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The Supplementary features the following sections:

– Section A: detailed architecture of our model.
– Section B: full comparison between our method and other perception-distortion

balanced methods, which traverse a trade-off curve.
– Section C: comparison of the inference complexity of our model and the

post-processing based method, WDST [1].
– Section D: more ablation studies, including

• comparison of training processes with regularizer-based variants.
• comparison of the results from objective and perceptual stage.
• weights of the loss terms of the no-constraint variant.
• bandwidth of LF information involved in the low-frequency constraint.

– Section E: more qualitative examples and comparisons with competing meth-
ods.

– Section G: challenging cases for our method.

A Model Architecture

The architecture of the objective and perceptual-focused stage is borrowed from
other state-of-the-art work. As shown in Fig. 1, we adopt the architecture of
HAN [10] as the objective-focused stage. HAN is constructed based on RCAN [20]
with a novel layer attention module and a channel spatial attention module, the
composition of which is in Fig. 2. The objective-focused stage has ten residual
groups with 20 RCAB blocks in each group, and the reduction ratio in the at-
tention layer is 16. All convolution layers use 64 channels, 3 × 3 kernels, and a
padding size of 1. Finally, we upsample feature maps with a PixelShuffle [11]
module.

The perception-focused stage works in the wavelet domain. We first apply
the discrete wavelet transform (DWT) at the beginning of the network and
an inverse discrete wavelet transform (IWT) at the very end. We use 15 Res-
Clique Blocks introduced in Zhong et al . [21] as the building blocks, as shown in
Fig. 3. The perception-focused stage takes the output from the objective-focused
module as input. The input has a size of c × H × W . We apply DWT to the
input to split it into four half-resolution channels (LL, LH, HL, HH), which are
then concatenated into a feature map of size 4c × H

2 × W
c . Note that DWT
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is a lossless operation, even though it reduces the spatial size of feature maps.
Processed features are converted by the last inverse wavelet transform (IWT)
operation to an HR image of size c×H ×W .

Fig. 1: The architecture of the objective-focused stage. We adopted HAN [10] here.

(a) Layer Attention Module (b) Channel-Spatial Attention Module

Fig. 2: The architecture of Layer Attention Module and Spatial-Channel Attention
Module in the objective-focused stage.

B Full Comparison with Transition Methods

We provide a complete comparison with CFSNet [16], PESR [15], and ESR-
GAN [17] with network interpolation. Section 4.2 of the main paper offers a table
for convenient comparison between our method and other perception-distortion
(PD) trade-off balanced methods. However, some related methods traverse a
trade-off curve instead of having single-point performance. PESR uses the image
interpolation method, ESRGAN interpolates network parameters, and CFSNet
introduces a controlling factor, α, as model input. In the main paper, we chose
the most balanced point of each traversing method for comparison; in this sec-
tion, we compare our method with the full curve. As shown in Fig. 4, our method
achieves a better balance of PD trade-off than those yielding a transition.
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(a) Perceptual-focused stage. (b) Res-Clique Block

Fig. 3: The architecture of perceptual-focused stage.

(a) BSD100 [6] (b) Urban100 [3]

Fig. 4: Full comparison with CFSNet [16], PESR [15] and ESRAGN [17]. Our method
can achieve better trade-off (under the curves) than those methods producing a tran-
sition.

C Inference Complexity

The closest competing method to ours is WDST [1], a post-processing method
that fuses two images from separately trained objective- and perception-focused
models with a style-transfer approach. To super-resolve a low-resolution image,
WDST performs four steps. The second step is a style transfer procedure follow-
ing [2] and requires inference-specific updates to the network. We elaborate on
these computations below and then compare its complexity to our approach.

The fours steps of WDST are:

1. Super-resolution through two separately trained models, objective-focused
EDSR [5] and perception-focused CX [8], yielding HR images Ŷ O and Ŷ P

respectively.
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Model Forward Pass FLOPs Run-time

Step 1
EDSR [5];
CX [8]

1 50.6 M 0.918s

Step 2 VGG19 [12] 6× (i+ 2) ≥ 37445.7M ≥ 1152s

Step 3 VDSR [4] 1 2.4 M 0.05s

Step 4 - - - -

Table 1: Decomposition of the FLOPs calculation of WDST [1]. We calculate the
FLOPs for the convolutional operations of each step. Step 2 applies 6 VGG19 models
on 6 pairs of wavelet channels; each VGG19 needs to extract features from two source
channels and update the merged channel. Assuming each model updates for i iterations,
the total number of forward passes through all VGG19 models is 6× (i+ 2).

