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Fig. 1: Performance comparison on frame synthesis (top row) and flow completion
(bottom row) between our method and some state-of-the-art baselines [50,14,29].
Our method achieves significant performance improvement against the compared
baselines and obtains more coherent results.

Abstract. We propose a flow-guided transformer, which innovatively
leverage the motion discrepancy exposed by optical flows to instruct
the attention retrieval in transformer for high fidelity video inpainting.
More specially, we design a novel flow completion network to complete
the corrupted flows by exploiting the relevant flow features in a local
temporal window. With the completed flows, we propagate the content
across video frames, and adopt the flow-guided transformer to synthe-
size the rest corrupted regions. We decouple transformers along temporal
and spatial dimension, so that we can easily integrate the locally rele-
vant completed flows to instruct spatial attention only. Furthermore, we
design a flow-reweight module to precisely control the impact of com-
pleted flows on each spatial transformer. For the sake of efficiency, we
introduce window partition strategy to both spatial and temporal trans-
formers. Especially in spatial transformer, we design a dual perspective
spatial MHSA, which integrates the global tokens to the window-based
attention. Extensive experiments demonstrate the effectiveness of the
proposed method qualitatively and quantitatively. Codes are available
at https://github.com/hitachinsk/FGT.
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1 Introduction

Video inpainting aims at filling the corrupted regions in a video with reasonable
and spatiotemporally coherent content [2]. Its application includes but not lim-
ited to watermark removal [34], object removal [15], video retargeting [22], and
video stabilization [31]. High-quality video inpainting is challenging because it
requires spatiotemporal consistency of the restored video. Directly applying im-
age inpainting methods [37,20,27,53,54,33,51,38,26] is sub-optimal, because they
mainly refer the content within one frame but fail to utilize the complementary
content across the whole video.

Transformer [43] has sparked the computer vision community. Its outstanding
long-range modeling capacity makes it naturally suitable for video inpainting, as
video inpainting relies on the content propagation across frames spatiotemporally
to fill the corrupted regions with high fidelity. Previous works [55,29,28] modify
transformer for video inpainting task, and achieve unprecedented performance.
However, these works still suffer from inaccurate attention retrieval. They mainly
utilize the appearance features in transformer, but ignore the object integrity
exposed by the motion fields, which indicates the relevant regions.

Recently, several works [50,14,57] propose to complete optical flows for video
inpainting. As discussed in DFGVI [50], optical flows are much easier to complete
because they contain far less complex patterns than frames. Since the relative
motion magnitude between foreground objects and background are different, the
contents with similar motion pattern are more likely to be relevant. Therefore,
the motion discrepancy of optical flows can serve as a strong instructor to guide
the attention retrieval for more relevant content. Inspired by this, we propose
a novel flow-guided transformer to synthesize the corrupted regions with the
motion guidance from completed flows. Our method contains two parts: the
first is a flow completion network designed to complete the corrupted flows, and
the second is the flow-guided transformer proposed to synthesize the corrupted
frames under the guidance of the completed flows.

During flow completion, we observe that the flows in a local temporal window
are more correlated than the distant ones, because motion fields are likely to be
maintained in a short temporal window. Therefore, we propose to exploit the
correlation of complementary features of optical flows in a local temporal win-
dow, which is different from the simply stacking strategy in DFGVI [50] and the
single flow completion method in FGVC [14]. We integrate spatial-temporal de-
coupled P3D blocks [39] to a simple U-Net [40], which completes the target flow
based on the local reference flows. Furthermore, we propose a novel edge loss to
supervise the completion quality in the edge regions without introducing addi-
tional computation cost during inference. Compared with previous counterparts
[50,14], our method can complete more accurate flows.

Under guidance of the completed optical flows, we propagate the content from
the valid regions to the corrupted regions, and then synthesize the rest corrupted
content in the video frames with the flow-guided transformer. Following previous
transformer-based video inpainting methods [55,29,28], we sample video frames
from the whole video and inpaint these frames simultaneously. Given that the
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optical flows are locally correlated, we decouple the spatial and temporal atten-
tion in transformer and only integrate optical flows into spatial transformers. In
temporal transformer, we perform multi-head self-attention (MHSA) spatiotem-
porally, while in spatial transformer, we only perform MHSA within the tokens
coming from the same frame. Considering that the completed flows are not per-
fect and the content with different appearance may have similar motion patterns,
we propose a novel flow-reweight module to control the impact of flow tokens
based on the interaction between frame and flow tokens adaptively.

