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Abstract. We present a systematic study on a new task called dichoto-
mous image segmentation (DIS) , which aims to segment highly accurate
objects from natural images. To this end, we collected the first large-scale
DIS dataset, called DIS5K, which contains 5,470 high-resolution (e.g.,
2K, 4K or larger) images covering camouflaged, salient, or meticulous
objects in various backgrounds. DIS is annotated with extremely fine-
grained labels. Besides, we introduce a simple intermediate supervision
baseline (IS-Net) using both feature-level and mask-level guidance for
DIS model training. IS-Net outperforms various cutting-edge baselines on
the proposed DIS5K, making it a general self-learned supervision network
that can facilitate future research in DIS. Further, we design a new met-
ric called human correction efforts (HCE) which approximates the num-
ber of mouse clicking operations required to correct the false positives
and false negatives. HCE is utilized to measure the gap between models
and real-world applications and thus can complement existing metrics.
Finally, we conduct the largest-scale benchmark, evaluating 16 represen-
tative segmentation models, providing a more insightful discussion re-
garding object complexities, and showing several potential applications
(e.g., background removal, art design, 3D reconstruction). Hoping these
efforts can open up promising directions for both academic and indus-
tries. Project page: https://xuebinqin.github.io/dis/index.html.
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1 Introduction

Currently, the annotation accuracy of computer vision datasets that drive a
tremendous amount of Artificial Intelligence (AI) models satisfy the requirements
of machine perceiving systems to some extent. However, AI has entered an era of
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Fig. 1: Sample images from our DIS5K dataset. Zoom-in for best view.

demanding highly accurate outputs from computer vision algorithms to support
delicate human-machine interaction. Compared with classification [15, 39, 73]
and detection [29,30,68], segmentation can provide more geometrically accurate
target descriptions for wide applications, e.g., image editing [31], AR/VR [64],
medical image analysis [70], robot manipulation [7], etc.

These applications can be grouped as “light” (e.g., image editing and anal-
ysis) and “heavy” (e.g., human-machine interaction), based on their immedi-
ate affects on real-world objects. The “light” ones (Fig.1), which usually allows
post-corrections, are relatively tolerant to the segmentation errors. While, in
the “heavy” ones, the segmentation deflects or failures are more likely to cause
physic damages on objects or injuries (sometimes fatal) of humans. Hence, highly
accurate and robust models are needed. Now, most of the segmentation models
are still less applicable in those “heavy” applications due to the accuracy and
robustness issues. Hence, our goal is to address the “heavy” and “light” appli-
cations in a general framework, called dichotomous image segmentation (DIS),
which aims to segment highly accurate objects.

Existing segmentation tasks mainly focus on objects with specific charac-
teristics, e.g., salient [79, 82, 94], camouflaged [23, 40, 74], meticulous [45, 90] or
specific categories [38,46,55,70,72]. They have the same input/output formats,
and the exclusive mechanisms are barely used for segmenting specific targets in
their models, which means they are usually dataset-dependent. Thus, we propose
to formulate a category-agnostic DIS task defined on non-conflicting an-
notations for accurately segmenting objects with different structure
complexities, regardless of their characteristics. Compared with semantic
segmentation [14,17,47,63,103], the proposed DIS task mainly focuses on images
with single or a few targets, from which getting richer accurate details of each
target is more feasible. Therefore, we provide four contributions:

i) A large-scale, extendable DIS dataset,DIS5K, contains 5,470 high-resolution
images paired with highly accurate binary segmentation masks.

ii) A novel baseline IS-Net built with intermediate supervision reduces over-
fitting by enforcing direct high-dimensional feature synchronization.

iii) A newly designed human correction efforts (HCE) metric measures the bar-
riers between model predictions and real-world applications by counting the
human interventions needed to correct the faulty regions.
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iv) Based on the new DIS5K, we establish the complete DIS benchmark, mak-
ing ours the most extensive DIS investigation. We compared our IS-Net with
16 cutting-edge segmentation models and showed promising performance.

2 Related Work

Tasks and Datasets of image segmentation are closely related in deep learning
era. Some of the segmentation tasks like [12,21,45,46,55,72,82,90], are even di-
rectly built upon the datasets. Their problem formulations are exactly the same:
P = F (θ, I), where I and P are the input image and the binary map output, re-
spectively. However, the relevance between most of these tasks are rarely studied,
which restricts their trained models from being generalized to wider applications.
Besides, the datasets used in different tasks are not exclusive, which shows a uni-
fied task for dichotomous image segmentation (DIS) is possible. Models are of-
ten struggling with the conflicts between stronger representative capabilities and
higher risks of over-fitting. To obtain more representative features, FCN-based
models [49], Encoder-Decoder [3,70], Coarse-to-Fine [83], Predict-Refine [66,79],
Vision Transformer [101] and so on are developed. Besides, many real-time mod-
els are designed [24,37,43,58,59,92,97] to balance the performance and the time
costs. Other methods, such as weights regularization [32], dropout [75], dense
supervision [41,65,87], and hybrid loss [50,66,99], focus on alleviating the over-
fitting. Dense supervision is one of the most effective ways for reducing the over-
fitting. However, supervising the side outputs from the intermediate deep fea-
tures may not be the best option because the supervision is weakened by the con-
version from multi-channel deep features to single-channel side outputs. Evalua-
tion Metrics can be categorized as region-based (e.g., IoU or Jaccard index [1],
F-measure [13,69] or Dice’s coefficient [77], weighted F-measure [52]), boundary-
based (e.g., CM [57], boundary F-measure [16, 53, 56, 62, 66, 71, 96], boundary
IoU [9], boundary displacement error (BDE) [27], Hausdorff distances [4,5,34]),
structure-based (e.g., S-measure [19], E-measure [20,22]), confidence-based (e.g.,
MAE [61]), etc. They mainly measure the consistencies between the predictions
and the ground truth from mathematical or cognitive perspectives. But the costs
of synchronizing the predictions against the requirements in real-world applica-
tions are not well studied.