2. The two-level stationary DWT decomposes Ŷ O into 7 channels
{HL,LH,HH,LL′, HL′, LH ′, HH ′} 3. It decomposes Ŷ P similarly. Aside
from LL′, the other six channels from each decomposition are merged through
six independent style transfer procedures using a VGG19 model for deep fea-
ture extraction. During merging, the style transfer extracts features from the
channels of Ŷ O and Ŷ P as content ground truth and style ground truth. The
initial input then passes through the transfer to gather multiple-level features
and calculate errors compared with content ground truth and style ground
truth at different levels. The initial signal is updated for i iterations to get
the merged wavelet channel. Fusing first- and second-level features usually
needs 5000 and 1000 iterations, respectively, thus we assume i ≥ 1000 in the
FLOPs calculation.

3. The lowest-frequency channel LL of Ŷ O is refined with VDSR [4].

4. The final HR imaged is obtained by an inverse stationary discrete wavelet
transform of the six merged channels and the refined LL.

The approximate FLOPs of the above four steps for a 128× 128 input patch
is tallied in Table 1.

In comparison, our one-shot inference procedure applies only convolutional
operations and does not require any back-propagation and updates like Step 2
of WDST. Despite the conservative estimate of WDST (we tabulate only 1000
iterations for all channels in Step 2 for FLOPs calculation), the complexity of
our method, which uses only 26.8M FLOPs and 0.566s run-time, is three orders
of magnitude smaller than WDST.

3 Each stationary DWT decomposition results in 4 channels with the same resolution
as the original image; the LL channel of the first level is decomposed further into
{LL′, HL′, LH ′, HH ′}, resulting in 7 channels in total.
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D Ablations

a Stage-wise Performance

This experiment validates the necessity of each stage of LFc-SR. LFc-SR has two
stages with different goals and allows a separate output Y ′ from the objective-
focused stage. We compared Y ′ and the final output Y with Ỹ from the perceptual-
focused stage only. The LR counterpart of Ỹ was upscaled by bicubic interpo-
lation first and directly put into the perceptual-focused stage of LFc-SR. As
shown in Fig. 5, we compare all results on a PD trade-off plane with the es-
timated trade-off boundary presented in Section 4.2 of the main paper. With
only the objective-focused stage, Y ′ has a high PSNR score but fails to balance
the objective and perceptual quality. On the other hand, using the perceptual-
focused stage alone does not complete the reconstruction, as reflected by the low
PSNR and NRQM performance of the outputs from stage 2. A good balance
between objective and perceptual quality can only be achieved by using both
stages in succession.

(a) Urban100 [3] (b) Manga109 [7]

Fig. 5: Comparison between the final output from LFc-SR and the HR images going
through only one stage of the same LFc-SR model. The objective stage (stage 1) yields
high PSNR HR images with a low perceptual score; the direct use of the perceptual
stage (stage 2) fails to reconstruct a reasonable HR image. Only by using two stages
together can we achieve a good balance of PD trade-off.

b Stability of Training

In Section 4.3 of the main paper, we compared the performance of our PD-
ADMM method with regularizer-based models. In this section, we further prove
that PD-ADMM can achieve a more stable performance than other models by
providing the models’ performance on the validation set during training. We used
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the validation set of the DIV2K dataset [13]. For all the models, we used the
same pretrained model and trained them with the same setting as introduced in
Section 4.1 of the main paper, except for the gradients of the regularizer-based
models that were clipped to 10−4 to prevent gradient explosion. We tested the
model on the validation set after each epoch and recorded the PSNR and LPIPS
scores. We trained each model for 200 epochs and visualize their performance in
Fig. 6.

(a) PSNR

(b) LPIPS

Fig. 6: Visualization of the training performance on the validation set of our model and
regularizer-based models. Higher PSNR and lower LPIPS indicate better performance.
The model trained with PD-ADMM has a more flattened curve during the last tens of
epochs with high performance on both PSNR and LPIPS.

c Loss Terms of No-Constraint Variant

Section 4.3 of the main paper presents a comparison of our method with the
regularizer-based methods, including the no-constraint case when the regular-
izer’s weight equals 0. Based on the observation in Vasu et al . [14], the dif-
ferent relative weights of LO and LP (the loss terms of the objective-focused
and perceptual-focused stage) may result in a transition between perceptual
and objective quality even without a low-frequency constraint. It is because LO

and LP both influence the gradients in the first stage of LFc-SR, even though
they are designed to supervise their own stage only. We compare our method
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with no-constraint models trained with different relative weights of LO and LP .
Specifically, we weighted the losses of objective- and perceptual-focused stages
as follows:

L = λO · LO + λP · LP , (1)

where LO and LP have the same definitions as in Section 3.2 of the main paper.
We tried different ratio r (r = λO/λP ), and the results are shown in Fig. 7. As
the ratio r increases to a significant value, e.g . r = 10, the results show a clear
transition from better perceptual quality to better objective quality; however,
the transition fails to achieve a good balance of PD trade-off compared with our
method.