To improve the efficiency of our transformer, we introduce window partition
strategy [30,52,9] in the flow-guided transformer. In temporal transformer, as
the temporal offset between distant frames may be large, small temporal win-
dow size cannot include abundant temporal relevant tokens. As a result, we
perform MHSA in a large window to exploit rich spatiotemporal tokens. In spa-
tial transformer, after flow guidance integration, we restrict the attention within
a smaller window based on local smoothness prior of natural images. However,
simple window attention ignores the possible correlated content at the distant
location. To relieve such problem, we extract the tokens from the whole token
map globally and integrate these global tokens to the key and value. In such
manner, the queries can not only retrieve the fine-grained local tokens, but also
attend to the global content. We refer this design as dual perspective spatial
MHSA.

We conduct extensive experiments to validate the effectiveness of different
components of our method. As shown in Fig. 1, our method remarkably outper-
forms previous baselines in terms of visualization results on frame synthesis and
flow completion. In summary, our contributions are:

– We propose a flow-guided transformer to integrate the completed optical flow
into the transformer for more accurate attention retrieval in video inpainting.

– We design a novel flow completion network with local flow features exploita-
tion, which outperforms previous methods significantly.

– We introduce window partition strategy in the video inpainting transformer
and propose the dual perspective spatial MHSA to enrich the local window
attention with global content.

2 Related Work

Traditional methods. Traditional video inpainting methods [2,15,31,12,16,34]
explore the geometry relationship (e.g. homography or optical flows) between
the corrupted regions of the target frames and the valid regions of the reference
frames for content synthesis with high fidelity. Huang et al.[19] design a set
of energy equation to optimize optical flow reconstruction and frame synthesis
interactively and achieve unprecedented video inpainting quality.
Deep learning based methods. Deep learning based methods can be divided
into two categories, the first one [50,14] aims to complete the missing optical flows
to capture the motion correlation between the valid regions and the corrupted
regions. Our method also includes the flow completion component, but we only
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Fig. 2: Our method consists of two steps. Firstly, we adopt the LocalAggregation
Flow Completion network (LAFC) to complete the corrupted target flow,
and then propagate the content among the video frames with the completed
flows. Secondly, we synthesize the rest corrupted regions with Flow-Guided
Transformer (FGT). PEG: Position embedding generator.

exploit the complementary flow features in a local window for more efficient and
accurate flow completion.

The second category targets on directly synthesizing the corrupted regions
from video frames. Some works adopt 3D CNN [44,7] or channel shift [8,59,21] to
model the complementary features between local frames. Several methods inte-
grate recurrent [22,25] or attention [24,35] mechanism into CNN-based networks
to expand the temporal receptive field. Inspired by the spatiotemporal redun-
dancy in videos, Zhang et al.[56] and Ouyang et al.[36] adopt internal learning to
perform long range propagation for video inpainting. Currently, Zeng et al.[55]
and Liu et al.[29,28] design specific transformer [43] to retrieve similar features
in a considerable temporal receptive field for high-quality video inpainting. Our
method is also built upon transformer, but differently we improve the attention
retrieval accuracy with the completed flows.
Transformer in vision. Due to the outstanding long range feature capture abil-
ity, transformer [43] has been introduced to various computer vision tasks, such
as basic architecture design [30,52,9], image classification [11,3,13,48], object de-
tection [6,32], action detection [46], segmentation [45], etc. We revisit the design
of transformer in video inpainting and propose several strategies to improve ef-
ficiency while maintaining competitive performance, including spatial-temporal
decomposition and the combination of local and global tokens.

3 Method

3.1 Problem formulation

Given a corrupted video sequenceX :={X1, ..., XT }, whose corrupted regions are
annotated by the corresponding mask sequence M :={M1, ...,MT }. T is video
length. Our goal is to generate the inpainted video sequence Ŷ :={Ŷ1, ..., ŶT }
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and maintain the spatiotemporal coherence between our result and the ground
truth video sequence Y :={Y1, ..., YT }.

3.2 Network overview

As shown in Fig. 2, our network consists of a LocalAggregation FlowCompletion
network (LAFC) for flow completion and a Flow-Guided Transformer (FGT)
to synthesize the corrupted regions. For a given masked video sequence X, we
extract its forward and backward optical flows F̃f and F̃b and utilize LAFC to
complete each optical flow with its local references. Based on completed flows,
we propagate the content across video frames. As for the rest corrupted regions,
we adopt FGT to synthesize them.

