
Uncertainty Learning in Kernel Estimation for
Multi-Stage Blind Image Super-Resolution

Zhenxuan Fang1, Weisheng Dong1(�), Xin Li2, Jinjian Wu1, Leida Li1, and
Guangming Shi1

1 School of Artificial Intelligence, Xidian University, Xi’an, China
zxfang@stu.xidian.edu.cn, {wsdong, jinjian.wu}@mail.xidian.edu.cn

{ldli, gmshi}@xidian.edu.cn
2 Lane Dep. of CSEE, West Virginia University, Morgantown WV, USA

xin.li@mail.wvu.edu

Abstract. Conventional wisdom in blind super-resolution (SR) first es-
timates the unknown degradation from the low-resolution image and then
exploits the degradation information for image reconstruction. Such se-
quential approaches suffer from two fundamental weaknesses - i.e., the
lack of robustness (the performance drops when the estimated degrada-
tion is inaccurate) and the lack of transparency (network architectures
are heuristic without incorporating domain knowledge). To address these
issues, we propose a joint Maximum a Posteriori (MAP) approach for es-
timating the unknown kernel and high-resolution image simultaneously.
Our method first introduces uncertainty learning in the latent space when
estimating the blur kernel, aiming at improving the robustness to the es-
timation error. Then we propose a novel SR network by unfolding the
joint MAP estimator with a learned Laplacian Scale Mixture (LSM) prior
and the estimated kernel. We have also developed a novel approach of
estimating both the scale prior coefficient and the local means of the
LSM model through a deep convolutional neural network (DCNN). All
parameters of the MAP estimation algorithm and the DCNN parameters
are jointly optimized through end-to-end training. Extensive experiments
on both synthetic and real-world images show that our method achieves
state-of-the-art performance for the task of blind image SR.

1 Introduction

Single image super-resolution (SISR) is a typical low-level vision problem that
aims to reconstruct the high-resolution (HR) image from its low-resolution (LR)
observation. Since the pioneering work of applying convolutional neural networks
to SR (SRCNN) [10], extensive deep learning-based methods [11,17,26,30,34,38,
52,53] have been developed and achieved impressive performance. Most existing
methods are based on the assumption that the degradation is known and prede-
fined (e.g., bicubic downsampling), so numerous training data can be manually
synthesized and used to train powerful networks. However, these methods will
suffer a dramatic performance drop when the degradation involved in the test
image is different from the assumption. To tackle this problem, several methods
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Fig. 1. SR results produced by the multi-stage network, the corresponding estimated
blur kernels with or without uncertainty learning (UL) are illustrated on the top left.

have been proposed [50, 51] by taking the blur kernel as an additional input of
the network to utilize the degradation prior knowledge. Recently, [42, 43] only
focused on exploiting the internal information of the test images, also known
as zero-shot SR. However, the above methods need to provide the blur kernels
of test images, so kernel estimation [4, 37] is crucial before these non-blind SR
methods, but if the estimated kernel deviates from the ground truth, the kernel
mismatch will lead to undesired artifacts [15].

Generally, the degradation processes of real-world LR images are probably
complicated and unknown [7, 15], so studying the problem of blind SR is par-
ticularly valuable. Most early blind SR methods are model-based [3, 18, 20, 47],
they exploit internal self-similarity and edge prior to estimate the underlying
blur kernels of LR images before performing SR. But their optimization pro-
cedures are usually time-consuming due to complex and iterative computation.
Deep learning-based iterative kernel correction (IKC) [15] uses the SR result to
correct the estimated kernel in an iterative manner, where the estimation is in-
tegrated into reconstruction by spatial feature transform (SFT) layers [48]. An
unsupervised degradation representation learning scheme was proposed in [46]
by contrastive learning based on the assumption that the degradation is invariant
within the same image but varies from image to image.

However, these methods have several obvious limitations. First, accurate es-
timation is often impossible - due to the ill-posed nature of inverse problems,
there exist multiple candidates of the kernel for a single LR input [15]. Mean-
while, the estimated kernel is sensitive to the input noise, leading to inaccurate
estimation results. Second, the fusion modules such as [51] will face the domain
interference problem because it directly concatenates the degradation represen-
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tations with image features [46]. Meanwhile, the SR networks are designed based
on the black-box principle, making it difficult for interpretation or optimization.

