the feature map, respectively. Here, we
define the ground-truth shadow mask as Yt ∈ RH×W×D and Yt = {0, 1}, where
Yt(h,w) = 0 indicates that the position (h,w) inYt is in the non-shadow regions
and Yt(h,w) = 1 represents the position (h,w) is in the shadow regions. Then,
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Fig. 4: Procedure of shadow-consistent correspondence from frame t to t+δ. The
proposed method consists of three modules: (a) the shadow guidance module
(Sec. 3.1 (a)), (b) the cross-frame correspondence module (Sec. 3.1 (b)), and (c)
the consistency regularization (Sec. 3.1 (c)).

we can obtain the set of shadow indexes O:

O = {(h,w) | Yt(h,w) = 1} . (1)

Ft = {Ft(h,w) | (h,w) ∈ O}, (2)

where Ft ∈ RNt×D and Nt indicates the number of shadow feature vectors on
Ft, i.e., |O| = Nt. We define the operation of the shadow guidance module as
Ft = SG(Ft).

(b) Cross-frame correspondence module. For each shadow feature vector
of a frame, cross-frame correspondence module aims to find its correspondence
feature vector, i.e., most relevant one, from another frame. Formally, we define
the features of two frames from a video as Ft and Ft+δ, where δ > 0 is the time
interval. In the following, we will illustrate how to find the correspondence from
Ft to Ft+δ, as well as in the other way around, i.e., from Ft+δ to Ft.

To find the most correlated feature vector from Ft+δ, we first obtain the
shadow feature map of Ft by Ft = SG(Ft). Then, we measure the similarity
between Ft and Ft+δ by the cosine similarity:

St→t+δ =
Ft · Ft+δ

∥Ft∥∥Ft+δ∥
, (3)

where St→t+δ ∈ RNt×L and L = H×W . Here, we take the n-th (n ∈ Nt) feature
vector on Ft as the anchor vector, and compute its most relevant feature vector
on Ft+δ based on the similarity map St→t+δ:

p = max
m

St→t+δ(n,m),m ∈ [1, L] , (4)
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where p is the index of the corresponding location on Ft+δ. Note that we perform
the same operation to find the corresponding p for each feature vector on Ft.
(c) Consistency regularization. Here, we perform the consistency regular-
ization to enforce the found correspondence inside the ground-truth sets. Specif-
ically, we pull the anchor feature vector close to the shadow ground-truth on the
second frame and push it away from the non-shadow regions on the second frame.
More specifically, besides measuring the similarity between Ft and Ft+δ, we ad-
ditionally compute the similarity between Ft and Ft+δ through Eq. 3, which can
be defined as St→t+δ ∈ RNt×Nt+δ , where Nt+δ is the number of shadow feature
vectors on Ft+δ. Then, for the anchor n, we find its correspondence on Ft+δ

based on St→t+δ in the same way as Eq. 4, and we denote the found correspond-
ing location as q. Note that p is the corresponding location found from the whole
feature map while q is the corresponding location only found from the shadow
set (indicated by the ground-truth mask). To pull p and q together, we minimize
the discrepancy in two feature similarities by Eq. 5.

Lt→t+δ
shadow =

1

Nt

Nt∑
n=1

(
St→t+δ(n, p)− St→t+δ(n, q)

)2
. (5)

To push the anchor p away from the non-shadow regions, we first compute the
set of non-shadow indexes Ô:

Ô = {(h,w) | Yt+δ(h,w) = 0} . (6)

Based on Ô, we obtain the non-shadow feature F̂t+δ. Then, we compute the
similarity between Ft and F̂t+δ in the same way as Eq. 3 to obtain Ŝt→t+δ ∈
RNt×Mt+δ , where Mt+δ is the number of non-shadow features on Ft+δ, i.e.,
|Ô| = Mt+δ. For the anchor n, we find its correspondence on F̂t+δ based on

Ŝt→t+δ in the same way as Eq. 4, which is denoted as q̂. To push away p and q̂,
we maximize the margin in two feature similarities by the following loss function:

Lt→t+δ
n-shadow =

1

Nt

Nt∑
n=1

max
(
0, β − |St→t+δ(n, p)− Ŝt→t+δ(n, q̂)|

)
,

(7)

where β controls the margin between St→t+δ(n, p) and Ŝt→t+δ(n, q̂). In the same
way, we can obtain the consistency regularization in the other way around, i.e.,
from Ft+δ to Ft, and we define the loss functions as Lt+δ→t

shadow and Lt+δ→t
n-shadow.