3.3 Local aggregation flow completion network

Local flow aggregation. The motion direction and velocity of objects vary
overtime, and the correlation between distant optical flows may be degraded
severely. Fortunately, the variance of motion in short time is a gradual process,
which means optical flows in a short temporal window are highly correlated, and
they are reliable references for more accurate flow completion.

3D convolution block [42] is suitable to capture the local relevant content
spatiotemporally. However, the parameter and computation overhead of 3D con-
volution block are large, which increases the difficulty for network optimization.
Considering efficiency, we adopt P3D block [39] instead to decouple the local
flow feature aggregation along temporal and spatial dimension. We insert P3D
blocks to the encoder of LAFC and add skip connection [40] to exploit the lo-
cal correlation between flows. Considering that LAFC completes forward and
backward optical flows in the same manner, we denote both Ff and Fb as F for
simplicity. Given a corrupted flow sequence, we utilize Laplacian filling to obtain
the initialized flows F̃={F̃t−ni, ..., F̃t, ..., F̃t+ni}, where F̃t is the target corrupted
flow, i is the temporal interval between consecutive flows, and the length of the
flow sequence is 2n+ 1. The initialized flow sequence F̃ are fed to the LAFC to
complete the target flow F̃t. We denote the input of m-th P3D block as f̃m, and
the output as f̃m+1. The local feature aggregation process can be formulated as.

f̃m+1 = TC(SC(f̃m)) + f̃m (1)

Where TC represents 1D temporal convolution, and SC is the 2D spatial convo-
lution. We keep the temporal resolution unchanged except the final P3D block in
the encoder and the P3D blocks inserted in the skip connection. In these blocks,
we shrink the temporal resolution of the flow sequence to obtain the aggregated
flow features of the target flow. Finally, a 2D decoder is utilized to obtain the
completed target optical flow F̂t.
Edge loss. In general, flow fields are piece-wise smooth, which means the flow
gradients are considerable small except motion boundaries [14]. The edges in
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flow maps inherently contain crucial salient features that may benefit the recon-
struction of object boundaries. Nevertheless, the flow completion in edge regions
is a tough task, as there is no specified guidance to edge recovery. Therefore, we
design a novel edge loss in LAFC to supervise the completion quality in edge
regions of F̂t explicitly, which can improve the flow completion quality without
introducing additional computation overhead during inference.

For the completed target flow F̂t, we extract the edges with a small projec-
tion network Pe and calculate the binary cross entropy loss with the edges that
extracted from the ground truth Ft with Canny edge detector [5].

Le = BCE(Canny(Ft), Pe(F̂t)) (2)

where Le is the edge loss. We utilize four convolution layers with residual con-
nection [17] to formulate Pe.
Loss function. We adopt L1 loss to penalize F̂t in the corrupted and the valid
regions, respectively. To improve the smoothness of F̂t, we impose first and
second order smoothness loss to F̂t.

What’s more, we also warp the corresponding ground truth frames with F̂t

to penalize the regions with large warp error. We adopt the L1 loss to supervise
the warping quality, and expel the occlusion regions with forward-backward con-
sistency check of ground truth optical flows for more accurate loss calculation.
The loss function of LAFC is the combination of the loss terms discussed above,
and the detailed formulas are provided in the supplementary material.

3.4 Flow-guided transformer for video inpainting

After flow completion, we propagate the content from valid regions to corrupted
regions throughout the whole video to fill-in the corrupted regions that can be
connected with the valid regions. The rest corrupted regions are filled with our
designed flow-guided transformer (FGT). FGT takes multiple corrupted frames
into consideration and synthesize these frames simultaneously. Since the motion
discrepancy of completed optical flows to some extent reveals the shape and lo-
cation of foreground objects and background, we integrate such information to
FGT to indicate the relevant regions inside a single frame. Due to the degraded
correlation between distant optical flows, the traditional all-pair interaction be-
tween tokens from distant frames may not be suitable for flow guidance integra-
tion. Therefore, we decouple MHSA along the temporal and spatial dimension,
and we only integrate the flow content to the spatial MHSA.

In both spatial and temporal transformer blocks, we introduce specific designs
for efficiency and performance balance. In temporal transformer, we adopt large
window to compensate the reference offset between distant frames. In spatial
transformer, we divide each token map into small window based on the local
smoothness prior of natural images, and supply the key and value with the
condensed global tokens to perform spatial MHSA in dual perspective from local
and global views.