The motivation behind this work is twofold. On the one hand, we advocate
a joint optimization of kernel estimation and image reconstruction. Such end-
to-end training is desirable to alleviate the catastrophic error propagation in
sequential approaches. On the other hand, it is desirable to quantify the un-
certainty of kernel estimation so that we can incorporate such ambiguity into
the process of image reconstruction. In this paper, we first introduce data uncer-
tainty learning with kernel estimation. Instead of using fixed feature maps in the
estimation network, the feature (mean) and uncertainty (variance) are learned
simultaneously. Then we propose a transparent blind SR method with learned
Laplacian Scale Mixture (LSM) prior. The contributions of this paper are listed
as follows.

• The blind SR problem is formulated as a joint Maximum a Posteriori (MAP)
approach for estimating the blur kernel and reconstructing the HR image.
Then we propose a novel multi-stage SR network by converting the MAP
estimator with a learned LSM prior and estimated kernel into a multi-stage
deep network, all parameters in the MAP estimator are optimized in an
end-to-end manner.

• To improve the performance and robustness of kernel estimation, we intro-
duce uncertainty learning to the kernel estimation network. Both the feature
(mean) and uncertainty (variance) in the latent space of the blur kernel are
learned, which is proved can produce more accurate kernel than deterministic
model.

• Extensive experimental results on both synthetic and real-world datasets
show that the proposed method outperforms existing state-of-the-art blind
SR methods, especially in the presence of heavy noise contamination. Sub-
jective evaluation of SR images is also convincingly in favor of our method.

2 Related Work

2.1 Blind Image Super-Resolution

Blind SR assumes that the blur kernels of test images are unknown. Previous
model-based methods [20,21] are time-consuming because most of them involve
complicated optimization procedures. In [37], an optimal kernel can be recov-
ered by utilizing the internal patch recurrence property in an image. With the
development of deep learning, CNN-based blind SR methods become more pop-
ular [15,24,27,32,33,35,44,46]. IKC method [15] performs blind SR by using the
intermediate reconstruction results to iteratively correct the estimation of blur
kernels. Luo et al. [35] proposed a deep alternating network (DAN) by concate-
nating the estimator and restorer module alternately. By utilizing the degener-
ative similarity of small patches in an image, [46] introduces an unsupervised
contrastive learning scheme to extract various degradation representations for
further reconstruction. Recently, [27] proposed a blind SR framework based on
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kernel-oriented adaptive local adjustment of SR features. MANet [32] proposes
a kernel estimation framework using the mutual affine convolution layer.

2.2 Uncertainty in Deep Learning

The uncertainty in deep learning can be divided into two categories [9]: epis-
temic/model uncertainty and aleatoric/data uncertainty. The former describes
how much the model is uncertain about its predictions. The latter refers to the
noise inherent in the observation data. Many works [2,6,16,25] have been studied
to model the uncertainty in deep learning tasks, including image classification,
image segmentation, and face recognition. By introducing uncertainty, they have
improved the performance and robustness of deep networks. GAMA [31] analy-
ses the effect of aleatoric/data uncertainty on SISR reconstruction by decreas-
ing the loss attenuation of large variance pixels. Recently, [39] proposed a novel
uncertainty-driven loss (UDL) to enforce the network concentrating more on the
pixels with large variance, which is beneficial for better reconstruction of texture
and edge regions.

2.3 LSM Model for Image Restoration

As a probability model, the Laplacian Scale Mixture (LSM) model is an analogy
to the classical Gaussian scale mixture model, which has been used for various
image restoration tasks [23,40,41]. The early work [14] proposed a class of sparse
coding models that utilizes a LSM prior to model dependencies among coeffi-
cients. In [22], the LSM distribution has also been used to model impulse noise
and remove mixture noise effectively. [12] propose a novel robust tensor approx-
imation framework for the LSM modeling of three-dimensional data. Different
from the existing LSM model for image restoration with manually selected scale
priors, we use the DCNNs to learn both the scale prior and local means in the
LSM model. Through end-to-end training, all parameters are learned jointly.