3 Proposed DIS5K Dataset

3.1 Data Collection and Annotation

Data Collection. To address the dataset issue (see §2), we build a highly
accurate DIS dataset named DIS5K. We first manually collected over 12,000
images from Flickr6 based on our pre-designed keywords7. Then, according to

6 Images with the license of “Commercial use & mods allowed”
7 Since the long-term goal of this research is to facilitate the “safe” and “efficient”

interaction between the machines and our living/working environments, these key-
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Fig. 2: Left: Correlations between different complexities. Right: Categories and groups
of our DIS5K dataset. Zoom-in for better view. Please refer to §3.1 for details.

the structural complexities of the objects, we obtained 5,470 images covering 225
categories (Fig.2) in 22 groups. Note that the adopted selection strategy is similar
to Zhou et al. [102]. Most selected images only contain single objects to obtain
rich and highly accurate structures and details. Meanwhile, the segmentation
and labeling confusions caused by the co-occurrence of multiple objects from
different categories are avoided to the greatest extent. Specifically, the image
selection criteria can be summarized as follows:

• Cover more categories while reducing the number of “redundant” samples
with simple structures, which other existing datasets have already covered.

• Enlarge the intra-category dissimilarities (See §2.3 of the supplementary
(SM)) of the selected categories by adding more diversified intra-category
images (Fig.3-f).

• Include more categories with complicated structures, e.g., fence, stairs, cable,
bonsai, tree, etc, which are common in our lives but not well-labeled (Fig.3-a)
or neglected by other datasets due to labeling difficulties.

Therefore, the labeled targets in our DIS5K are mainly the “foreground ob-
jects of the images defined by the pre-designed keywords” regardless of their
characteristics e.g., salient, common, camouflaged, meticulous, etc.

Data Annotation. Each image of DIS5K is manually labeled with pixel-wise
accuracy using GIMP8. The average per-image labeling time is ∼30 minutes and
some images cost up to 10 hours. It is worth mentioning that some of our labeled

words are mainly related to the common targets (e.g., bicycle, chair, bag, cable, tree,
etc) in our daily lives.

8 https://www.gimp.org/

https://www.gimp.org/
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(a) DUT-OMRON (b) DIS5K (c) COD10K (d) ThinObject5K
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(e) HRSOD (f) DIS5K

Fig. 3: Qualitative comparisons of different datasets. (a) and (b) indicate that our
DIS5K provides more accurate labels. (c) shows one sample from COD10K [23], of
which the structural complexity is caused by occlusion. (d) illustrates the synthetic
ThinObject5K [45] dataset. (e) and (f) demonstrate that DIS5K has a larger diversity
of intra-categorical structure complexities.

ground truth (GT) masks are visually close to the image matting GT. The la-
beled targets, including transparent and translucent, are binary masks with one
pixel’s highest accuracy. Here, the DIS task is category-agnostic while our DIS5K
is collected based on pre-designed keywords/categories, which seems contradic-
tory. The reasons are threefold. (1) The keywords greatly facilitate the retrieval
and organization of the large-scale dataset. (2) To achieve the goal of category-
agnostic segmentation, diversified samples are needed. Collecting samples based
on their categories is a reasonable way to guarantee the diversities’ lower bound
of the dataset. The diversities’ upper bound of our DIS5K is determined by
the diversified characteristics (e.g., textures, structures, shapes, contrasts, com-
plexities, etc) of a large number of samples, guaranteeing the robustness and
generalization of the category-agnostic segmentation. (3) There are no perfect
datasets, so re-organizing or further extension of the existing datasets is usually
necessary for different real-world applications. The category information will sig-
nificantly facilitate tracing the collected and to-be-collected samples. Therefore,
the category-based data collection is not contradictory but internally consistent
with the goal of DIS task.

3.2 Data Analysis

For deeper insights into DIS dataset, we compare our DIS5K against 19 other
related datasets including: (1) nine salient object detection (SOD) datasets:
SOD [57], PASCAL-S [44], ECSSD [89], HKU-IS [42], MSRA-B [48], DUT-
OMRON [91], MSRA10K [12], DUTS [82], and SOC [18]; (2) two high-resolution
salient object detection (HR-SOD) datasets: HR-SOD [94] and HR-DAVIS-S
[62, 94]; (3) four camouflaged object detection (COD) datasets: CAMO [40],
CHAMELEON [74], COD10K [23], and NC4K [51]; (4) two semantic segmen-
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Table 1: Data analysis of existing datasets. See §3.2 for details.