As shown in Fig. 2, given the frame sequence X̂ after flow-guided content
propagation, we crop X̂ and completed flows into patches and project them to
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Token map

Attention zone

Fig. 3: The temporal MHSA in the temporal transformer. We split non-
overlapped large windows (zones) for each token map, and perform MHSA inside
the cube formed by the corresponding position in each token map. The windows
are shown with different colors. In this figure, we illustrate the 2×2 zone.
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Fig. 4: Illustration of flow guidance integration and dual perspective spatial
MHSA in the spatial transformer.

frame tokens TI with an encoder. The completed flows are also projected to flow
tokens TF . We refer such process as “patch embedding”. We design interleaved
temporal and spatial transformer blocks to process TI, and enrich the frame
tokens with TF in each spatial transformer block before dual perspective spatial
MHSA. As for positional embedding, we follow CVPT [10] to adopt depth-wise
convolution [18] after the first transformer block for video inpainting in flexible
resolutions, while the pre-defined trainable positional embedding of previous
works [29] can only process the videos at certain resolution.

Temporal transformer. In temporal transformer, attention retrieval is per-
formed to the tokens across different frames. Since the content shifts along tem-
poral dimension, it is reasonable to apply large size window to compensate the
reference offset. Liu et al.[28] also demonstrate the all-pair attention strategy
is unnecessary in video inpainting. Therefore, we divide each token maps in TI
into non-overlap cubes with large window size (denoted as “zone”) along height
and width dimension and perform MHSA within the cubes, as shown in Fig. 3.

Flow guidance integration. The motion discrepancy between different objects
and background exposed by optical flows indicates the content relationship. The
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tokens with similar motion magnitude are more likely to be relevant. Therefore,
we utilize the completed optical flows to guide the attention process in FGT.

As discussed in Sec. 3.3, optical flows are locally correlated. Therefore, we
only exploit the optical flows in the spatial transformer. A straightforward way
is to concatenate TI and TF along channel dimension directly before spatial
MHSA. However, there are two problems in this way. First, the completed flows
are not perfect. The distorted flows may mislead the judgement about relevant
regions. Second, the appearance patches may vary a lot within objects, while the
corresponding motion patterns may still be similar, which is likely to confuse the
attention retrieval process. In order to ease these problems, we propose a flow-
reweight module to control the impact of flow tokens TF with respect to the
interaction between TF and TI, as shown in Fig. 4(a). We formulate the flow-
reweight module as.

ˆTF
j

t = TF j
t ⊙MLP(Concat(TIjt , TF

j
t )) (3)

where Concat is the concatenation operation. MLP represents the MLP layers,

and ˆTF
j

t represents the t-th reweighted flow token map in j-th spatial trans-

former. Finally, we concatenate ˆTF
j

t and TIjt to obtain the flow-enhanced tokens
TKj

t to enhance spatial MHSA.
Dual perspective spatial MHSA. We introduce window partition to spa-
tial MHSA for efficiency. According to the local smoothness prior of natural
images, the tokens are more correlated to their neighbors. Hence, we adopt rel-
ative small window size in spatial transformer. Given the t-th frame token map
processed by j-th transformer TKj

t ∈ RH×W×C , where H, W and C represent
the height, width and channel size. Window partition divides TKj

t into several
h × w non-overlapped windows, and MHSA is performed inside each window,
respectively. However, if the window contains numerous tokens projected from
corrupted regions, the attention accuracy would be deteriorated due to the lack
of valid content. Therefore, we integrate global tokens to spatial MHSA. We
adopt depth-wise convolution [18] to condense TKj

t to global tokens, and supply
them to each window. Given the kernel size k and downsampling rate s (also
known as stride), the global tokens are generated as.

TGj
t = DC(TKj

t , k, s) (4)

where TGj
t represents the extracted global tokens and DC is the depth-wise

convolution. The query Qj
t (d), key Kj

t (d) and value V j
t (d) of the d-th window

in TKj
t are generated as.

