
Dynamic Dual Trainable Bounds for Ultra-low
Precision Super-Resolution Networks

Yunshan Zhong1,2, Mingbao Lin3, Xunchao Li2, Ke Li3,
Yunhang Shen3, Fei Chao1,2, Yongjian Wu3, Rongrong Ji1,2⋆

1Institute of Artificial Intelligence, Xiamen University.
2MAC Lab, School of Informatics, Xiamen University. 3Tencent Youtu Lab.

zhongyunshan@stu.xmu.edu.cn, linmb001@outlook.com,

lixunchao@stu.xmu.edu.cn,

{tristanli.sh, shenyunhang01}@gmail.com,
fchao@xmu.edu.cn, littlekenwu@tencent.com, rrji@xmu.edu.cn

Abstract. Light-weight super-resolution (SR) models have received con-
siderable attention for their serviceability in mobile devices. Many efforts
employ network quantization to compress SR models. However, these
methods suffer from severe performance degradation when quantizing
the SR models to ultra-low precision (e.g., 2-bit and 3-bit) with the low-
cost layer-wise quantizer. In this paper, we identify that the performance
drop comes from the contradiction between the layer-wise symmetric
quantizer and the highly asymmetric activation distribution in SR mod-
els. This discrepancy leads to either a waste on the quantization levels or
detail loss in reconstructed images. Therefore, we propose a novel activa-
tion quantizer, referred to as Dynamic Dual Trainable Bounds (DDTB),
to accommodate the asymmetry of the activations. Specifically, DDTB
innovates in: 1) A layer-wise quantizer with trainable upper and lower
bounds to tackle the highly asymmetric activations. 2) A dynamic gate
controller to adaptively adjust the upper and lower bounds at runtime to
overcome the drastically varying activation ranges over different samples.
To reduce the extra overhead, the dynamic gate controller is quantized
to 2-bit and applied to only part of the SR networks according to the
introduced dynamic intensity. Extensive experiments demonstrate that
our DDTB exhibits significant performance improvements in ultra-low
precision. For example, our DDTB achieves a 0.70dB PSNR increase on
Urban100 benchmark when quantizing EDSR to 2-bit and scaling up
output images to ×4. Code is at https://github.com/zysxmu/DDTB.

Keywords: Super-resolution; Network quantization; Dual trainable bounds;
Dynamic gate controller

1 Introduction

Single image super-resolution (SISR) is a classic yet challenging research topic in
low-level computer vision. It aims to construct a high-resolution (HR) image from

⋆ Corresponding Author

https://github.com/zysxmu/DDTB


2 Y. Zhong et al.

-112.45 62.74

-74.46 139.97

Fig. 1. The first column shows the activation histograms. The second and third columns
show the maximum and minimum activation values of different samples. We perform
experiments with EDSR [24] and RDN [47] on DIV2K [38] dataset.

a given low-resolution (LR) image. Recent years have witnessed the revolution
of deep convolutional neural networks (DCNN), which leads to many state-of-
the-arts [24,47,5] in SISR task.

When looking back on the development of DCNN in SISR, we find that the
record-breaking performance is accompanied by a drastically increasing model
complexity. SRCNN [5], the first work to integrate DCNN to SR, has only three
convolutional layers with a total of 57K parameters. Then, EDSR [24] constructs
a 64-layer CNN with 1.5M parameters. Equipped with a residual dense block,
RDN [47] introduces 151 convolutional layers with 22M parameters. Also, it
requires around 5,896G float-point operations (FLOPs) to produce only one
1920×1080 image (upscaling factor ×4). On the one hand, the high memory
footprint and computation cost of DCNN-based SR models barricade their de-
ployment on many resource-hungry platforms such as smartphones, wearable
gadgets, embedding devices, etc. On the other hand, SR is particularly popular
on these devices where the photograph resolution must be enhanced after being
taken by the users. Therefore, compressing DCNN-based SR models has gained
considerable attention from both academia and industries. In recent years, a va-
riety of methodologies are explored to realize practical deployment [25,20,10,8].

By discretizing the full-precision weights and activations within the DCNN,
network quantization has emerged as one of the most promising technologies.
It reduces not only memory storage for lower-precision representation but com-
putation cost for more efficient integer operations. Earlier studies mostly focus
on high-level vision tasks, such as classification [20,7,35,26,27,48] and segmen-
tation [44,45]. A direct extension of these methods to SR networks has been
proved infeasible since low-vision networks often have different operators with
these high-level networks [23]. Consequently, excavating specialized quantization
methods for DCNN-based SR models recently has aroused increasing attention in
the research community. For example, PAMS [23] designs a layer-wise quantizer
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Fig. 2. Example of “quantization unfitness” using RDN [47] on DIV2K [38]. The orange
bar denotes the quantization levels. The red arrows show the quantization level of
activations. (a) Two quantization levels are wasted on the region without activations.
(b) High-magnitude activations are quantized to a small quantization level. (c) The
distribution of the quantization levels from dual bounds in our DDTB.

with a learnable clipping to tackle the large ranges of activations, but severe per-
formance degradation occurs in ultra-low precision settings (e.g., 2-bit and 3-bit)
as shown in Sec. 4.2. A recent study DAQ [11] adopts a channel-wise distribution-
aware quantization scheme. Despite the progress, the performance improvement
comes at the cost of considerable overhead from normalizing and de-normalizing
feature maps, as well as the expensive per-channel quantizer. Therefore, existing
studies are stuck in either heavy extra costs or severe performance drops when
performing ultra-low precision quantization.