Finally, shadow-consistent correspondence learning can be formulated as follows:

Lsc = Lt→t+δ
shadow + Lt→t+δ

n-shadow + Lt+δ→t
shadow + Lt+δ→t

n-shadow . (8)

3.2 Brightness-invariant Correspondence

Due to the changes of brightness in a video, the shadow and non-shadow re-
gions in different frames may present similar appearance. To learn brightness-
invariant correspondence, we randomly shift the brightness of one frame and
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learn the brightness-invariant shadow consistency between the shifted frame and
another frame in the same video [57]. Formally, for two frames in a video, i.e., Vt

and Vt+δ, we randomly shift the intensity of Vt+δ to produce the shifted frame
V ′
t+δ = Vt+δ + γ, where γ ∈ [−∆,∆] is a randomly generated shift parameter

and ∆ is a hyper-parameter to control the shift range. Next, we use the shadow-
consistent learning to learn the cross-frame correspondence between Vt and V ′

t+δ,
as introduced in Sec. 3.1.

3.3 Overall Objective

The overall objective of our framework is defined as:

L = Lseg + λLsc , (9)

where λ is a hyper-parameter to control the trade-off between these two losses
and Lseg is the segmentation loss to supervise the pixel-wise prediction. The seg-
mentation loss is different for different shadow detection works. For example, [55,
57, 7] adopt the binary cross entropy (BCE) loss as the segmentation loss:

Lseg = − 1

T

T∑
t=1

Yt · log
(
Ŷt

)
+ (1−Yt) · log

(
1− Ŷt

)
, (10)

where Yt and Ŷt are ground-truth and predicted shadow masks, respectively.
TVSD-Net [7] uses BCE combined with a lovász-hinge loss [2]. In the exper-
iments, to highlight the effectiveness of the proposed shadow-consistent corre-
spondence, the segmentation loss keeps consistent with existing papers [55, 7].

4 Experimental Results

4.1 Evaluation Metrics and Datasets.

Temporal stability. Compared with the previous works that only evaluates the
performance on each single image (frame-level), in this paper, we introduce a
new evaluation metric to evaluate the temporal stability across the video frames,
motivated by [25, 44]. In detail, different from [25, 44] that compute the optical
flow between RGB frames, we calculate the optical flow between the ground-
truth labels of two adjacent frames, i.e., Yt and Yt+1 through ARFlow [30],
since the motions of shadows are hard to be captured on the RGB frames. For
instance, the optical flows generated by RGB are focus on objects, which can
not capture shadows since the motions of shadows are hard to be captured on
the RGB frames; see supplementary materials for more details. Then, assume
It→t+1 as the optical flow between Yt and Yt+1, and we define the reconstructed
result that warps Ŷt+1 by the optical flow It→t+1 as Yt. Next, we measure the
temporal stability of VSD for a video based on the flow warping IoU between
the adjacent frames as:

TS =
1

T − 1

T−1∑
t=1

IoU(Ŷt,Yt) . (11)
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Table 1: Comparison with the state-of-the-art methods. “↓” indicates the
lower the scores, the better the results, while “↑” indicates the higher the scores,
the better the results. “AVG” is the average score of IoU and TS, which presents
the frame-level and temporal-level IoUs. “ISD” and “VSD” stand for the single-
image shadow detection and video shadow detection, respectively. “SOD” stands
for salient object detection. “VOS” stands for video object segmentation. “S-
BER” and “N-BER” stand for BER of shadow regions and non-shadow regions,
respectively.

Frame-level Temporal-level
Task Method MAE ↓ Fβ ↑ BER ↓ S-BER ↓ N-BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑

Scene Parsing
FPN [29] 0.044 0.707 19.49 36.59 2.40 51.28 74.27 62.78
PSPNet [53] 0.052 0.642 19.75 36.44 3.07 47.65 76.63 62.14

SOD DSS [14] 0.045 0.697 19.78 36.96 2.59 50.28 75.02 62.65

VOS

PDBM [41] 0.066 0.623 19.74 34.32 5.16 46.65 80.00 63.33
FEELVOS [46] 0.043 0.710 19.76 37.27 2.26 51.20 74.89 63.05
STM [34] 0.064 0.639 23.77 43.88 3.65 44.69 75.30 60.00

ISD

BDRAR [56] 0.050 0.695 21.30 40.28 2.31 48.39 72.63 60.51
MTMT [8] 0.043 0.729 20.29 38.71 1.86 51.69 74.44 63.07
FSD [17] 0.057 0.671 20.57 38.06 3.06 48.56 74.88 61.72
DSD [55] 0.044 0.702 19.89 37.89 1.88 51.89 74.68 63.29
DSD + ours 0.039 0.730 15.15 27.78 2.52 58.40 78.03 68.22
- +0.05 +0.028 +4.65 +10.11 -0.64 +6.51 +3.35 +4.93

VSD
Hu et al. [15] 0.078 0.683 17.03 30.13 3.93 51.03 83.67 67.35
TVSD [7] 0.033 0.757 17.70 33.97 1.45 56.57 78.25 67.41
TVSD + ours 0.042 0.762 13.61 24.31 2.91 61.50 81.44 71.47
- -0.09 +0.005 +4.09 +9.66 -0.46 +4.93 +3.19 +4.06