Qj
t (d) = MLP(LN(TKj

t (d)))

Kj
t (d) = MLP(LN(Concat(TKj

t (d), TG
j
t )))

V j
t (d) = MLP(LN(Concat(TKj

t (d), TG
j
t )))

(5)

where TKj
t (d) represents the d-th window in TKj

t , and LN is layer normalization
[1]. After we obtain Qj

t (d), K
j
t (d) and V j

t (d), we apply spatial MHSA to process
them. The dual perspective spatial MHSA is illustrated in Fig. 4(b).
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Note that the global tokens are shared by all the windows. In each spatial
transformer, if we adopt all-pair attention retrieval for MHSA, each token will
retrieve H × W tokens. While the token number for retrieval in our dual per-
spective spatial MHSA is (⌈H

s ⌉ × ⌈W
s ⌉ + h × w). It is easy to derive that when

s ≥ ⌈
√

HW
HW−hw ⌉, the referenced token number will be smaller than the token

number in all-pair attention retrieval.
Recently, focal transformer [52] has also adopted the combination of local

and global attention in transformer. Compared with [52], our method decouples
the global token size and the window shape, which is more flexible than the
sub-window pooling strategy in focal transformer.
Loss function We adopt the reconstruction loss in the corrupted and the valid
regions together with the T-Patch GAN loss [7] to supervise the training process.
We use hinge loss as the adversarial loss. We provide the detailed loss formulas
in the supplementary material.

4 Experiments

4.1 Settings

We adopt Youtube-VOS [49] and DAVIS [4] datasets for evaluation. Youtube-
VOS contains 4453 videos and DAVIS contains 150 videos. We adopt the training
set of Youtube-VOS to train our networks. As for Youtube-VOS, we evaluate the
trained models on its testset. Since DAVIS contains densely annotated masks on
its training set, we adopt its training set to evaluate our method.

Following the previous work [14], we choose PSNR, SSIM [47] and LPIPS
[58] as our evaluation metrics. Meanwhile, we adopt end-point-error (EPE) to
evaluate the flow completion quality. We compare our method with state-of-the-
art baselines, including VINet [22], DFGVI [50], CPN [24], OPN [35], 3DGC [7],
STTN [55], FGVC [14], TSAM [59], DSTT [28] and FFM [29].

4.2 Implementation details

In our experiments, We utilize RAFT [41] to extract optical flows. In flow com-
pletion network, the flow interval and input flow number are both set to 3. The
flow locating in middle of the local temporal window is treated as the target
flow for completion. We adopt gradient propagation [14] as our flow-guided con-
tent propagation strategy, and the detailed procedure will be provided in the
supplementary material. As for FGT, we keep the patch embedding method the
same as FFM [29] for fair comparisons. We utilize the forward optical flows in
the flow guidance integration module. FGT adopts 8 transformer blocks in total
(4 temporal and 4 spatial transformer blocks). In the temporal transformer, we
adopt 2×2 zone division for temporal MHSA. In the spatial transformer, the
downsampling rate of the global token is 4, while the window size is 8. We adopt
Adam optimizer [23] to train our networks. The training iteration is 280K for
LAFC and 500K for FGT. The initial learning rate is 1e-4, which is divided by
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Table 1: Quantitative results on the Youtube-VOS and DAVIS datasets. The best
and second best numbers for each metric are indicated by red and blue fonts,
respectively. ↓ means lower is better, while ↑ means higher is better. “FGT”
represents we adopt our proposed flow-guided transformer to fill all the pixels in
the corrupted regions without flow-guided content propagation.

Method
Youtube-VOS

DAVIS
square object

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

VINet [22] 29.83 0.955 0.047 28.32 0.943 0.049 28.47 0.922 0.083
DFGVI [50] 32.05 0.965 0.038 29.75 0.959 0.037 30.28 0.925 0.052
CPN [24] 32.17 0.963 0.040 30.20 0.953 0.049 31.59 0.933 0.058
OPN [35] 32.66 0.965 0.039 31.15 0.958 0.044 32.40 0.944 0.041
3DGC [7] 30.22 0.961 0.041 28.19 0.944 0.049 31.69 0.940 0.054
STTN [55] 32.49 0.964 0.040 30.54 0.954 0.047 32.83 0.943 0.052
TSAM [59] 31.62 0.962 0.031 29.73 0.951 0.036 31.50 0.934 0.048
DSTT [28] 33.53 0.969 0.031 31.61 0.960 0.037 33.39 0.945 0.050
FFM [29] 33.73 0.970 0.030 31.87 0.965 0.034 34.19 0.951 0.045
FGT 34.04 0.971 0.028 32.60 0.965 0.032 34.30 0.953 0.040
FGVC [14] 33.94 0.972 0.026 32.14 0.967 0.030 33.91 0.955 0.036
Ours 34.53 0.976 0.024 33.41 0.974 0.023 34.96 0.966 0.029

10 after 120K iterations for LAFC and 300K iterations for FGT. For ablation
studies, following FFM [29], we train FGT for 250K iterations, and the learn-
ing rate is divided by 10 after 200K iterations. We perform ablation studies on
DAVIS dataset.