In this paper, we realize that the inapplicability of existing studies comes from
the contradiction between the layer-wise symmetric quantizer and the asymmet-
ric activation distribution in DCNN-based SR models. Specifically, it has been
a wide consensus [24,47,46,9] that removing batch normalization (BN) layers
increases the super-resolution performance since low-level vision is sensitive to
the scale information of images while BN reduces the range flexibility of ac-
tivations. However, the removal of BN leads to highly asymmetric activation
distribution, as well as diverse maximum and minimum activations for different
input samples. Illustrative examples with EDSR [24] and RDN [47] are given
in Fig. 1. Despite some previous works equip SR networks with BN layers, they
have to compensate for the performance drops by other strategies. For example,
SRResNet [22] constructs a highway that propagates the activations of the first
convolutional layer to the outputs of every other block, which again leads to
activation distributions like Fig. 1.

Although these abnormal activation distributions benefit a full-precision SR
network, they are unfriendly to the quantized version which often constructs a
symmetric quantizer with only one clipping bound to perform network quanti-
zation, resulting in the issue of “quantization unfitness”. Fig. 2 illustrates a toy
example. With an asymmetric activation distribution, a large clipping wastes two
quantization levels on the region without any activation items, while a small clip-
ping quantizes large-magnitude activations to a small quantization level which
leads to large quantization error and causes details loss in high-resolution im-
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ages. Thus, an adaptive quantizer to the activation distribution is crucial to the
quality of the reconstructed high-resolution images.

Motivated by the above analysis, in this paper, we propose dynamic dual
trainable bounds (DDTB) to quantize the activations in SR models. DDTB in-
novates in: 1) A layer-wise quantizer with trainable upper and lower bounds
to tackle the highly asymmetric activations; 2) A dynamic gate controller to
adaptively adjust the upper and lower bounds based on different input sam-
ples at runtime for overcoming the drastically varying activation ranges over
different samples. To minimize the extra costs on computation and storage, the
dynamic gate is quantized to 2-bit and applied to part of the network based on
the dynamic intensity in each layer. We also introduce an initializer for DDTB.
Specifically, we first use the activation statistics from the full-precision network
instead of the quantized version to initialize the upper and lower bounds. Then,
the dynamic gate controller is trained individually towards its target output of
1 for all inputs in the early several epochs. Combing with the proposed initial-
izer, DDTB provides significant performance improvements, especially when SR
models are quantized to the case of ultra-low bits. For instance, compared with
the state-of-the-art, our DDTB achieves performance gains by 0.70dB PSNR on
Urban100 benchmark [12] when quantizing EDSR×4 [24] to 2-bit.

2 Related Work

2.1 Single Image Super Resolution

Owing to the strength of deep convolutional neural networks, DCNN-based SR
methods have gained great performance boosts and dominated the field of SISR.
SRCNN [5] is the first to construct an end-to-end CNN-based mapping between
the low- and high-resolution images. By increasing the network depth, VDSR [17]
manifests significant performance improvements. Nevertheless, the increasing
depth also weakens the capacity of overcoming the gradient vanishing prob-
lem and retaining image detail. Consequently, the skip-connection based blocks,
such as the residual block [22] and the dense block [39], have become a basic
component of the SR models [24,47]. Also, many other complex network struc-
tures like channel attention mechanism [46,30] and non-local attention [33,32]
are also integrated into SR for a better performance. With the increasing pop-
ularity of CNNs on resource-hungry devices, developing efficient SR models has
aroused much attention recently. Most works in this area are indicated to devis-
ing lightweight network architectures. For example, DRCN [18] and DRRN [37]
adopt the recursive structure to increase the network depth while mitigating the
model parameters. To escape from the expensive up-sampling operator, FSR-
CNN [6] introduces a de-convolutional layer while ESPCN [36] devises a sub-pixel
convolution module. Many others resort to enhance the efficiency of intermediate
feature representation [21,1,13,28]. However, these computation savings are very
limited compared to costs from the full-precision convolution.
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2.2 Quantized SR Models

As a promising technique to compress SR models, network quantization has re-
ceived ever-growing attention [29,43,15,11,23,41]. Ma et al. [29] pioneered 1-bit
quantization over the weights of SR model. Performance drops severely if bina-
rizing the activations as well. To remedy this issue, the structure of SR models
is often adjusted. For example, BAM [43] and BTM [15] introduce multiple fea-
ture map aggregations and skip connection layers. Except for 1-bit quantization,
other ultra-low quantization precision such as 2-bit, 3-bit and 4-bit is discussed in
many studies as well. To handle the unstable activation ranges, Li [23] proposed
a symmetric layer-wise linear quantizer that adopts a trainable clipping bound to
clamp the abnormal activations. As for weights, the same symmetric quantizer is
adopted but the clipping variable is simply set to the maximum magnitude of the
weights. Moreover, the quantized model is enhanced by the structured knowledge
transfer from its full-precision counterpart. Wang et al. [41] chose to quantize all
layers of SR models and perform both weights and activations quantization us-
ing a symmetric layer-wise quantizer equipped with a trainable clipping variable.
DAQ [11] observes that each channel has non-zero distributions and the activa-
tion values also vary drastically to the input image. Based on this observation,
a channel-wise distribution-aware quantizer is adopted where the activations are
normalized before discretizing and de-normalized after convolution.

