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1 Derivation of Equation 6

The derivation details of eq.6 (see manuscript) in the paper are as follows,

∇ϕ (Je (Dv ; θt) + αΩ(w)) (6a)

(apply chain rule :)

= ∇θJe (Dv ; θt)
⊤ · ∇ϕθt(ϕ) + α∇wΩ(w)

⊤ · ∇ϕw (6b)

(partitioned matrix multiplication by rows :)

= ∇θJe (Dv ; θt)
⊤ ∇ϕθt(ϕ) + α

∑
i

∂Ω(w)

∂w(xi, yi;ϕ)
∇ϕw(xi, yi;ϕ) (6c)

(substitute θt from eq.5 :)

= ∇θJe (Dv ; θt)
⊤ · ∇ϕ

(
θt−1 − ∇θJw

(
Dt; θt−1, ϕ

))
+ α

∑
i

∂Ω(w)

∂w(xi, yi;ϕ)
∇ϕw(xi, yi;ϕ) (6d)

(assume ∇ϕθt−1 ≈ 0)

≈ −∇θJe (Dv ; θt)
⊤ · ∇ϕ

(
∇θJw

(
Dt; θt−1, ϕ

))
+ α

∑
i

∂Ω(w)

∂w(xi, yi;ϕ)
∇ϕw(xi, yi;ϕ) (6e)

(substitute Jw(·) from eq.3 :)

= −∇θJe (Dv ; θt)
⊤ · ∇ϕ

∑
i

w(xi, yi;ϕ)∇θℓ
(
xi, yi; θt−1

) + α
∑
i

∂Ω(w)

∂w(xi, yi;ϕ)
∇ϕw(xi, yi;ϕ) (6f)

(extract similar terms ∇ϕw(xi, yi;ϕ) :)

= −
∑
i

∇ϕw(xi, yi;ϕ) ·
[
∇θJe (Dv ; θt)

⊤ ∇θℓ
(
xi, yi; θt−1

)
− α

∂Ω(w)

∂w(xi, yi;ϕ)

]
(6g)

(utilize ∇f(x) = f(x)∇ log f(x) :)

= −
∑
i

w
(
xi, yi;ϕ

)
∇ϕ log w

(
xi, yi;ϕ

)
·
[
∇θJe (Dv ; θt)

⊤ ∇θℓ
(
xi, yi; θt−1

)
− α

∂Ω(w)

∂w(xi, yi;ϕ)

]
︸ ︷︷ ︸

Ri

(6h)

(substitute Ω(·) by H(·) :)

= −
∑
i

w
(
xi, yi;ϕ

)
∇ϕ log w

(
xi, yi;ϕ

)
·
[
∇θJe (Dv ; θt)

⊤ ∇θℓ
(
xi, yi; θt−1

)
+ α log w

(
xi, yi;ϕ

)
+ α

]
︸ ︷︷ ︸

Ri

(6i)

In the derivation above, we make Markov assumption for the parameters θ,
which indicates that current ϕt is only relate to θt, having nothing to do with
earlier value of θt−1. Therefore, we assume that ∇ϕθt−1 ≈ 0 in the above deriva-
tion process, which simplifies the complexity of optimization. The assumption is
also proved to be reasonable and effective in our experiment results.
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In our task, we choose to maximize entropy H(w) as Ω(w) to prevent over
concentration of sample weight. Therefore, our Ri be expressed as,

Ri = ∇θJ (Dv; θt)
⊤ ∇θℓ (xi, yi; θt−1) + α logw (xi, yi;ϕ) + α (6j)

2 Datasets

We adopt RESIDE dataset[6] for synthetic dehazing training. The RESI-
DE dataset consists of five parts: Indoor Training Set(ITS), Outdoor Train-
ing Set(OTS), Synthetic Objective Testing Set(SOTS), Real World Task-driven
Testing Set(RTTS) and Hybrid Subjective Testing Set(HSTS). ITS contains
13990 indoor hazy images for training and OTS contains 72135 outdoor hazy
images for training. SOTS contains 500 indoor hazy images and 500 outdoor
hazy images for testing. In our work, we introduce the validation set which can
not overlap with testing set to optimize the external reweighting loop. Specially
considering the time cost and partition ratio of training, validation and testing
sets, we hold out 10% of training data for validation and ensure the number of
samples in validation is the same as that in testing set. To this end, we select
subsets of 5000 hazy images from ITS and OTS as our training set, respectively.

We adopt O-HAZE[2] and NH-HAZE[1] datasets for real-world dehazing
training. O-HAZE is the NTIRE2018 challenge dataset for real-world dehazing
task, in which hazy images are degraded by real haze, generated by professional
haze machines. And O-HAZE is divided into three parts: 35 training images, 5
validation images and 5 test images, which is in line with our requirements for
dehazing training. The image sizes of O-HAZE range from 1286×947 to 4056
×3412. NH-HAZE is the NTIRE2020 challenge dataset for non-homogeneous
dehazing task, which is also divided into three parts: 45 training images, 5 vali-
dation images and 5 test images. The image size of NH-HAZE is 1600×1200.

3 Implementation Details

The bi-level dehazing (BILD) framework is composed of two main modules
(see Fig.1): the patch reweighting network for external loop and weighed dehaz-
ing network for internal loop. The patch reweighting network consists of three
simple downsampling + residual blocks for extracting high-level image features
at different scales and one fully connected + softmax block for generating differ-
ent learning weights of different patches. As for weighed dehazing network, we
adopt AODNet[5], DehazeNet[3], GridDehazeNet[7], MSBDN[4] and FFANet[8]
to substitute its dehazing module and use DDU module[9] to alleviate GPU
memory overhead due to the image size in O-HAZE and NH-HAZE.

4 Additional Experimental Results

In this section, we show additional experimental results on both synthetic and
real-world hazy images compared against SOTA methods. As shown in Fig.2,
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Fig. 1: The architecture of the proposed patch reweighting network for external
loop and weighed dehazing network for internal loop. The main body of the patch
reweighting network is composed of simple residual blocks, downsampling blocks
and fully connected blocks, in which LeakyRelu is adopted as activation func-
tion. For weighted dehazing network, it consists of two modules: DDU module[9]
for downsampling&upsampling(only used in O-HAZE and NH-HAZE dehazing
training) and dehazing module for image dehazing, which can be replaced by
general supervised dehazing methods.

our proposed framework (BILD) restores more image details and performs bet-
ter patch-level haze removal on SOTS dataset[6]. Also, we can observe that our
proposed framework performs better color restoration and generates cleaner im-
ages on O-HAZE[2] and NH-HAZE[1] datasets compared with SOTA methods
in Figs.3 and 4. Besides, we demonstrate more experimental results to show the
effectiveness of our proposed framework (BILD) in Figs.5, 6 and 7.
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Fig. 2: Visual comparisons on the SOTS dataset. Our framework performs bet-
ter color restoration and patch-level haze removal against the state-of-the-art
methods.
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Fig. 3: Visual comparisons on the O-HAZE dataset. Our framework performs
better color restoration and patch-level haze removal against the state-of-the-
art methods.

Fig. 4: Visual comparisons on the NH-HAZE dataset. Our framework performs
better color restoration and patch-level haze removal against the state-of-the-art
methods.
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Fig. 5: Graph of PSNR with/without BILD framework during training process.

Fig. 6: The experimental results of patch reweighting in one batch. In the
manuscript, as shown in Fig.6, we select figure 6(h) as the baseline for different
patches, of which the learning weight is 0.1000
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Fig. 7: The experimental results of patch reweighting in one batch.