Frame-level accuracy. Except using the proposed evaluation metric to mea-
sure temporal stability, we follow the previous works [7, 55, 57] and adopt four
common evaluation metrics that have been widely used in image/video shadow
detection to evaluate the detection accuracy in frame-level. Specifically, they are
Mean Absolute Error (MAE) [7], F-measure (Fβ) [7, 17], Intersection over Union
(IoU) [7], and Balance Error Rate (BER) [18, 57].
Evaluation dataset. We conduct our experiments on the ViSha dataset [7]
to evaluate the performance. ViSha consists of 11, 685 image frames and 390s
duration, which is adjusted to 30 fps for all video sequences. This dataset is split
into 50 videos for training and 70 videos for testing.

4.2 Implementation Details

Since our framework is a plug-and-play module that can be used in any shadow
detectors, we insert our framework into two state-of-the-art methods on single-
image shadow detection and video shadow detection, i.e., DSD [55] and TVSD [7],
for evaluation. During the training process of our shadow-consistent correspon-
dence module, λ in Eq. 9 and β in Eq. 7 are set to 10 and 0.5, respectively; please
refer to Sec. 4.4 for the analysis of λ. ∆ is used to control the range of the bright-
ness shift and it is set to 0.3 following [57]. Note, shifting brightness of frames
will change the distribution of the images, resulting in degrading the detection
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Fig. 5: Trade-off between temporal
and frame-level accuracy.

Table 2: Comparison of the su-
pervised contrastive learning and
ours. Baseline is DSD [55]. “SCon” in-
dicates the supervised contrastive learn-
ing. “Ratio” indicates the ratio of the
found correspondence in the shadow re-
gions. “AVG” refers to the average score
of IoU and TS.

Method Ratio ↑ AVG ↑
Baseline 36.71 63.29

Baseline + [50] 82.33 66.17
Baseline + SCon 85.30 65.13
Baseline + Ours 85.12 68.22

(b) Baseline (c) SCon(a) Ground-truth (e) Ours

Frames

Predictions

(d) [47]

Fig. 6: Visualization of the correspondence found by different models. Note that
Baseline is DSD [55]. We sample five pixels in one frame and find their corre-
spondence in the other one.

performance [57]. Hence, we only shift the brightness of the frames after 2,000
training iterations and freeze the batch normalization [38]; see supplementary
materials for more details.

4.3 Comparison with the State-of-the-art Methods

We conduct the experiments on ViSha [7] to compare with the state-of-the-
art methods designed for scene parsing, salient object detection, video object
segmentation, single-image shadow detection, and video shadow detection; please
see the compared methods in Table 1. We obtain the results of these methods
by retraining them on the ViSha dataset for video shadow detection with the
recommendation training parameters or by downloading their results directly
from Internet.

Table 1 provides the comparison results, which clearly shows that our pro-
posed method can largely improve the performance of both single-image and
video shadow detection approaches, i.e., DSD [55] and TVSD [7], in terms of
both frame-level and temporal-level accuracy. DSD is designed for single-image
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(f) Ours(e) Hu et al(d) TVSD(c) DSD(b) GT(a) Input

Fig. 7: Visual comparison of video shadow detection results produced by different
methods. (a) is the input images and (b) is the ground-truth (GT) images. (c)-
(f) are the results predicted by DSD [55], TVSD [7], Hu et al. [15], and our
method, respectively. Our method takes the DSD as the basic network. Note
that red boxes indicate the inconsistent predictions across video frames, blue
boxes indicate the inaccurate static predictions, and green boxes show the blurry
predictions.

shadow detection and our approach improves the performance a lot by further
considering the dense correspondence among different video frames. Although
TVSD is designed for video shadow detection and has explored the temporal
consistency in videos, our method further explores the shadow-region correspon-
dence and learns the brightness-invariant features. Besides, our method achieves
the best trade-off on both temporal-level and frame-level accuracy, as shown in
Fig. 5.

Fig. 7 illustrates the visual comparison of the shadow masks produced by
DSD [55], TVSD [7], Hu et al. [15], and ours. From the results, we can see that our
method provides more accurate and consistent shadow detection results across
different videos frames than others. More examples and failure cases please refer
to supplementary materials.