3 Methodology

3.1 Preliminaries

Previous low-bit SR adopt a symmetric quantizer to perform quantization upon
the premise of activations and weights with a symmetric distribution. Specifi-
cally, denoting b as the bit-width, x as weights or activations, α as the clipping
bound, the symmetric linear quantizer is defined as:

x̄ = round
(clip(x, α)

s

)
· s, (1)

where clip(x, α) = min
(
max(x,−α), α

)
, x̄ is the de-quantized value of x,

round(·) rounds its input to the nearest integer and s = 2α
2b−1−1

is the scaling
factor that projects a floating-point number to a fixed-point integer. An appro-
priate α is crucial to the quantization performance since it not only eliminates
outlier but refers to retaining details in the reconstructed images.

3.2 Our Insights

Despite the progress, the performance of earlier low-bit SR quantization meth-
ods [23,11,41] remains an open issue when quantizing the full-precision counter-
part to ultra-low precision with a layer-wise quantizer. After an in-depth analysis,
we attribute the poor performance to the contradiction between the layer-wise
symmetric quantizer and the asymmetric activation distribution in SR models.
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Concretely, we observe the activations from different SR models. Fig. 1 shows
the histograms, maximum and minimum of activations collected from the pre-
trained EDSR [24] and RDN [47]. From the first column of Fig. 1, we realize
that the activations of SR models are highly asymmetric in an irregular state.
For example, the magnitude of the minimum activation is almost twice that
of the maximum activation in EDSR. A similar phenomenon can be observed
in RDN. Furthermore, as the second and third columns of Fig. 1 shows, the
maximum and minimum of activations also vary drastically for different samples.
Such an asymmetric activation distribution mostly results from the removal of
BN layers in modern SR networks since BN reduces the scale information of
images which however is crucial to SR tasks. Despite some studies retain BN
layers, however, other remedies have to be taken to regain the performance. For
example, SRResNet [22] propagates outputs of the first layer to the outputs of
all following blocks, which causes asymmetric distributions as well. It is natural
that the symmetric quantizer in existing studies cannot well fit the symmetric
activation distributions, which we term as “quantization unfitness” in this paper.

To be specific, using only one clipping bound fails to handle the symmetric
activations, whatever the value of α. To demonstrate this, we quantize the acti-
vations of RDN [47] to 3-bit using the quantizer in Eq. (1). As shown in Fig. 2(a),
the lack of activations along the negative axis direction causes a waste of two
quantization levels if α is set to a large value such as the maximum of the activa-
tion magnitude. The wastes are more severe as the bit-width goes down. Taking
the activations in Fig. 2(a) as an example, we observe 37.5% are wasted in 3-bit
quantization, while it increases sharply to 50% in 2-bit quantization. When it
comes to a small α such as the absolute value of the minimum of activation
magnitude, as illustrated in Fig. 2(b), though avoiding the waste on quantiza-
tion levels, only the small-magnitude activations are covered, leading to large
quantization error since many high-magnitude activations are quantized to a
small quantization level, i.e., α. Recall that SR models are sensitive to the scale
information of images. Consequently, representing the large full-precision acti-
vations with a small quantization level inevitably brings about detail loss in the
reconstructed high-resolution images, leading to significant quality degradation.
Similar observations can be found if the same clipping bound is applied to all the
input images since the maximum and minimum activations over different images
also drastically vary as illustrated in Fig. 1. Thus, an appropriate quantizer is
vital to the performance of quantized SR models.

3.3 Our Solutions

In the following, we first detail dynamic dual trainable bounds (DDTB) specifi-
cally designed to quantize activations of SR models. Then, we elaborate on our
initializer for DDTB. Finally, we describe the quantizer for weights. The overall
computational graph is presented in Fig. 3(a).

Activation Quantization. Our DDTB consists of two parts: 1) A layer-
wise quantizer with a trainable upper bound and a trainable lower bound; 2) A
dynamic gate controller with adaptive upper and lower bounds to the inputs.
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Fig. 3. (a) Computational graph in the l-th quantized convolutional layer. (b) Structure
of the dynamic gate controller.