Task Dataset
Number Image Dimension Object Complexity

Inum H ± σH W ± σW D ± σD IPQ ± σIPQ Cnum ± σC Pnum ± σP

SOD

SOD [57] 300 366.87 ± 72.35 435.13 ± 72.35 578.28 ± 0.00 4.74 ± 3.89 2.25 ± 1.76 122.79 ± 62.97
PASCAL-S [44] 850 387.63 ± 64.65 467.82 ± 61.46 613.22 ± 32.00 3.39 ± 2.46 5.14 ± 11.72 102.76 ± 70.09

ECSSD [89] 1000 311.11 ± 56.27 375.45 ± 47.70 492.75 ± 19.78 3.26 ± 2.62 1.69 ± 1.42 107.54 ± 53.09
HKU-IS [42] 4447 292.42 ± 51.13 386.64 ± 37.42 488.00 ± 29.44 4.41 ± 4.28 2.21 ± 2.07 114.05 ± 55.06

MSRA-B [48] 5000 321.94 ± 56.33 370.86 ± 50.84 496.42 ± 22.53 2.89 ± 3.67 1.77 ± 2.25 102.04 ± 56.50
DUT-OMRON [91] 5168 320.93 ± 54.35 376.78 ± 46.02 499.50 ± 22.97 4.08 ± 6.20 2.27 ± 3.54 71.09 ± 59.60

MSRA10K [12] 10000 324.51 ± 56.26 370.27 ± 50.25 497.57 ± 22.79 2.54 ± 2.62 4.07 ± 17.94 101.95 ± 63.24
DUTS [82] 15572 322.1 ± 53.69 375.48 ± 47.03 499.35 ± 21.95 3.37 ± 4.28 2.62 ± 4.73 84.78 ± 57.74
SOC [18] 3000 480.00 ± 0.00 640.00 ± 0.00 800.00 ± 0.00 4.44 ± 3.57 13.69 ± 30.41 151.72 ± 154.83

HRS
HR-SOD [94] 2010 2713.12 ± 1041.7 3411.81 ± 1407.56 4405.40 ± 1631.03 5.85 ± 12.60 6.33 ± 16.65 319.32 ± 264.20

HR-DAVIS-S [62] 92 1299.13 ± 440.77 2309.57 ± 783.59 2649.87 ± 899.05 7.84 ± 5.69 15.60 ± 29.51 389.58 ± 309.29

COD

CAMO [40] 250 564.22 ± 402.12 693.89 ± 578.53 905.51 ± 690.12 3.97 ± 4.47 1.48 ± 1.18 65.21 ± 40.99
CHAMELEON [74] 76 741.80 ± 452.25 981.08 ± 464.88 1239.98 ± 629.19 15.25 ± 51.43 10.28 ± 48.03 222.45 ± 332.22

NC4K [23] 4121 529.61 ± 158.16 709.19 ± 198.90 893.23 ± 223.94 7.28 ± 11.28 4.32 ± 9.44 125.43 ± 123.76
COD10K [23] 5066 737.37 ± 185.65 963.85 ± 222.73 1224.53 ± 239.40 15.28± 71.84 17.18 ± 183.87 214.12 ± 857.83

SMS
R-PASCAL [11] 501 384.34 ± 64.69 469.66 ± 60.04 612.19 ± 36.32 4.44 ± 6.91 7.30 ± 8.73 139.31 ± 104.60

BIG [11] 150 2801.11 ± 889.78 3672.43 ± 1128.90 4655.81 ± 1312.44 11.94 ± 31.43 31.69± 71.94 655.68 ± 710.20

TOS
COIFT [45] 280 488.27 ± 92.25 600.40 ± 78.66 782.73 ± 30.45 11.88 ± 12.5 4.01 ± 3.98 173.14 ± 74.54

ThinObject5K [45] 5748 1185.59 ± 909.53 1325.06 ± 958.43 1823.03 ± 1258.49 26.53 ± 119.98 33.06± 216.07 519.14 ± 1298.54
DIS DIS5K (Ours) 5470 2513.37 ± 1053.40 3111.44 ± 1359.51 4041.93 ± 1618.26 107.60 ± 320.69 106.84 ± 436.88 1427.82 ± 3326.72

tation (SMS)9 datasets: R-PASCAL [11, 17] and BIG [11]; (5) two thin object
segmentation (TOS) datasets: COIFT [45] and ThinObject5K [45]. The compar-
isons are conducted mainly from the following three perspectives: image number,
image dimension, and object complexity as illustrated in Tab.1.
Image Dimension is crucial to segmentation tasks because of its significant
impacts on accuracy, efficiency, and computational costs. The mean (H, W , D)
and standard deviations (σH , σW , σD) of the image height, width and diagonal
length are provided in Tab.1. The BIG dataset has the largest average image
dimensions, but it only contains 150 images. HR-SOD has slightly greater di-
mensions than ours, its complexity is low. The average dimensions of our DIS5K
are almost eight times larger than those of the SOD and COD datasets. Besides,
the targets in COD datasets are mainly animals and insects, which restricts its
applications in diversified tasks.
Object Complexity is described by three metrics including the isoperimetric
inequality quotient (IPQ) [60,84,90], the number of object contours (Cnum) and
the number of dominant points Pnum. The IPQ mainly describes the overall

structure complexity as IPQ = L2

4πA , where L and A denote the object perimeter
and the region area, respectively. It is designed to differentiate objects with
elongated components and thin concave structures from close-to-convex objects.
The Cnum is used to represent the topological complexity in contour level for
observing the objects consisting of many (small) contours which usually have
minor influences on the IPQ. To describe the object complexity at a finer level,
we employ Pnum to count the number of the dominant points [67] along the object
boundaries. Therefore, the complexities of the small jagged segments along the
boundaries, which usually cannot be accurately measured by IPQ and Cnum,
can be well-evaluated with Pnum. Essentially, Pnum is the total number of the
polygon corners needed for approximating the segmentation masks, which also
directly reflects the human labeling costs. Thus, it is then adapted to our Human
Correction Efforts (HCE) metric (§5) for evaluating the prediction quality.