Comparison of the supervised contrastive learning, unsupervised cor-
respondence learning and our SC-Cor. Specifically, for the sampled pixel
of one frame, we find the most correlated pixel in the other frame and denote
the found pixel as its correspondence. It is clear that the correspondences found
by the baseline would be in dark non-shadow regions. Those found by the super-
vised contrastive learning would only focus on the shadow regions with similar
textures. For unsupervised correspondence learning, we select [50], a recently
SOTA, for comparison. It is clear that ours outperforms [47]. In order to further
evaluate the effect of our method, we report the ratio of the found correspondence
in ground truth masks and the average performance in Table 2. The results show
that our method can largely improve the accuracy of found correspondence, e.g.,
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Table 3: Ablation on the effectiveness of SC-Cor and BS. “SC-Cor” indi-
cates the shadow-consistent correspondence and “BS” indicates the brightness
shift operation.

Frame-level Temporal-level
Method SC BS MAE ↓ BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑
Baseline % % 0.044 19.89 51.89 74.68 63.29

Ours (SC-Cor) ! % 0.040 15.67 56.89 77.09 67.00

Ours (BS) % ! 0.043 16.82 53.65 74.92 64.29

Ours (Full) ! ! 0.039 14.89 58.40 78.03 68.22

Table 4: Ablation Study on Shadow-consistent correspondence.

(a) Bidirectional correspondence.
“Bi-D” refers to the bidirectional corre-
spondence, which has been defined by
t → t+ δ and t+ δ → t in Eq. 8.

Frame-level Temporal-level
Bi-D BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑
% 15.54 57.25 77.08 67.17

! 14.89 58.40 78.03 68.22

(b) Consistency regularization.“Shadow”
and “N-Shadow” indicate the regularization
method described in Eq. 5 and Eq. 7.

Frame-level Temporal-level
BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑

Shadow 15.67 57.18 76.89 67.04
N-shadow 15.79 57.09 76.72 66.91

Full 14.89 58.40 78.03 68.22

over 43.41% on DSD [55]. Although the ratio of correspondences found by super-
vised contrastive learning in ground-truth is high, the generated shadow mask
may be incomplete; see Fig. 6 (c).

4.4 Ablation Study

We conduct ablation experiments to show how each module in our framework
design contributes to video shadow detection. We regard DSD [55] as our baseline
module in this section. All the detection results are reported on the testing set
of the ViSha dataset [7].

Effectiveness of SC-Cor and BS. Table 3 reports the effectiveness of the
shadow-consistent correspondence (SC-Cor) and the brightness shift (BS) oper-
ation. Training with SC-Cor, we can see a clear improvement in terms of both
frame-level accuracy and temporal accuracy, i.e., 4.22 on BER and 2.40% on
TS. It is worth noting that only adopting with BS cannot obtain the clear im-
provement on the temporal stability, i.e., 74.92% vs. 74.68%, due to the lack of
exploring temporal information. By combining with both SC-Cor and BS, the
model achieves the best performance.

Bidirectional correspondence and consistency regularization. Table 4a
reports the results of bidirectional correspondence in Eq. 8 and shows the effec-
tiveness of the designed bidirectional correspondence. Furthermore, we perform
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Table 5: Ablation Study on different frame setting.

(a)Multiple frames. “Frame number” de-
notes the number of sampled frames.

Frame
number

Frame-level Temporal-level
BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑

2 15.91 58.06 77.96 68.01
3 15.86 58.28 78.46 68.37
4 15.82 58.26 78.51 68.39

(b) Frame interval δ.

Frame-level Temporal-level
δ BER ↓ IoU [%] ↑ TS [%] ↑ AVG ↑
1 14.51 58.62 76.94 67.78
3 14.73 58.55 77.23 67.89
5 14.89 58.40 78.03 68.22
7 15.64 57.12 78.23 67.68

the ablation study on the shadow and non-shadow consistency regularization in
Table 4b, showing that the the combination of them achieves the best results.

Multiple frames and Frame interval. We integrate our SC-Cor with multiple
pairs of frames in a video and analyze the effectiveness in Table 5a. We observe
that training with more frames brings a slight improvement on both frame-level
and temporal-level accuracy. Considering the training efficiency, we choose two
pairs of frames. Furthermore, we study the frame sampling strategy and report
the detection results in Table 5b. It is clear that the longer time interval achieves
the higher temporal stability while the short one performs better in frame-level
accuracy. For instances, δ = 1 achieves the best BER, i.e., 14.51, and the lowest
TS, i.e., 76.94%. On the contrary, δ = 7 obtains the best TS performance 78.23%.
In this paper, we set δ as five to balance the temporal-level accuracy and the
frame-level accuracy.

5 Conclusion

In this paper, we present a novel and plug-and-play shadow-consistent correspon-
dence (SC-Cor) method for video shadow detection (VSD). A shadow-consistent
correspondence is formulated to enforce the network to learn temporal-consistent
shadows. A brightness shifting operation is employed to further regularize the
network to be brightness-invariant. Considering current metrics only evaluate
the frame-level accuracy, we introduce a new temporal stability metric, namely
TS, for VSD. Experimental results on the benchmark dataset prove that our
SC-Cor outperforms various shadow detection methods.
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