Dual trainable bounds: As mentioned in Sec. 3.2, only using one clipping vari-
able to clamp the asymmetric activations leads to the “quantization unfitness”
problem. To address this, we introduce two trainable clipping variables of αu and
αl to respectively determine the upper bound and the lower bound of the activa-
tions. Equipped with these two dual trainable clipping variables, the quantized
integer q for the input x can be obtained as:

q = round
(clip(x, αl, αu)

s

)
+ Z, (2)

where clip(x, αl, αu) = min
(
max(x, αl), αu

)
, Z = round(−αl

s ) is a zero-point
integer corresponding to the real value 0. Accordingly, the scaling factor s is
calculated as: s = αu−αl

2b−1
. Finally, the de-quantized value ā is:

ā = (q − Z) · s. (3)

Combining Eq. (2) and Eq. (3) completes our activation quantizer. As de-
picted in Fig. 2(c), the quantization levels generated by this quantization scheme
well fit the activations when αu and αl are set to the maximum and minimum
of activations, respectively. In order to accommodate samples with drastically
varying ranges, we employ the stochastic gradient descent to adaptively learn
αu and αl by minimizing the finally loss function. Denoting the clipped activa-
tions as ã = min(max(a, αl), αu),

∂ā
∂ã is set to 1 by using the straight-through

estimator (STE) [4]. Then, the gradients of αu, αl can be calculated as:

∂ā

∂αu
=

∂ā

∂ã

∂ã

∂αu

STE
≈

{
1, a ≥ αu

0, a ≤ αu

,
∂ā

∂αl
=

∂ā

∂ã

∂ã

∂αl

STE
≈

{
0, a ≥ αl

1, a ≤ αl

. (4)

With the dual αl and αu, “quantization unfitness” can be alleviated. Note
that, early study [16] also introduces two trainable parameters to determine the
quantization range. This paper differs in: 1) [16] utilizes the center and radius of
the quantization region to parameterize the quantization range while we explic-
itly introduce the upper and lower bounds. 2) [16] requires an expensive transfor-
mation to normalize activations to a fixed range before performing quantization.
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3) Though trainable, the final quantization range is consistent with different
inputs. Thus, we design a dynamic gate controller to provide an instance-wise
quantization range adaptive to different inputs as illustrated in the next section.

Dynamic gate controller: Though the trainable upper and lower bounds par-
tially alleviate the “quantization unfitness” problem, it is still suboptimal if
only applying the same pair of (αl, αu) for different inputs since their activation
ranges also dramatically vary as shown in Fig. 1. To address this issue, we devise
a dynamic gate controller to adapt (αl, αu) to every input sample at runtime.
Fig. 3(b) depicts the structure of our gate controller, which is composed of a
series of consequently stacked operators including two convolutional layers, a
BN layer, a ReLU function, and a sigmoid function multiplied by 2. It takes the
feature maps from the SR model as inputs and outputs two scaling coefficients
βl and βu for each sample. Then, βl and βu are respectively used to re-scale
the lower bound αl and the upper bound αu, results of which serve as the final
clipping bounds of the corresponding input images as shown in Fig. 3(a). De-
noting the α′

u = βu · αu and α′
l = βl · αl, the clipped activations ã now can be

reformulated as: ã = min(max(a, α′
l), α

′
u). Similar to Eq. (4), the gradient is:

∂ā

∂α′
u

=
∂ā

∂ã

∂ã

∂α′
u

STE
≈

{
1, a ≥ α′

u

0, a ≤ α′
u

,
∂ā

∂α′
l

=
∂ā

∂ã

∂ã

∂α′
l

STE
≈

{
0, a ≥ α′

l

1, a ≤ α′
l

. (5)

Then, the gradients of βu, βl, αu, αl can be obtained by the chain rule.
Our gate controller enables the clipping bounds adaptive to each of the in-

put samples, with which the gate outputs are dynamically correlated at runtime.
However, the extra costs on computation and storage of the gate controller are
expensive, causing a contradiction with our motive to reduce the complexity of
SR models. Thus, we reduce the its complexity from two perspectives: 1) We
quantize the weights and activations of the gate to a 2-bit using the quantizer
defined by Eq. (2) and Eq. (3). The clipping bounds are set as the maximum and
minimum of the weights/activations. We empirically find that such a simple set-
ting is sufficient. During the inference phase, the BN layer in gate controller can
be folded into the previous convolutional layer [41] and the extra floating-point
operations are very cheap. 2) We choose to apply our dynamic gate controller
to some layers of the SR model. Concretely, we define the dynamic intensity in
the l-th layer as DI l = V l

max + V l
min, where V l

max and V l
min are variances of

the maximum activations and minimum activations. The overhead is trivial as
it forwards the training data to the full-precision network only once and can be
completed offline. It is intuitive that a larger DI l indicates a more dynamic acti-
vation range. Thus, we apply the dynamic gate to these layers with the top-P%
largest dynamic intensity, where the gate ratio P is a hyper-parameter.

DDTB Initializer. One common way to initialize the αu and αl is to use
the activation statistics such as the maximum and minimum values in the quan-
tized network. However, for ultra-low bit cases, quantization error accumulates
drastically, leading to unreliable statistics in deep layers. Instead, we derive the
activation statistics by feeding a patch of images to the full-precision network,
and then use the M -th and (100−M)-th percentiles of obtained activations to
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initialize the αu and αl, which are more stable even in the ultra-low bit situation
since the full-precision network is not challenged by the quantization error issue.

