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In this supplementary material, we provide the following additional details
to facilitate the understanding of our main paper:

1 Detailed Illustration of the Comparison between
MM-RealSR and Existing Modulation-based Methods.

There are two main differences between our proposed MM-RealSR and existing
modulation-based methods. First, existing methods are limited to be trained
with simple degradations and known degradation levels. They cannot address
the modulation problem for real-world images with complex and unknown degra-
dations. Second, existing methods (e.g., the recent CResMD [2] and CUGAN
[1]) must be manually provided with degradation parameters for adjustment,
which is over-complicated in processing abundant images. In this paper, we also
propose an unsupervised estimation degradation module to automatically esti-
mate a most suitable degradation level. The users are then able to modulate the
restoration strength based on the estimated degradation levels Equipped with
the unsupervised degradation estimation module (UDEM), our MM-RealSR can
flexibly switch between modulation and non-modulation modes for restoration.

To compare our MM-RealSR with the recent CUGAN on the RWSR task
in our main paper, we choose the best result (lowest LPIPS) of CUGAN (with
different degradation levels as inputs) on each image to make a comparison.
Specifically, we uniformly divide the noise and blur degradation levels (S, S, €
[0,1]) into 11 points and then traverse all cases (121 cases in total). By contrast,
the input degradation sores (S,,,Sp) of our MM-RealSR are generated by the
UDEM. The quantitative comparison has been shown in Tab. 1 in our main
paper, presenting obvious performance gains. Here, we further present the visual
comparison in Fig. 1, showing the better restoration quality of our MM-RealSR.
Note that the first row is the set of low-quality images upsampled by the bicubic
operation. The second row and the third row present the restoration results of
CUGAN and our method, respectively.

2 More Comparisons with Non-modulation Methods

More visual comparisons between our MM-RealSR and several non-modulation
methods on RWSR is presented in Fig. 2. Note that the “Bicubic x4” in this
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Fig. 1. Visual comparison between our proposed MM-RealSR (the third row) and
CUGAN [1] (the second row) on the RWSR (x4) task. The first row presents low-
quality images upsampled by the bicubic operation.

figure represents upsampling the LR image with the Bicubic algorithm. We can
observe that our MM-RealSR can achieve better restoration quality with vivid
details, demonstrating that our approach can estimate satisfactory degradation
scores to guide the restoration process in real-world scenarios.

3 Time Complexity

In our main paper, we demonstrate the excellent RWSR and interactive mod-
ulation performance of our proposed method. In this part, we present the time
complexity of our method in Tab. 1. All inference speeds are evaluated on one
Nvidia TESLA V100 GPU. We can find that our method has a comparable time
complexity to top-performing methods. Note that these top-performing methods
use the same backbone (RRDB), leading to the same time complexity.

Table 1. The inference time (s) that different methods take to process a 512 x 512
RGB image.

Method RealSR ESRGAN BSRGAN Real-ESRGAN Ours
Time (s) 0.66 0.66 0.66 0.66 0.70

4 UDEM Evaluation in High-order Degradation

We evaluate UDEM under the high-order degradation, as shown in Fig. 3. The
evaluation samples are generated by monotonically changing one degradation
factor and fixing other factors in the high-order degradation. Note that the x-
axis is unquantifiable, and the values just represent the index of 20 monotonic
degradation points without real significance. Like the results in the first-order
case, with the increase of degradation level, the estimated degradation score
increases monotonously. We will add this analysis to our paper.
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5 UDEM Evaluation with Resize Degradation

The score estimation of resizing-induced blur is shown in Fig. 4. The x-axis is the
downsampling factor (e.g., 0.5 is X2 downsampling). The estimated degradation
score increases monotonously with the increase of the resizing intensity.

6 More Visual Results of our Modulation Process

In this part, we provide more visualization results of the modulation process,
which are presented in Fig. 5. Note that apart from evaluating the modulation
performance within the default range Sy, Sy € [0, 1] (labeled with yellow boxes)
as mentioned in our main paper, we also show the modulation results beyond
the default range (labeled with red boxes S, Sy € [1, 2]). From Fig. 5, we can
find that our proposed MM-RealSR has excellent adjusting ability, which can
provide several satisfactory results for user selection. Additionally, the direction
of the modulation is well learned by our metric learning strategy. Concretely,
when the degradation score S,,,S, > 1 the reconstruction results still conform
to the expected direction of modulation.
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Bicubic x4  RealSR [3] ESRGAN [5] BSRGAN [(] reaiesrcan [1] MM-RealSR

Fig. 2. More visual comparisons between our proposed MM-RealSR and several recent
methods on real-world super-resolution (x4). The degradation scores are estimated by
our UDEM without specific adjustment during inference. Zoom in for best view
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Fig. 4. The degradation estimation with resizing blur.
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Fig. 5. More visual results of the modulation ability of our proposed MM-RealSR on
real-world super-resolution (x4). Zoom in for best view
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