4.3 Quantitative evaluation

During inference, the resolution of videos is set to 432×256. We generate square
masksets with continuous motion trace for Youtube-VOS and DAVIS datasets.
The average size of the masks in the square maskset is 1

16 of the whole frame. We
shuffle DAVIS object maskset randomly and corrupt frames with these masks to
evaluate video inpainting performance upon object masks. For fair comparisons
among flow-based video inpainting methods, we utilize the same optical flow
extractor for DFGVI [50], FGVC [14] and our method.

We report the quantitative evaluation results of our method and other base-
lines in Tab. 1. Our method outperforms previous baselines by a significant mar-
gin on all three metrics, which means the restored videos from our method enjoy
less distortion and better perceptual quality than previous counterparts. What’s
more, if we fill the corrupted region purely with FGT, we can still outperform
previous transformer-based video inpainting baselines [55,29,28].

4.4 Qualitative comparisons

We compare the qualitative results between our method and five recent base-
lines [55,14,59,28,29] under the square mask, object mask and object removal
settings. The results are shown in Fig. 5. Compared with these baselines, our
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(a) Input (b) STTN [55] (c) TSAM [59] (d) DSTT [28] (e) FFM [29] (f) FGVC [14] (g) Ours

Fig. 5: Qualitative comparison between our method and some recent baselines
[55,14,59,28,29]. From top to bottom, every two rows display inpainting results
of square mask set, object mask set, and object removal, respectively.

(b) DFGVI (c) FGVC (d) S (d) LA(a) Input (d) LA +(d) LA +

Fig. 6: Comparison of flow results between DFGVI [50], FGVC [14], and several
variants of our method. S: single flow completion, LA: Flow completion with
local aggregation, Le: Edge loss.

method enjoys outstanding visual quality. Our method can complete more ac-
curate optical flows, which describes the motion trajectory with high fidelity.
Therefore, our method enjoys less distortion in the content propagation stage
than FGVC [14]. What’s more, the completed optical flows provide accurate
object clusters. Such information leads to more accurate attention retrieval and
naturally produce better visual quality. We will provide more video inpainting
results in the supplementary materials.

4.5 Ablation Studies

Model analysis. We compare our method with (1) FGVC and (2) FGVC+
FGT to justify the design of our method over flow completion and image in-
painting baseline [53]. The results in Tab. 2(a) demonstrate the effectiveness
of our method in both flow completion and frame synthesis. In Tab. 2(b), we
compare FGT with different transformer baselines. Since FLOPs in video in-
painting is related to the number of frames processed simultaneously, we assume
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(a) Square masks (a) Object masks

Fig. 7: EPE results with varying flow number (when flow interval is 3) or varying
flow interval (when flow number is 3) on both square and object mask sets.

Table 2: Model analysis We report the analysis of the method variants and
the comparison of the efficiency between FGT and other baselines.

(a) Analysis about method variants. (b) Efficiency analysis.

Method
square object

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

FGVC [14] 32.14 0.967 0.030 33.91 0.955 0.034
FGVC+FGT 32.49 0.968 0.027 34.58 0.956 0.031
LAFC+FGT 33.41 0.974 0.023 34.96 0.966 0.029

Method FLOPs(per frame) Params Speed

STTN [55] 477.91G 16.56M 0.22s
FFM [29] 579.82G 36.59M 0.30s
FGT(all-pair) 703.22G 42.31M -
FGT 455.91G 42.31M 0.39s

the processed frame number is 20, which is a common practice in STTN [55]
and FFM [29].“FGT(all-pair)” means we adopt all-pair attention in FGT, which
consumes much more computation overhead compared with FGT. If we adopt
flow-guided content propagation, we can obtain better video inpainting quality,
but the speed will degrade to 2.11s/frame, which indicates the performance-
efficiency trade-off in our method. We provide detailed run-time analysis in the
supplementary material.