In addition, we observe that the βu and βl are either too small or too large in
the early training phase due to the random initialization of gate weights, which
obstacles the learning of αu and αl, and leads to inferior performance. Therefore,
in the first K training epochs, we do not apply βu and βl to scaling αu, αl, and
the gate is trained individually to push its outputs close to 1 whatever the inputs.
After K epochs, we then apply βu and βl which start from a stable initial value,
i.e., around 1. Then, the dynamic gate controller and the clipping variables are
jointly trained to accommodate the drastically varying activation ranges. In all
our experiments, we set K = 5.

Weight Quantization. The symmetric quantizer is also adopted to quan-
tize weights in previous works. We suggest utilizing the asymmetric quantizer to
quantize the weights. Similar to our activation quantization, an upper bound wu

and a lower bound wl are used to clip the weight range: w̃ = min(max(w, wl), wu).
The quantized integer and de-quantized value can be obtained similar to Eq. (2)
and Eq. (3). This quantization scheme is also compatible with the symmetric
case when wu = −wl. In all our experiments, wu is set to the 99-th percentile
and wu is set to 1-th percentile of the full-precision weights since we observe no
performance gains if setting them to trainable parameters.

3.4 Training Loss

Following PAMS [23], we use L1 loss and LSKT loss in all the experiments.
Denoting D = {IiLR, I

i
HR}Ni=1 as the training dataset with N pairs of LR and

HR images. The L1 loss and LSKT loss are defined as:

L1 =
1

N

N∑
i=1

∥IiLR − IiHR∥1, (6)

LSKT =
1

N

N∑
i=1

∥ F ′
S(I

i
LR)

∥F ′
S(I

i
LR)∥2

− F ′
T (I

i
LR)

∥F ′
T (I

i
LR)∥2

∥2, (7)

where F ′
S(I

i
LR) and F ′

T (I
i
LR) are structure features of IiLR from the quantized

network and the full-precision network, respectively. The structure feature can be
calculated by F ′(IiLR) =

∑N
c=1 |Fc(I

i
LR)|2 ∈ RH×W , where F (IiLR) ∈ RC×H×W

is the feature map after the last layer in the high-level feature extractor. Then,
the overall loss function L is:

L = L1 + λLSKT . (8)

where λ = 1, 000 in all our experiments.
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Table 1. PSNR/SSIM comparisons between existing low-bit SR methods and our
DDTB in quantizing EDSR [24] of scale 4 and scale 2 to the low-bit format. Results of
the full-precision model are displayed below the dataset name.

Model Dataset Bit Dorefa [49] TF Lite [14] PACT [3] PAMS [23] DDTB(Ours)

EDSR
×4

Set5 [2]
32.10/0.894

2 29.90/0.850 29.96/0.851 30.03/0.854 29.51/0.835 30.97/0.876
3 30.76/0.870 31.05/0.877 30.98/0.876 27.25/0.780 31.52/0.883
4 30.91/0.873 31.54/0.884 31.32/0.882 31.59/0.885 31.85/0.889

Set14 [22]
28.58/0.781

2 27.08/0.744 27.12/0.745 27.21/0.747 26.79/0.734 27.87/0.764
3 27.66/0.759 27.92/0.765 27.87/0.764 25.24/0.673 28.18/0.771
4 27.78/0.762 28.20/0.772 28.07/0.769 28.20/0.773 28.39/0.777

BSD100 [31]
27.56/0.736

2 26.66/0.704 26.68/0.705 26.73/0.706 26.45/0.696 27.09/0.719
3 26.97/0.716 27.12/0.721 27.09/0.719 25.38/0.644 27.30/0.727
4 27.04/0.719 27.31/0.727 27.21/0.724 27.32/0.728 27.44/0.732

Urban100 [12]
26.04/0.785

2 24.02/0.705 24.03/0.705 24.12/0.708 23.72/0.688 24.82/0.742
3 24.59/0.732 24.85/0.743 24.82/0.741 22.76/0.641 25.33/0.761
4 24.73/0.739 25.28/0.760 25.05/0.751 25.32/0.762 25.69/0.774

EDSR
×2

Set5 [2]
37.93/0.960

2 36.12/0.952 36.23/0.952 36.58/0.955 35.30/0.946 37.25/0.958
3 37.13/0.957 37.33/0.957 37.36/0.958 36.76/0.955 37.51/0.958
4 37.22/0.958 37.64/0.959 37.57/0.958 37.67/0.958 37.72/0.959

Set14 [22]
33.46/0.916

2 32.09/0.904 32.14/0.904 32.38/0.907 31.63/0.899 32.87/0.911
3 32.73/0.910 32.98/0.912 32.99/0.912 32.50/0.907 33.17/0.914
4 32.82/0.911 33.24/0.914 33.20/0.914 33.20/0.915 33.35/0.916

BSD100 [31]
32.10/0.899

2 31.03/0.884 31.07/0.885 31.26/0.887 30.66/0.879 31.67/0.893
3 31.57/0.892 31.76/0.894 31.77/0.894 31.38/0.889 31.89/0.896
4 31.63/0.893 31.94/0.896 31.93/0.897 31.94/0.897 32.01/0.898