9 It is worth noting that only R-PASCAL and the BIG datasets are included here
because they target highly accurate segmentation, and most of their images contain
one or two objects, which is comparable to the listed tasks and datasets.
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Discussion. Tab.1 and Fig.2 (Left) illustrate the computed metrics. Our DIS5K
is around 20 (up to 50) times more complicated than the SOD datasets in terms
of average IPQ. Although CHAMELEON, COD10K, BIG, COIFT, and Thi-
nObject5K have higher average IPQ against the SOD datasets, they are still
much less complicated than ours. The average Cnum and its standard deviation
of DIS5K are over 100 and 400. This indicates the objects in DIS5K contain more
detailed structures that are comprised of multiple contours. The average Pnum

of DIS5K is over 1400, which is almost five and three times greater than those
of HR-SOD and the synthetic ThinObject5K, respectively. These three com-
plexity measurements are complementary to provide a comprehensive analysis
of the object complexities.The large standard deviations in Tab.1 demonstrate
the great diversities of DIS5K from different perspectives. Refer to the SM for
more results. Fig.3-a shows an observation tower from DUT-OMRON. Similar
object (b) has also been included in our DIS5K, which has higher labeling ac-
curacy and structural complexity. Fig.3-c shows a sample from COD10K where
the relatively higher structure complexity than that of SOD datasets is partially
caused by the labeled occlusions, which are not the structural complexity of the
target itself. A sample, where a set of the barbell is floating in the sky, from the
synthesized ThinObject5K dataset is shown in Fig.3-d. Synthesizing images is
a common way for generating training sets in image matting [88, 93]. But the
synthesized images are usually different from the real ones, which leads to biases
in predictions. Fig.3-e & f demonstrate the larger diversity of intra-categorical
structure complexities of our DIS5K.

3.3 Dataset Splitting

We split 5,470 images in DIS5K into three subsets: DIS-TR (3,000), DIS-VD
(470), and DIS-TE (2,000) for training, validation, and testing. The categories
in DIS-TR and those in DIS-VD and DIS-TE are mainly consistent. Since our
dataset’s object shapes and structure complexities are diversified, the 2000 im-
ages of DIS-TE are further split into four subsets with ascending shape complex-
ities for a more comprehensive evaluation. Specifically, we first rank the 2,000
testing images in ascending order according to the multiplication (IPQ×Pnum)
of their structure complexities IPQ and boundary complexities Pnum. Then,
DIS-TE is split into four subsets (i.e., DIS-TE1∼DIS-TE4) with 500 images in
each subset to represent four testing difficulty levels.

4 Proposed IS-Net Baseline

Overview. As shown in Fig.4, our IS-Net consists of a ground truth (GT) en-
coder, a image segmentation component, and a newly proposed intermediate
supervision strategy. The GT encoder (27.7 MB) is designed to encode the
GT masks into high-dimensional spaces and then used to enforce intermediate
supervision on the segmentation component. While, the image segmentation
component (176.6 MB) is expected to have the capability of capturing fine
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Fig. 4: Our IS-Net: (a) shows the image segmentation component, (b) illustrates the
ground truth encoder built upon the intermediate supervision (IS) component.

structures and handle large size e.g., 1024× 1024, inputs with affordable mem-
ory and time costs. In the following experiment, we choose U2-Net [65] as the
image segmentation component because of its strong capability in capturing fine
structures. Note that other segmentation models, such as transformer backbone,
are also compatible with our strategy.

Technique Details. U2-Net was originally designed for small size (320 × 320)
SOD image. Because of its GPU memory costs, it cannot be used directly for
handling large size (e.g., 1024× 1024) inputs. We adapt the architecture of U2-
Net by adding an input convolution layer before its first encoder stage. The
input convolution layer is set as a plain convolution layer with a kernel size
of 3 × 3 and stride of 2. Given an input image with a shape of I1024×1024×3,
the input convolution layer first transforms it to a feature map f512×512×64

and this feature map is then directly fed to the original U2-Net, where the
input channel is changed to 64 correspondingly. Compared with directly feeding
I1024×1024×3 to U2-Net, the input convolution layer helps the whole network
reduce three quarters of the overall GPU memory overhead while maintaining
spatial information in feature channels.
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4.1 Intermediate Supervision

DIS can be seen as a mapping in segmentation models from image domain
I ∈ RH×W×3 to segmentation GT domain G ∈ RH×W×1: G = F (θ, I), where F
indicates the model that uses learnable weights θ to map inputs from image to
mask domain. Most of the models are easy to over-fit on the training set. Thus,
the deep supervision has been proposed to supervise the intermediate outputs
of a given deep network [41]. In [65, 87], the dense supervisions are usually ap-
plied to the side outputs, which are single-channel probability maps produced by
convolving the last feature maps of particular deep layers. However, transform-
ing high-dimensional features to single-channel probability maps is essentially a
dimension reduction operation, inevitably losing critical cues.