(a) Set14 [18] (b) B100 [6]

Fig. 7: Comparison between our model and the no-constraint model with different
weights of objective stage and perceptual stage losses (r = λO/λP ). Weighting stage
losses differently can produce a transition between better perceptual quality and ob-
jective quality. However, the transition has an inferior PD balance compared with our
method.

d Low Frequency Bandwidth of Constraint in Gaussian Blur
Variant

In this experiment, we explored how the bandwidth of low-frequency informa-
tion involved in the constraint of LFc-SR influences the overall performance.
Although our method in the main paper used DWT to extract low-frequency
bands, we used Gaussian blur here because of its convenient control of band-
width by adjusting σ. Specifically, we implemented a convolution layer with
21 × 21 Gaussian Blur kernel with σ = 1, 3, 5, 7. Fig. 8 shows the results on a
plane similar to what is used in Sec. a, except for the σ = 1 case, which suf-
fered from constant training collapse. The σ = 3 and σ = 5 case have very close
performance, while the σ = 7 case deviates more due to a lower PSNR. This
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shows that our method is not sensitive to bandwidth change within an appro-
priate range, but an extremely high or low bandwidth will cause problems, e.g .,
training collapse or objective quality drop.

(a) Urban100 [3] (b) Manga109 [7]

Fig. 8: Comparison of models trained with different low-frequency bandwiths involved
in the constraint in LFc-SR. Within an appropriate range (σ = 3, 5), the performances
are highly close; when offered too high or low bandwidth, the model will suffer from
objective quality drop (σ = 7) or training collapse (not shown in the figure).

E Visual Comparisons

This section shows more visual comparisons with state-of-the-art single-focused
methods in Fig. 11. We also compare our method with the closest competing PD-
balanced method, WDST [1]. Fig. 9 shows that WDST hallucinate non-existent
textures in low-frequency regions, which does not happen in our results.

Fig. 9: Comparison between our method and WDST [1]. WDST generates non-existent
textures in low-frequency regions, which do not occur in our results.
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(a) Ground Truth (b) NLSA [9] (c) RankSRGAN [19] (d) Ours

Fig. 10: The challenging cases of our method. Compared to the perceptual-focused
model, our method achieves inferior quality in very high-frequency regions, e.g . furry
and sands. This phenomenon also happens with other trade-off balanced methods, such
as WDST [1].

F User Study

We ask 30 workers on Amazon MTurk to evaluate 40 images from datasets
Urban100 and BSD100. Each worker saw five SR results of the same image and
rated them based on their realness, from 1 (the worst) to 5 (the best). As shown
in Table 3, our method surpasses others (even the perceptual-focused method,
RankSRGAN) in terms of mean score with the lowest standard deviation.

Table 3: Results of user study. PD-ADMM has highest mean score and lowest standard
deviation (Std.).

Methods Bicubic NLSA WDST RankSRGAN PD-ADMM

Mean 2.54 3.31 3.52 3.65 3.66
Std. 1.53 1.47 1.36 1.37 1.32

G Challenging Cases

Although our method shows competitive results on different benchmarks overall,
it fails to generate sharp and realistic images in some challenging cases. As shown
in Fig. 10, our method does not restore the information very well for the regions
with very high-frequency information, like furry and sand. This is also an issue
for WDST [1], indicating that it is a common challenge for perception-distortion
balanced methods. A perception-focused method, such as RankSRGAN [19], can
give better visual qualities for these cases.
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(a) Ground Truth (b) NLSA [9] (c) RankSRGAN [19] (d) Our results

Fig. 11: Visual comparisons with objective-focused model, NLSA [9], and perception-
focused model, RankSRGAN [19], on BSD100 [6] (first row), Urban100 [3] (second
and third row) and Manga109 [7] (forth and fifth row) datasets. Our method produces
sharper HR images than the objective-focused method and less unnatural artifacts
than the perceptual-focused method.
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