Urban100 [12]
31.71/0.925

2 28.71/0.886 28.77/0.886 29.22/0.894 28.11/0.875 30.34/0.910
3 30.00/0.906 30.48/0.912 30.57/0.912 29.50/0.898 31.01/0.919
4 30.17/0.908 31.11/0.919 31.09/0.919 31.10/0.919 31.39/0.922

4 Experiments

4.1 Implementation Details

All the models are trained on the training set of DIV2K including 800 im-
ages [38], and tested on four standard benchmarks including Set5 [2], Set14 [22],
BSD100 [31] and Urban100 [12]. Two upscaling factors of ×2 and ×4 are eval-
uated. The quantized SR models include EDSR [24], RDN [47], and SRRes-
Net [22]. We quantize them to 4, 3, and 2-bit and compare with the SOTA
competitors including DoReFa [49], Tensorflow Lite (TF Lite) [14], PACT [3],
and PAMS [23]. The PSNR and SSIM [42] over the Y channel are reported.

The full-precision models and compared quantization methods are imple-
mented based on their open-source code. For the quantized models, following
PAMS [23], we quantize both weights and activations of the high-level feature
extraction module. The low-level feature extraction and reconstruction modules
are set to the full-precision1. The batch size is set to 16 and the optimizer is
Adam [19] with β1 = 0.9, β2 = 0.999 and ϵ = 10−8. We set the initial learning
rate to 10−4 and halve it every 10 epochs. For EDSR, the gate ratio P is set to
30 and the initialization coefficient M is 99. As for RDN, P and M are 50 and
95. For SRResNet, P = 10 and M = 99. The total training epochs are set to 60.
The training images are pre-processed by subtracting the mean RGB. During

1 Results of fully quantized SR models are provided in the supplementary material.
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Table 2. PSNR/SSIM comparisons between existing low-bit SR methods and our
DDTB in quantizing RDN [47] of scale 4 and scale 2 to the low-bit format. Results of
the full-precision model are displayed below the dataset name.

Model Dataset Bit Dorefa [49] TF Lite [14] PACT [3] PAMS [23] DDTB(Ours)

RDN
×4

Set5 [2]
32.24/0.896

2 29.90/0.849 29.93/0.850 28.78/0.820 29.73/0.843 30.57/0.867
3 31.24/0.881 30.13/0.854 31.30/0.879 29.54/0.838 31.49/0.883
4 31.51/0.885 31.08/0.874 31.93/0.890 30.44/0.862 31.97/0.891

Set14 [22]
28.67/0.784

2 27.08/0.743 27.11/0.744 26.33/0.717 26.96/0.739 27.56/0.757
3 28.02/0.769 27.21/0.744 28.06/0.767 26.82/0.734 28.17/0.772
4 28.21/0.773 27.98/0.764 28.44/0.778 27.54/0.753 28.49/0.780

BDS100 [31]
27.63/0.738

2 26.65/0.703 26.64/0.703 26.16/0.681 26.57/0.700 26.91/0.714
3 27.20/0.724 26.71/0.705 27.21/0.722 26.47/0.696 27.30/0.728
4 27.30/0.727 27.16/0.720 27.46/0.732 26.87/0.710 27.49/0.735

Urban100 [12]
26.29/0.792

2 23.99/0.702 23.99/0.703 23.38/0.672 23.87/0.696 24.50/0.728
3 25.07/0.754 24.27/0.713 25.17/0.754 23.83/0.692 25.35/0.764
4 25.36/0.764 25.25/0.755 25.83/0.779 24.52/0.726 25.90/0.783

RDN
×2

Set5 [2]
38.05/0.961

2 36.20/0.952 36.12/0.951 36.55/0.954 35.45/0.946 36.76/0.955
3 37.44/0.958 36.38/0.953 37.39/0.958 35.25/0.942 37.61/0.959
4 37.61/0.959 36.83/0.955 37.82/0.959 36.53/0.953 37.88/0.960

Set14 [22]
33.59/0.917

2 32.14/0.904 32.08/0.903 32.34/0.905 31.67/0.899 32.54/0.908
3 33.08/0.914 32.46/0.907 33.08/0.914 31.52/0.893 33.26/0.915
4 33.23/0.915 32.72/0.910 33.47/0.916 32.39/0.905 33.51/0.917

BSD100 [31]
32.20/0.900

2 31.06/0.885 31.01/0.884 31.21/0.886 30.69/0.879 31.44/0.890
3 31.87/0.896 31.34/0.888 31.86/0.896 30.62/0.874 31.91/0.897
4 31.98/0.897 31.63/0.892 32.09/0.898 31.27/0.885 32.12/0.899

Urban100 [12]
32.13/0.927

2 28.81/0.888 28.72/0.885 29.15/0.892 28.14/0.874 29.77/0.903
3 30.96/0.918 29.83/0.903 30.97/0.918 28.30/0.873 31.10/0.920
4 31.33/0.922 30.49/0.912 31.69/0.925 29.70/0.898 31.76/0.926

training, random horizontal flip and vertical rotation are adopted to augment
data. All experiments are implemented with PyTorch [34].