To avoid this issue, we propose a novel intermediate supervision training
strategy. Given an input image IH×W×3 and its corresponding segmentation
mask GW×H×1, we first train a self-supervised GT encoder to extract the high-
dimensional features by “over-fitting” the training ground truth using a lightweight
deep model Fgt, Fig.4-b, as argmin

θgt

∑D
d=1 BCE(Fgt(θgt, G)d, G), where θgt indi-

cates the model weights, BCE is the binary cross entropy loss and D denotes
the number of the intermediate feature maps.

After obtaining the GT encoder Fgt, its weights θgt are frozen for gen-
erating the “ground truth” high-dimensional intermediate deep features by:
fG
D = F−

gt(θgt, G), D = {1, 2, 3, 4, 5, 6}, where F−
gt represents the Fgt without

the last convolution layers for generating the probability maps. F−
gt is to super-

vise those corresponding features f I
D from the segmentation model Fsg. In the

image segmentation component Fsg (Fig.4-a), the image I is transformed to a set
of high-dimensional intermediate feature maps f I

D before producing the proba-
bility maps. Each feature map f I

d has the same dimension with its correspond-
ing GT intermediate feature map fG

d : f I
D = F−

sg(θsg, I), D = {1, 2, 3, 4, 5, 6},
where θsg denotes the weights of the segmentation model. Then, the interme-
diate supervision (IS) via feature synchronization on the deep intermediate fea-
tures can be conducted by the following high-dimensional feature consistency

loss: Lfs =
∑D

d=1 λ
fs
d

∥∥f I
d − fG

d

∥∥2, where λfs
d denotes the weight of each FS loss.

The training process of the segmentation model Fsg can be formulated as the
following optimization problem: argmin

θsg

(Lfs+Lsg), where Lsg indicates the BCE

loss of the side outputs of Fsg: Lsg =
∑D

d=1 λ
sg
d BCE(Fsg(θsg, I), G), where λsg

d

represents the hyperparameter to weight each side output loss.

Fig.5 illustrates the feature maps from the stage 2 in Fig.4, EN 2, of the GT
encoder. We can see the diversified characteristics of the input mask are encoded
into different channels. For example, the 21st channel encodes both the fine and
large structures close to the original mask. While the 23rd, 29th, and 37th chan-
nels encode the middle size structures (seat, wheels), delicate structures (brake
cables and spokes), large size region (the overall shape of the bicycle), respec-
tively. These diversified features of the GT can provide stronger regularizations
and more comprehensive supervisions for reducing the risks of over-fitting.
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21 23 29 37

Fig. 5: Feature maps produced by the last layer of the EN 2 stage of our GT encoder.
“21”, “23”, “29” and “37” are the indices (start with 1) of the corresponding channels
in the feature map.

5 Proposed HCE Metric

Given a predicted segmentation probability map P ∈ RW×H×1 and its corre-
sponding GT mask G ∈ RW×H×1, the existing metrics, e.g., IoU, boundary
IoU [10], F-measure [2], boundary F-measure [16, 66], and MAE [61], usually
evaluate the quality of the prediction P by calculating the scores based on the
mathematical or cognitive consistency (or inconsistency) between P and G. In
other words, these metrics describe how significant the “gap” is between P and
G. However, evaluating the costs of filling the “gap” is more important than
measuring the magnitude of the “gap” in many applications.

Therefore, we propose a novel evaluation metric, Human Correction Efforts
(HCE), which measures the human efforts required in correcting faulty predic-
tions to satisfy specific accuracy requirements in real-world applications. Accord-
ing to our labeling experiences, there are mainly two frequently used operations:
(1) points selection along target boundaries to formulate polygons and (2) re-
gion selection based on similar pixel intensities inside the region. Both operations
correspond to one mouse clicking. Therefore, the HCE here is quantified by the
number of mouse clicking. To correct a faulty predicted mask, the operators
need to manually sample dominant points along the erroneously predicted tar-
gets’ boundaries or regions for correcting both False Positive (FP) and False
Negative (FN) regions. As shown in Fig.6, the FNs and FPs can be categorized
into two classes, according to their adjacent regions: FNN (N=TN+FP), FNTP,
FPP (P=TP+FN) and FPTN. To correct the FNN regions, its boundaries ad-
jacent to the TN need to be manually labeled with dominant points (Fig.6-b).
Similarly, to correct the FPP regions, we only need to label its boundaries ad-
jacent to the TP regions (Fig.6-d). The FNTP regions (Fig.6-c) enclosed by TP
and the FPTN regions (Fig.6-e) enclosed by TN can be easily corrected by one-
click region selection. Therefore, the HCE for correcting the faulty regions in
Fig.6 (b-e) is 10 (six and two clicks needed in (b) and (d), one click needed in
(c) and one click needed in (e)). The dominant point selection operations and
the region selection operations are approximated by DP algorithm [67] based on
the contours obtained by OpenCV findContours [76] function and the connected
regions labeling algorithm [26,86], respectively, in the evaluation stage.
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(b)

(e)

(d) (c)

(a) Error Map (b) FNN (c) FNTP (d) FPP (e) FPTN

Fig. 6: Faulty regions to be corrected. Refer to §5 for details.

