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In this supplementary material, we first present the architecture details of VQFR
in Sec. 1. Then we give more details about evaluation metrics in Sec. 2. The limita-
tions of VQFR are discussed in Sec. 3. We then provide more visual comparisons of
ablation studies to help better understand the VQFR designs in Sec. 4. More visual
comparisons with previous methods on the real-world datasets are shown in Sec. 5.

1 Network Architectures

VQFR: The detailed architecture of VQFR is illustrated in Table. 1. There are six res-
olution levels, i.e., f = {1, 2, 4, 8, 16, 32}, and the quantization operation is conducted
on the feature level of f32. Each level of the encoder contains two residual blocks,
and each level of the texture branch in the decoder contains three residual blocks. Each
level of the main branch in the decoder contains one texture warping module and one
residual block. We use a bilinear upsample/downsample followed by a 1×1 convolution
to change the resolutions. VQFR has 76.3M params (1.07 TFlops) and takes 0.36s to
process a 5122 image on Nvidia A100.
Texture Warping Module (TWM): We use a 3×3 convolution with 32 output channels
to extract input information of degraded faces. Then we resize the feature to match all
resolution levels (f = 1, 2, 4, 8, 16, 32). The detailed architecture of TWM is shown in
Table. 2. For each resolution level, the offset convolution is used to generate offsets from
the concatenation of the texture feature and the input features of degraded faces. Then,
the offsets and the texture features are fed into the deformable convolution, outputting
the warped feature.

2 Evaluation Metrics

Our evaluation metrics contain two widely-used non-reference perceptual metrics: FID [7]
and NIQE [11]. We also measure the pixel-wise metrics (PSNR and SSIM) and per-
ceptual metric (LPIPS [16]) for benchmarking CelebA-Test with Ground-Truth (GT).
However, as pointed out in [1], the distortion measure (e.g., PSNR, SSIM) and percep-
tual quality are at odds with each other. Similar to GFP-GAN [13], we pursue percep-
tual quality in VQFR and provide PSNR/SSIM for reference only. In the Table. 1 of the
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Table 1: The detailed architecture of VQFR. The residual block consists of 3×3 Conv-
GN [15]-Swish [12]-3×3 Conv-GN-Swish. g: groups in GroupNorm (GN); c: channels;
dg: deformable groups in deformable convolution [17]; f: compression patch size.

Input size Encoder Texture branch Main branch

f1 : 512×512

{
Residual block, 128-c, 32-g

}
× 2 {

Residual block, 128-c, 32-g
}
× 3

TWM, 128-c, 4-dg
{Residual block, 128-c, 32-g} × 1

Bilinear downsampling 2×
Conv 1× 1, 128-c

f2 : 256×256

{
Residual block, 128-c, 32-g

}
× 2

{
Residual block, 128-c, 32-g

}
× 3

TWM, 128-c, 4-dg
{Residual block, 128-c, 32-g} × 1

Bilinear downsampling 2×
Conv 1× 1, 128-c → 256-c

Bilinear upsampling 2×
Conv 1× 1, 128-c

f4 : 128×128

{
Residual block, 256-c, 32-g

}
× 2

{
Residual block, 256-c, 32-g

}
× 3

TWM, 256-c, 4-dg
{Residual block, 256-c, 32-g} × 1

Bilinear downsampling 2×
Conv 1× 1, 256-c

Bilinear upsampling 2×
Conv 1× 1, 256-c → 128-c

f8 : 64×64

{
Residual block, 256-c, 32-g

}
× 2

{
Residual block, 256-c, 32-g

}
× 3

TWM, 256-c, 4-dg
{Residual block, 256-c, 32-g} × 1

Bilinear downsampling 2×
Conv 1× 1, 256-c

Bilinear upsampling 2×
Conv 1× 1, 256-c

f16 : 32×32

{
Residual block, 256-c, 32-g

}
× 2

{
Residual block, 256-c, 32-g

}
× 3

TWM, 256-c, 4-dg
{Residual block, 256-c, 32-g} × 1

Bilinear downsampling 2×
Conv 1× 1, 256-c → 512-c

Bilinear upsampling 2×
Conv 1× 1, 256-c

f32 : 16×16
{

Residual block, 512-c, 32-g
}
× 2

{
Residual block, 512-c, 32-g

}
× 3

TWM, 512-c, 4-dg
{Residual block, 512-c, 32-g} × 1

Bilinear upsampling 2×
Conv 1× 1, 512-c → 256-c

Table 2: The detailed architecture of the texture warping module (TWM). OConv: con-
volution for generating offsets; DConv: deformable convolution; c: channels; dg: de-
formable groups.