Local flow aggregation and edge loss for flow completion. We report
the end-point-error (EPE) of single flow completion (replace the P3D blocks
with vanilla convolution blocks), local aggregation for flow completion without
and with edge loss, together with two baselines [50,14] in Tab. 3. With the in-
troduction of local aggregation and edge loss, our method achieves substantial
improvement. The subjective results are shown in Fig. 6. With local aggrega-
tion, our method can exploit the complementary flow features in a local tem-
poral window, which is beneficial to complete accurate flow shape. With edge
loss, our method can synthesize optical flows with clearer motion boundaries.
Finally, we report the influence of flow number and flow interval w.r.t. EPE in
Fig. 7. When the flow number or interval is too small, the target flow cannot
utilize abundant references for accurate flow completion, which undermines the
performance. When the flow number or interval is large, the flow completion
performance deteriorates gradually, which reveals the distant flows contribute
less to flow completion relative to local flows.

Flow guidance integration and dual perspective spatial MHSA. In this
part, we adopt the transformer to synthesize all the pixels in the corrupted re-
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(a) Input (b) L (c) G (d) L+G (f) GT(e) L+G+(e) L+G+

Fig. 8: Qualitative comparison of different components in the dual perspective
transformer. L: Local window attention. G: Global tokens. Fc: Flow guidance
with flow-reweight module.

Table 3: Ablation study about flow completion. S: single flow completion, LA:
Flow completion with local aggregation, Le: Edge loss.

Maskset
EPE↓

DFGVI [50] FGVC [14] S LA LA + Le

square 1.161 0.633 0.546 0.524 0.511
object 1.053 0.491 0.359 0.338 0.328

gions for fair comparisons across different settings. We evaluate the effectiveness
of the dual perspective tokens, the completed flow guidance and the flow-reweight
module in spatial MHSA, and report the corresponding results in Tab. 4.

The quantitative results demonstrate the effectiveness of our proposed method.
Compared with attention with only local or global tokens, the combination of
these two perspective tokens achieves significant performance boost. With the
introduction of the completed flow tokens and the flow-reweight module, the
performance of our model boosts further. When we remove the flow-reweight
module, the performance degrades, which demonstrates the necessity to intro-
duce flow guidance and control its impact during attention retrieval.

The qualitative comparisons between different components in our flow-guided
transformer are shown in Fig. 8. We can observe the substantial improved visual
quality on dual perspective attention and the introduction of flow guidance. The
combination of global and local tokens enlarges the attention retrieval space
while maintaining the local smoothness simultaneously. As for flow guidance,
we visualize the local and global attention maps in Fig. 9. The red square in
Fig. 9(a) indicates the query token. With flow guidance, our transformer tends
to query the tokens with similar motion pattern (e.g. tokens in car region), which
leads to clearer object boundary for video inpainting in higher quality.

5 Conclusion

In this work, we propose a flow-guided transformer for video inpainting, which
introduces a novel way to leverage the motion discrepancy from optical flows
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(a) input

(b) completed flow

(c) w/o flow guidance

(d) w/ flow guidance

Results Global attention Local attention

Fig. 9: Attention map visualization of our transformer model with/without the
flow guidance. The red square in (a) indicates the location of the chosen query
token for visualization.

Table 4: Ablation study about the spatial transformer. W: Local window parti-
tion. G: Global tokens. FC : Completed flow tokens. RF: Flow-reweight module.

W G FC RF
square object

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✓ - - - 31.37 0.957 0.038 32.98 0.945 0.051
- ✓ - - 31.42 0.958 0.040 33.10 0.945 0.050
✓ ✓ - - 31.62 0.959 0.038 33.25 0.946 0.048
✓ ✓ ✓ - 31.54 0.958 0.039 33.12 0.945 0.049
✓ ✓ ✓ ✓ 31.87 0.961 0.036 33.52 0.947 0.045

to instruct the attention retrieval in transformer. We decouple the attention
module along spatial and temporal dimension to facilitate the integration of the
completed flows. We propose the flow-reweight module to control the impact
of the flows in the attention retrieval process. What’s more, in both tempo-
ral and spatial transformer blocks, we design specific window partition strategy
for better efficiency while maintaining the competitive performance. Besides the
proposed flow-guided transformer, We design a flow completion network to ex-
ploit the complementary features of the optical flows in a local temporal window,
and introduce edge loss to supervise the reconstruction of flows for clear motion
boundaries. The high-quality completed flows benefit the content propagation
and flow-guided transformer. Extensive experiments demonstrate the effective-
ness of our proposed method.
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