Input: P , G, γ = 5, epsilon = 2.0
Output: HCEγ

1 Gske = skeletonize (G);
2 PorG, TP = or (P , G), and (P ,G);
3 FN , FP= (G - TP ), (P - TP );
4 for (i = 0; i ≤ γ; i + +) do
5 PorG = erode (PorG, disk (1));
6 end

7 FN ′, FP ′ = and (FN ,PorG), and (FP ,PorG);
8 for (i = 0; i ≤ γ; i + +) do
9 FN ′ = dilate (FN ′, disk (1));

10 FN ′ = and (FN ′, not P );

11 FP ′ = dilate (FP ′, disk (1));

12 FP ′ = and (FP ′, not G);

13 end

14 FN ′, FP ′ = and (FN , FN ′), and (FP , FP ′);

15 FN ′ = or (FN ′, xor (Gske, and (TP , Gske)));

16 HCEγ = compute HCE (FN ′, FP ′, TP , epsilon)

Algorithm 1: Relax HCE.

Relax HCE. Some applications may be tolerant to certain minor prediction
errors. Therefore, the HCE is extended by taking the error tolerance γ into con-
sideration (HCEγ). The key idea is to relax the FP and FN regions by excluding
the small FP and FN components using erosion [33] and dilation [33]. Given a
segmentation map P , its GT mask G, the error tolerance (e.g., γ = 5, which
denotes the size of the to-be-ignored small faulty regions), the epsilon of DP
algorithm, the HCEγ is calculated as Alg. 1. Note that the erosion operation
can remove all the thin and fine components of PorG. However, some thin com-
ponents (e.g., thin cables, nets) are critical in describing the targets, and they
need to be retained. To this end, the skeleton of the GT mask is extracted by [95]
and combined with the relaxed FN ′ mask for retaining these structures.

6 DIS5K Benchmark

As discussed above, our DIS5K is built from scratch to cover highly diversified
objects with very different geometrical structures and image characteristics. One
of the most important reasons is to exclude the existing datasets’ possible bi-
ases (to specific image or object characteristics). Therefore, its diversities (e.g.,
resolutions, image characteristics, object complexities, labeling accuracy) and
distributions differ from the existing datasets. All models are trained, validated,
and tested on DIS-TR, DIS-VD, and DIS-TE, respectively, to provide a fair
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Table 2: Quantitative evaluation on DIS5K validation and test sets. R = ResNet [35].
R2 = Res2Net [28]. S-813 = STDC813 [24], E-B1 = EffinetB1 [78].
Dataset Metric

UNet
[70]

BASNet
[66]

GateNet
[100]

F3Net
[85]

GCPANet
[8]

U2Net
[65]

SINetV2
[21]

PFNet
[54]

PSPNet
[98]

DLV3+
[6]

HRNet
[81]

BSV1
[92]

ICNet
[97]

MBV3
[36]

STDC
[24]

HySM
[58]

IS-Net

A
tt
r.

Backbone - R-34 R-50 R-50 R-50 - R2-50 R-50 R-50 R-50 - R-18 R-18 MBV3 S-813 E-B1 -
Size (MB) 121.4 348.6 515.0 102.6 268.7 176.3 108.5 186.6 196.1 161.8 264.4 47.6 46.5 21.5 48.4 49.6 176.6
Time (ms) 3.87 10.71 12.69 14.23 11.04 19.73 18.69 17.16 8.08 8.68 40.5 6.07 4.93 8.86 6.17 24.06 19.49
Input Size 5122 3202 3842 3522 3202 3202 3522 4162 5122 5132 10242

1024x2048 1024x2048 10242
512x1024 512x1024 10242

D
IS

-V
D

maxFβ ↑ 0.692 0.731 0.678 0.685 0.648 0.748 0.665 0.691 0.691 0.660 0.726 0.662 0.697 0.714 0.696 0.734 0.791
Fw
β ↑ 0.586 0.641 0.574 0.595 0.542 0.656 0.584 0.604 0.603 0.568 0.641 0.548 0.609 0.642 0.613 0.640 0.717

M ↓ 0.113 0.094 0.110 0.107 0.118 0.090 0.110 0.106 0.102 0.114 0.095 0.116 0.102 0.092 0.103 0.096 0.074
Sα ↑ 0.745 0.768 0.723 0.733 0.718 0.781 0.727 0.740 0.744 0.716 0.767 0.728 0.747 0.758 0.740 0.773 0.813
Em

ϕ ↑ 0.785 0.816 0.783 0.800 0.765 0.823 0.798 0.811 0.802 0.796 0.824 0.767 0.811 0.841 0.817 0.814 0.856
HCEγ ↓ 1337 1402 1493 1567 1555 1413 1568 1606 1588 1520 1560 1660 1503 1625 1598 1324 1116

D
IS

-T
E
1

maxFβ ↑ 0.625 0.688 0.620 0.640 0.598 0.694 0.644 0.646 0.645 0.601 0.668 0.595 0.631 0.669 0.648 0.695 0.740
Fw
β ↑ 0.514 0.595 0.517 0.549 0.495 0.601 0.558 0.552 0.557 0.506 0.579 0.474 0.535 0.595 0.562 0.597 0.662

M ↓ 0.106 0.084 0.099 0.095 0.103 0.083 0.094 0.094 0.089 0.102 0.088 0.108 0.095 0.083 0.090 0.082 0.074
Sα ↑ 0.716 0.754 0.701 0.721 0.705 0.760 0.727 0.722 0.725 0.694 0.742 0.695 0.716 0.740 0.723 0.761 0.787
Em