Input size f1 : 512×512 f2 : 256×256 f4 : 128×128

TWM
OConv:


Conv 1×1, (128+32)-c → 128-c

Depthwise Conv 7×7, 128-c
Conv 1×1, 128-c

 OConv:


Conv 1×1, (128+32)-c → 128-c

Depthwise Conv 7×7, 128-c
Conv 1×1, 256-c

 OConv:


Conv 1×1, (256+32)-c → 256-c

Depthwise Conv 7×7, 256-c
Conv 1×1, 256-c


DConv:

{
Deformable Conv 3×3, 128-c, 4-dg

}
DConv:

{
Deformable Conv 3×3, 128-c, 4-dg

}
DConv:

{
Deformable Conv 3×3, 256-c, 4-dg

}
Input size f8 : 64×64 f16 : 32×32 f32 : 16×16

TWM
OConv:


Conv 1×1, (256+32)-c → 256-c

Depthwise Conv 7×7, 256-c
Conv 1×1, 256-c

 OConv:


Conv 1×1, (256+32)-c → 256-c

Depthwise Conv 7×7, 256-c
Conv 1×1, 256-c

 OConv:


Conv 1×1, (512+32)-c → 512-c

Depthwise Conv 7×7, 512-c
Conv 1×1, 512-c


DConv:

{
Deformable Conv 3×3, 256-c, 4-dg

}
DConv:

{
Deformable Conv 3×3, 256-c, 4-dg

}
DConv:

{
Deformable Conv 3×3, 512-c, 4-dg

}

main manuscript, the best PSNR and SSIM are achieved by degraded inputs, as all other
methods are optimized for the perceptual quality instead of the distortion measures.

For fidelity measurement, we follow previous work [13] to use the embedding angle
of ArcFace [3] as the identity metric, which is denoted by ‘Deg.’. However, this Deg.
metric actually cannot well reflect the fidelity due to the following reasons. 1) The Arc-
Face model downsamples the face images into 128×128 during inference, which loses
the spatial dimension. Thus, it cannot evaluate detailed facial positions. 2) The ArcFace
is designed for the recognition task and is trained with the invariance to expressions.
While the expression is important for measuring fidelity in face restoration. In order to
better measure the fidelity with accurate detailed facial positions and expressions, we
further adopt landmark distance (LMD) as the fidelity metric. Specially, we use AW-
ing [14] to obtain 98 landmarks for both the restored face and the ground-truth face.



VQFR: Vector-Quantized Face Restoration 3

Input VQFR

GT Common Case Extreme Case

Input VQFR

(a) Results on faces of extremely poses.

(b) Results on extremely less informative faces.

Fig. 1: Limitations of VQFR.

Then we calculate the L2 distance for each landmark and average the distance as the
final score of the LMD metric.

3 Limitation

The limitations of VQFR are two-folds. 1) As shown in Fig. 1(a), faces in extreme poses
lead to poor restoration results, since the codebook is built from the training dataset, in
which most samples are frontal faces. One potential solution is to increase the dataset
diversity and codebook size, which will help build a more comprehensive dictionary.
2) As shown in Fig. 1(b), the restoration from extremely less informative faces is far
from satisfactory, since the VQFR does not build upon a generative model. Moreover,
VQ may further lead to divergent codebook quantization due to the less informative
inputs. One promising direction to improve is to equip VQFR with generation ability.
For example, when the input faces contain extreme low-information and thus the code
mapping is ambiguous, the auto-regressive [5] or bi-directional [4] transformer can help
model the code selection.