4.2 Experimental Results

Table 1, Table 2, and Table 3 respectively show the quantitative results of EDSR,
RDN, and SRResNet on different datasets. Details are discussed below.

Evaluation on EDSR. In the case of 4-bit, our DDTB outperforms the ad-
vanced PAMS by a large margin. For instance, for 4-bit EDSR×4, DDTB obtains
0.37dB PSNR gains on Urban100. More noticeable improvements can be ob-
served when performing ultra-low bit quantization. For instance, our DDTB ob-
tains performance gains by 0.94dB, 0.66dB, 0.36dB, and 0.70dB on Set5, Set14,
BSD100, and Urban100 when quantizing EDSR×4 to 2-bit.

Evaluation on RDN. When quantizing the model to 4-bit, our DDTB
slightly outperforms the existing SOTA of PACT. When it comes to ultra-low
bit, the superior performance is in particular obvious. In detail, for 2-bit RDN×4,
the performance gains of our DDTB are 0.64dB, 0.45dB, 0.26dB, and 0.51dB on
Set5, Set14, BSD100, and Urban100.

Evaluation on SRResNet. The results of SRResNet also manifest that the
performance gains of our DDTB are more prominent with ultra-low precision.
For 2-bit SRResNet×4, our DDTB improves the performance by 0.65dB, 0.47dB,
0.30dB, and 0.69dB on Set5, Set14, BSD100, and Urban100, while the perfor-
mance gains are 1.15dB, 0.79dB, 0.67dB, and 1.80dB for 2-bit SRResNet×2.
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Table 3. PSNR/SSIM comparison between existing low-bit SR methods and our
DDTB in quantizing SRResNet [22] of scale 4 and scale 2 to the low-bit format. Results
of the full-precision model are displayed below the dataset name.

Model Dataset Bit Dorefa [49] TF Lite [14] PACT [3] PAMS[23] DDTB(Ours)

SRResNet
×4

Set5 [2]
32.07/0.893

2 30.25/0.860 30.33/0.861 30.86/0.874 30.25/0.861 31.51/0.887
3 30.34/0.862 31.58/0.886 31.62/0.887 31.68/0.888 31.85/0.890
4 30.32/0.861 31.82/0.890 31.85/0.890 31.88/0.891 31.97/0.892

Set14 [22]
28.50/0.780

2 27.33/0.749 27.39/0.751 27.76/0.761 27.36/0.750 28.23/0.773
3 27.39/0.751 28.24/0.773 28.25/0.773 28.27/0.774 28.39/0.776
4 27.41/0.751 28.40/0.777 28.38/0.775 28.41/0.777 28.46/0.778

BSD100 [31]
27.52/0.735

2 26.78/0.708 26.80/0.709 27.03/0.717 26.79/0.709 27.33/0.728
3 26.81/0.709 27.31/0.726 27.33/0.727 27.34/0.728 27.44/0.731
4 26.82/0.709 27.42/0.730 27.41/0.730 27.45/0.732 27.48/0.733

Urban100 [12]
25.86/0.779

2 24.17/0.711 24.21/0.713 24.68/0.733 24.19/0.713 25.37/0.762
3 24.24/0.714 25.33/0.759 25.39/0.761 25.46/0.765 25.64/0.770
4 24.26/0.714 25.62/0.780 25.61/0.769 25.68/0.773 25.77/0.776

SRResNet
×2

Set5 [2]
37.89/0.960

2 35.27/0.946 35.34/0.946 36.31/0.953 34.75/0.942 37.46/0.958
3 35.30/0.946 37.50/0.958 37.42/0.958 37.52/0.958 37.67/0.959
4 35.39/0.946 37.69/0.959 37.65/0.959 37.71/0.959 37.78/0.960

Set14 [22]
33.40/0.916

2 31.54/0.899 31.61/0.899 32.23/0.905 31.31/0.896 33.02/0.913
3 31.56/0.899 33.05/0.913 32.92/0.911 33.09/0.914 33.24/0.915
4 31.63/0.899 33.26/0.915 33.24/0.915 33.26/0.915 33.32/0.916

BSD100 [31]
32.08/0.898

2 30.61/0.879 30.66/0.879 31.11/0.885 30.48/0.877 31.78/0.895
3 30.62/0.879 31.81/0.894 31.70/0.893 31.85/0.896 31.95/0.897
4 30.67/0.880 31.99/0.897 31.96/0.897 31.99/0.897 32.03/0.898

Urban100 [12]
31.60/0.923

2 27.98/0.871 28.04/0.872 28.77/0.885 27.86/0.868 30.57/0.913
3 27.99/0.871 30.64/0.913 30.43/0.910 30.69/0.914 31.15/0.919
4 28.06/0.872 31.25/0.920 31.19/0.919 31.20/0.920 31.40/0.921

GT
PSNR(dB)/SSIM

DDTB
26.66/0.767

PAMS
25.24/0.735

PACT
24.55/0.709

TF Lite
25.65/0.746

Dorefa
25.60/0.746

Fig. 4. Reconstructed results of 2-bit EDSR×4

Qualitative Visualizations. Fig. 4 exhibits the qualitative visualizations
of 2-bit EDSR2. Compared with others methods, the reconstructed HR image
of our DDTB provides sharper edges and richer details.