ϕ ↑ 0.750 0.801 0.766 0.783 0.750 0.801 0.791 0.786 0.791 0.772 0.797 0.741 0.784 0.818 0.798 0.803 0.820
HCEγ ↓ 233 220 230 244 271 224 274 253 267 234 262 288 234 274 249 205 149

D
IS

-T
E
2

maxFβ ↑ 0.703 0.755 0.702 0.712 0.673 0.756 0.700 0.720 0.724 0.681 0.747 0.680 0.716 0.743 0.720 0.759 0.799
Fw
β ↑ 0.597 0.668 0.598 0.620 0.570 0.668 0.618 0.633 0.636 0.587 0.664 0.564 0.627 0.672 0.636 0.667 0.728

M ↓ 0.107 0.084 0.102 0.097 0.109 0.085 0.099 0.096 0.092 0.105 0.087 0.111 0.095 0.083 0.092 0.085 0.070
Sα ↑ 0.755 0.786 0.737 0.755 0.735 0.788 0.753 0.761 0.763 0.729 0.784 0.740 0.759 0.777 0.759 0.794 0.823
Em

ϕ ↑ 0.796 0.836 0.804 0.820 0.786 0.833 0.823 0.829 0.828 0.813 0.840 0.781 0.826 0.856 0.834 0.832 0.858
HCEγ ↓ 474 480 501 542 574 490 593 567 586 516 555 621 512 600 556 451 340

D
IS

-T
E
3

maxFβ ↑ 0.748 0.785 0.726 0.743 0.699 0.798 0.730 0.751 0.747 0.717 0.784 0.710 0.752 0.772 0.745 0.792 0.830
Fw
β ↑ 0.644 0.696 0.620 0.656 0.590 0.707 0.641 0.664 0.657 0.623 0.700 0.595 0.664 0.702 0.662 0.701 0.758

M ↓ 0.098 0.083 0.103 0.092 0.109 0.079 0.096 0.092 0.092 0.102 0.080 0.109 0.091 0.078 0.090 0.079 0.064
Sα ↑ 0.780 0.798 0.747 0.773 0.748 0.809 0.766 0.777 0.774 0.749 0.805 0.757 0.780 0.794 0.771 0.811 0.836
Em

ϕ ↑ 0.827 0.856 0.815 0.848 0.801 0.858 0.849 0.854 0.843 0.833 0.869 0.801 0.852 0.880 0.855 0.857 0.883
HCEγ ↓ 883 948 972 1059 1058 965 1096 1082 1111 999 1049 1146 1001 1136 1081 887 687

D
IS

-T
E
4

maxFβ ↑ 0.759 0.780 0.729 0.721 0.670 0.795 0.699 0.731 0.725 0.715 0.772 0.710 0.749 0.736 0.731 0.782 0.827
Fw
β ↑ 0.659 0.693 0.625 0.633 0.559 0.705 0.616 0.647 0.630 0.621 0.687 0.598 0.663 0.664 0.652 0.693 0.753

M ↓ 0.102 0.091 0.109 0.107 0.127 0.087 0.113 0.107 0.107 0.111 0.092 0.114 0.099 0.098 0.102 0.091 0.072
Sα ↑ 0.784 0.794 0.743 0.752 0.723 0.807 0.744 0.763 0.758 0.744 0.792 0.755 0.776 0.770 0.762 0.802 0.830
Em

ϕ ↑ 0.821 0.848 0.803 0.825 0.767 0.847 0.824 0.838 0.815 0.820 0.854 0.788 0.837 0.848 0.841 0.842 0.870
HCEγ ↓ 3218 3601 3654 3760 3678 3653 3683 3803 3806 3709 3864 3999 3690 3817 3819 3331 2888

O
v
e
ra

ll
D
IS

-T
E

(1
-4
) maxFβ ↑ 0.708 0.752 0.694 0.704 0.660 0.761 0.693 0.712 0.710 0.678 0.743 0.674 0.711 0.729 0.710 0.757 0.799

Fw
β ↑ 0.603 0.663 0.590 0.614 0.554 0.670 0.608 0.624 0.620 0.584 0.658 0.558 0.622 0.658 0.628 0.665 0.726

M ↓ 0.103 0.086 0.103 0.098 0.112 0.083 0.101 0.097 0.095 0.105 0.087 0.110 0.095 0.085 0.094 0.084 0.070
Sα ↑ 0.759 0.783 0.732 0.750 0.728 0.791 0.747 0.756 0.755 0.729 0.781 0.737 0.758 0.770 0.754 0.792 0.819
Em

ϕ ↑ 0.798 0.835 0.797 0.819 0.776 0.835 0.822 0.827 0.819 0.810 0.840 0.778 0.825 0.850 0.832 0.834 0.858
HCEγ ↓ 1202 1313 1339 1401 1395 1333 1411 1427 1442 1365 1432 1513 1359 1457 1426 1218 1016

comparison. Currently, cross-dataset evaluations [80] are not conducted mainly
because their labeling accuracy is not consistent with ours.
Metrics. To provide relatively comprehensive and unbiased evaluations, six dif-
ferent metrics, including maximal F-measure (Fmx

β ↑) [2], weighted F-measure
(Fw

β ↑) [52], mean absolute error (M ↓) [61], structural measure (Sα ↑) [19], mean
enhanced alignment measure (Em

ϕ ↑) [20, 22] and our human correction efforts
(HCEγ ↓), are used to evaluate the performance from different perspectives.
Competitors. We compared our IS-Net with 16 popular models designed for
different segmentation tasks, including (i) popular medical image segmentation
model, U-Net [70]; (ii) salient object detection models such as BASNet [66],
GateNet [100], F3Net [85], GCPA [8] and U2-Net [65]; (iii) models designed for
COD like SINet-V2 [21] and PFNet [54]; (iv) semantic segmentation models:
PSPNet [98], DeepLab-V3+ [6] and HRNet [81]; (v) real-time semantic segmen-
tation models: BiSeNetV1 [92], ICNet [97], MobileNet-V3-Large [36], STDC [25]
and HyperSegM [58]. All models are re-trained using DIS-TR set (on Tesla V100
or RTX A6000) and the time costs in Tab.2 are all tested on RTX A6000.