4 More Visualizations of Ablation Study

Importance of input features of degraded faces. Input features of degraded faces
play an important role in preserving fidelity. We compare the SimVQFR without input
features and our VQFR with input features. As shown in Fig. 2, with the input features
of degraded faces, VQFR could generate more faithful expressions (the first and fourth
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row), more faithful facial lines (the second and forth row), and facial components (the
third row) than SimVQFR. The facial lines and components can be roughly recovered
from the input LQ faces but can be easily changed by the discrete quantization, thus
influencing the final recovered expressions and identity. Our VQFR incorporates the
input features from degraded faces at different spatial levels and preserve better fidelity.
Importance of the parallel decoder. The parallel decoder is the key design of VQFR
to preserve high-quality facial details when fusing texture features of the VQ codebook
and input features from degraded faces. We compare the variant-1 (single branch) and
variant-2 (parallel decoder) in Fig. 3. With the parallel decoder, variant-2 could generate
high-quality facial components (the first row), realistic hairs (the first row) and skins
(the second row). In Fig. 4, we provide more visual examples to show the importance
of the parallel decoder design in generating realistic skins (the first and second rows)
high-quality hairs and eyes (the third and fourth rows).
Influence of dual discriminators. We adopt dual discriminators to remove the regular
pattern when utilizing facial textures of the VQ codebook in VQFR. We adopt style-
based wavelet-driven discriminator [6] as the global discriminator and adopt PatchGAN
discriminator [8] as the local discriminator. We show the influence of dual discrimina-
tors in Fig. 5. When we only use the global discriminator (the second column), we can
find that there are regular patterns on skin and hair. When adding the patch discriminator
as the local discriminator, the regular patterns are removed (the third column).
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Input SimVQFR (w/o inp feat.) VQFR (w/ inp feat.)

Fig. 2: Comparisons between the SimVQFR (without input features) and our VQFR
(with input features). With input features of degraded faces, our VQFR could generate
more faithful expressions (the first and third row), facial lines (the second and fourth
row) and facial components (the fourth row) than SimVQFR.
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Input Variant-1 (Single Branch) Variant-2 (Parallel Decoder)

Fig. 3: Comparisons between the Variant-1 (single branch) and Variant-2 (parallel de-
coder). With the proposed parallel decoder, high-quality facial details from the VQ
codebook could be preserved. Therefore, Variant-2 could generate better facial compo-
nents (the first row), more realistic hairs (the first row) and skin (the second row) than
Variant-1.
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Input Variant-1 (Single Branch) Variant-2 (Parallel Decoder)

Fig. 4: Comparisons between the Variant-1 (single branch) and Variant-2 (parallel de-
coder). With the parallel decoder, Variant-2 could generate more realistic skins (the first
and second rows), eyes (the third and fourth rows) and hairs (the third and fourth rows)
than Variant-1.



8 Gu et al.

Input Global D Global D + Local D
Fig. 5: Influence of dual discriminators. With only the global discriminator (the second
column), there are regular patterns on hairs and skins. When adding the patch discrimi-
nator as a local discriminator, the regular patterns are removed (the third column).
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5 More Qualitative Results on Real-World Data

We show more qualitative results on the real-world dataset, i.e., LFW-Test, CelebChild
and WebPhoto. We compare our VQFR with several state-of-the-art face restoration
methods: DFDNet [9], PSFRGAN [2], PULSE [10] and GFPGAN [13].

The qualitative comparisons on the WebPhoto are shown in Fig. 6, Fig. 7 and Fig. 8.
The qualitative comparisons on the CelebChild are present in Fig. 9 and Fig. 10. More-
over, qualitative comparisons on LFW-Test are shown in Fig. 11, Fig. 12 and Fig. 13.
Our VQFR produces high-quality facial components and more realistic hairs and skins
than previous methods.
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Fig. 6: Qualitative comparison on the real-world WebPhoto dataset. Our VQFR could
restore more realistic facial components (eyes and ears) than previous methods. (Zoom
in for best view).
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Fig. 7: Qualitative comparison on the real-world WebPhoto dataset. Our VQFR could
restore more realistic facial components (eyes and ears) and more realistic skins than
previous methods. (Zoom in for best view).
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Fig. 8: Qualitative comparison on the real-world WebPhoto dataset. Our VQFR could
restore more realistic facial components (eyes and ears) and more realistic skins and
hairs than previous methods. (Zoom in for best view).
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Fig. 9: Qualitative comparison on the real-world Celeb-Child dataset. Our VQFR could
restore more realistic eyes and hairs than previous methods. (Zoom in for best view).
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Fig. 10: Qualitative comparison on the real-world Celeb-Child dataset. Our VQFR
could restore more realistic eyes and hairs than previous methods. (Zoom in for best
view).
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Fig. 11: Qualitative comparison on the real-world LFW-Test dataset. Our VQFR could
restore high-quality facial components (eyes and hairs) and more realistic skins than
previous methods. (Zoom in for best view).
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Fig. 12: Qualitative comparison on the real-world LFW-Test dataset. Our VQFR could
restore high-quality facial components (eyes) and more realistic skins than previous
methods. (Zoom in for best view).
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Fig. 13: Qualitative comparison on the real-world LFW-Test dataset. Our VQFR could
restore high-quality facial components (eyes) and more realistic skins and hairs than
previous methods. (Zoom in for best view).
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