Above results demonstrate the effectiveness of our DDTB and also verify
the correctness of our motivation in designing an appropriate quantizer adaptive
to the activation distribution. Moreover, it is worth noticing that DDTB pro-
vides stable improvements over different SR models and bit-widths. For example,

2 More qualitative visualizations are presented in the supplementary material.
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Table 4. Complexity analysis. The number in brackets indicates the parameters in the
high-level feature extraction module. We compute BOPs by generating a 1920×1080
image (upscaling factor ×4). Results of 2-bit are displayed and more can be found in
the supplementary.

Model Bit Params Gate Params(ratio) BOPs Gate BOPs(ratio)

EDSR [24] 32 1.52M 0 532T 0
EDSR DDTB 2 0.41M(0.08M) 0.6% 219T 0.0000013%

RDN [47] 32 22.3M 0 6038T 0
RDN DDTB 2 1.76M(1.42M) 2.8% 239T 0.0000066%
SRResNet [22] 32 1.543M 0 591T 0

SRResNet DDTB 2 0.44M(0.07M) 0.1% 278T 0.0000002%
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Fig. 5. (a) The βu in 2-bit EDSR×4. (b) Influence of the gate ratio P in 2-bit EDSR×4.

PAMS obtains the best results among the compared methods when quantizing
EDSR×4 to 4-bit, but it was outperformed by TF Lite in 3-bit and PACT in
2-bit. In contrast, DDTB achieves the best results in all these three bit-widths.
Such stability further illustrates the advanced generalization of DDTB.

4.3 Model Analysis

To measure the complexity of the quantized network, we use the parameters and
Bit-Operations (BOPs) [40] as the metric. BOPs are the number of multiplication
operations multiplied by the bit-widths of two operands. As shown in Table 4,
DDTB significantly reduces the model size and computation cost. And the extra
computation cost and size of our dynamic gate controller are negligible. Note
that, the full-precision low-level feature extraction and reconstruction modules
occupy most of the memory and computation costs when quantizing the network
to the case of ultra-low bit. Fig. 5(a) displays the βu values of 15 randomly
selected test images. We select the results of 2-bit EDSR×4. It can be seen
that the βu of different images varies a lot, which proves that the dynamic gate
controller can well adjust the clipping bounds adaptive to the input images.

4.4 Ablation Study

This section conducts the ablation study of our DDTB. All experiments are
conducted with 2-bit EDSR×4.
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Table 5. Effect of different components in our methods. “DW”: dual bounds for weight
quantization. “DI”: DDTB initializer. The PSNR/SSIM are reported.

Components Results

DDTB DW DI Set5 [2] Set14 [22] BSD100 [31] Urban100 [12]
PAMS [23] 29.51/0.835 26.79/0.734 26.45/0.696 23.72/0.688

✓ 30.00/0.853 27.15/0.745 26.69/0.705 24.06/0.707
✓ 29.82/0.846 27.02/0.741 26.62/0.702 23.98/0.702
✓ ✓ 30.19/0.852 27.30/0.747 26.76/0.703 24.19/0.711

✓ ✓ 30.23/0.858 27.33/0.750 26.78/0.709 24.23/0.714
✓ ✓ 30.80/0.871 27.68/0.760 26.99/0.717 24.64/0.735
✓ ✓ ✓ 30.97/0.876 27.87/0.764 27.09/0.719 24.82/0.742

Gate Parameters. Fig. 5(b) exhibits the results of different gate ratio P on
Set14 [22] dataset. The best result is observed when the P is set to 30. Compared
with the case without our gate controller, its PSNR increases by 0.16dB. Using
more layers cannot bring improvements and even does slight damage to the
performance. Moreover, using the full-precision gate does not provide better
results, which indicates that a 2-bit gate is sufficient. To reduce search overhead,
we find the best P on the model of scale 4 and apply it to the corresponding
model of scale 2. Though not optimal, it is sufficient to show SOTA performance.

Components. We use PAMS as the baseline to show the effect of differ-
ent components including dynamic dual training bounds (DDTB) for activation
quantization, dual bounds for weight quantization, and DDTB initializer (DI).
Table 5 shows the experimental results. When DDTB and DW are individu-
ally added, the performance increases compared with the baseline. The DDTB
significantly boosts the baseline which proves its ability to fit the asymmetric
activation distribution. By combining the initializer, the performance continues
to increase. When all of them are applied, the best performance can be obtained.

5 Conclusion

This paper presents a novel quantization method, termed Dynamic Dual Train-
able Bounds (DDTB) to solve the asymmetric activation distribution in the
DCNN-based SR model. Our DDTB introduces trainable upper and lower bounds,
to which a dynamic gate controller is applied in order to adapt to the input sam-
ple at runtime. The gate is represented in a 2-bit format and only applied to part
of the network to minimize the extra overhead. Moreover, we design a special
DDTB initializer for stable training. Our DDTB shows its superiority over many
competitors with different quantized SR models on many benchmarks, especially
when performing ultra-low precision quantization.
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