6.1 Quantitative Evaluation

Compared with the 16 SOTA models, our IS-Net achieves the most competitive
performance across all metrics (see Tab.2). We observe that the performance of
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Fig. 7: Qualitative comparisons of IS-Net with four baselines.

different models may be partially related to the spatial size of the model input
and their feature maps. Most of the segmentation models introduce the clas-
sification backbones to construct their encoder-decoder architectures. However,
backbones like ResNet-50 [35] starts with an input convolution layer (stride of
two) followed by a pooling operation (stride of two) to reduce the spatial size of
the feature maps, which leads to the loss of much spatial information and signif-
icant performance degradation. When the shape of the to-be-segmented target
is close to convex, the degradation is less significant. However, many objects in
DIS5K are non-convex, and they have very complicated and fine structures. It
requires the models to keep the spatial information as much as possible, which
is challenging to most models.

6.2 Qualitative Evaluation

Fig.7 presents qualitative comparisons between our approach and four SOTA
baselines. Our model achieves promising results on the diverse scenes no matter
that they are salient (gate), camouflaged (centipede), thin (shopping cart) or
meticulous (fence) objects, demonstrating the generalization capability of our
IS-Net baseline.

6.3 Ablation Study

To validate the effectiveness of our adaptation on recent SOTA model e.g., U2-
Net and our newly proposed intermediate supervision strategy, we conduct com-
prehensive ablation studies.
Input Size. As can be seen in Tab.3, a larger input size can improve the perfor-
mance of U2-Net. However, it also increases the GPU memory costs so that we
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Table 3: Ablation studies on our DIS-VD set.
Settings Fmx

β ↑ Fw
β ↑ M ↓ Sα ↑ Em

ϕ ↑ HCEγ ↓
U2-Net 3202 (baseline) .748 .656 .090 .781 .823 1413
U2-Net 5122 .769 .677 .085 .789 .826 1146
U2-Net 10242 .764 .667 .088 .792 .820 1085
U2-Net 10242 (Adp) .776 .695 .080 .804 .844 1076
Adp+Last-1(L2) .777 .695 .080 .799 .840 1115
Adp+Last-2(L2) .778 .704 .079 .803 .847 1049
Adp+Last-3(L2) .788 .708 .079 .812 .845 1078
Adp+Last-4(L2) .782 .703 .079 .807 .849 1063
Adp+Last-5(L2) .788 .715 .074 .811 .853 1059
Adp+Last-6(L2) .790 .710 .074 .810 .852 1056
Adp+Last-6(KL) .770 .684 .084 .794 .837 1092
Adp+Last-6(L1) .770 .686 .080 .797 .837 1144
Adp+Last-6(L2) (shared outconv) .745 .646 .094 .779 .813 1191
Adp+Last-6(L2,sd(1)) .786 .706 .076 .807 .844 1086
Adp+Last-6(L2,sd(58)) .790 .709 .078 .812 .848 1085
Adp+Last-6(L2,sd(472)) .790 .712 .075 .812 .852 1071
Adp+Last-6(L2,sd(5289)) (IS-Net) .791 .717 .074 .813 .856 1116

need to reduce the batch size (3 on Tesla V100, 32 GB) when the input size is
1024× 1024, which degrades the performance. Our simple and effective variant
(i.e., Adp, 4rd row) addresses this memory issue and improves the performance.
Supervision on Different Decoder Stages. In Tab.3, Last-S means the
intermediate supervision is applied on the last S decoder stages. As shown,
applying intermediate supervisions on the Last-6 stage gives relatively better
performance, which is used as our default setting.
Different Loss. The results of different losses show that L2 is better than KL
divergence and L1. Besides, sharing the “outconvs”, which transform the deep
feature maps to the segmentation probability maps, of the GT encoders and the
segmentation decoders leads to negative impacts.
Random Seeds. To study the influences of random weights initialization, we
trained the same GT encoder multiple times with weights initialized by different
random seeds. As seen, although the performance produced by different random
seeds are different, their variations are minor, and all of them are better than that
of the models (U2-Net and Adp) trained without our intermediate supervision
strategy. Since the model from seed 5289 ranks the 1st on five out of six overall
metrics, we use this model as our IS-Net.

7 Conclusions

We have systematically studied the highly accurate dichotomous image segmen-
tation (DIS) task from both the application and the research perspective. To
prove that the task is solvable, we have built a new challenging DIS5K dataset,
introduced a simple and effective intermediate supervision network, called IS-
Net, to achieve high-quality segmentation results in real-time, and designed a
novel Human Correction Efforts (HCE) metric by considering the shape com-
plexities for applications. With an extensive ablation study and comprehensive
benchmarking, we obtained that our newly formulated DIS task is solvable.
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