3 Method

3.1 Problem Formulation

The widely accepted degradation model assumes that the LR image is produced
by downsampling HR image after the convolution with blur kernel, which can
be mathematically expressed as y = (x ∗ k) ↓s +n, where x is the original HR
image, y is the degraded LR image, ∗ denotes the convolution with blur kernel
k, ↓s is the s-fold downsampling operation and n denotes the additional noise.
The matrix-vector form can be formulated as

y = Ax+ n, (1)

where A = DH denotes the degradation operator (H is the blur matrix con-
structed from the kernel k and D is the downsampling matrix). Then blind SR
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refers to the process of estimating H and recovering x from y and H, which is
a highly ill-posed inverse problem. We formulate it as a maximum a posteriori
(MAP) estimation problem

p(H,x|y) = p(H|y) p(x|H,y). (2)

Take logarithms on both sides of the equation

log p(H,x|y) ∝ log p(H|y) + log p(y|H,x) + log p(x). (3)

Then solving the MAP problem can be expressed as

(H∗,x∗) = argmax
H,x

log p(H|y) + log p(y|H,x) + log p(x). (4)

The above optimization problem can be converted into two subproblems

H∗ = argmax
H

log p(H|y), (5a)

x∗ = argmax
x

log p(y|H,x) + log p(x). (5b)

Their specific meanings are clear: Eq. (5a) denotes the estimation of blur kernel
and Eq. (5b) denotes reconstructing HR image from LR image and the estimated
kernel.

3.2 Uncertainty Learning in Kernel Estimation

For the estimation of blur kernel, there exist some inevitable errors in the predic-
tion results due to noise interference and the ill-posed nature. To properly take
the uncertainty of the prediction into account, we introduce uncertainty learning
(UL) to the process of blur kernel estimation. For the likelihood term p(H|y) in
Eq. (5a), we propose to model it by the following Gaussian distribution,

p(H|y) ∼ N (k|µ(y), σ2(y)), (6)

where µ(y) and σ2(y) denote the mappings from y to the posterior distribution
parameters (µ and σ) of k. However, it is difficult to calculate the mappings
explicitly. As shown in Fig. 2(a), we parameterize the two mappings into deep
networks, - i.e. µ = fΘ1

(y) ,σ = fΘ2
(y), where Θ1 and Θ2 represent the pa-

rameters of mean and variance branches respectively. Specifically, the LR image
y is input into a DCNN to extract the feature maps of the underlying blur kernel.
Then the features go through two 3×3 convolution layers to learn the mean and
variance of prediction result simultaneously. From another perspective, µ can be
interpreted as the identity mapping of the blur kernel and σ is the uncertainty
of the predicted µ. Then we generate an equivalent sampling representation z
through re-parameterization method [29]

z = µ+ εσ, ε ∼ N (0, I), (7)
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Fig. 2. Overview of the proposed KULNet for blind SR. The architectures of (a) the
uncertain kernel estimation network, (b) the layer A, which contains a convolution layer
with the estimated kernel and a downsampling layer, (c) the multi-stage SR network.

where ε denotes a random noise sampled from the normal distribution. Since
µ is corrupted by σ during the training period, z is not a deterministic point
embedding anymore. However, we notice that the model tends to predict small σ
for all samples to suppress the instable components if there are no constraints on
the embeddings. Similar to [6], we adopt the Kullback-Leibler (KL) divergence
regularization term to enforce N

(
µ,σ2

)
to be close to the standard normal

distribution N (0, I),

Lkl = KL
[
N
(
µ,σ2

)
‖N (0, I)

]
= −1

2

(
1 + logσ2 − µ2 − σ2

)
.

(8)

Then the sampled embedding z is input to the final convolution layer to obtain
the kernel estimation.

3.3 Multi-Stage SR Network

LSM model for SR. To solve Eq. (5b), we note that p(y|H,x) is the likelihood
term and p(x) is the prior distribution of x. The likelihood term can be generally
modeled by a Gaussian distribution

p(y|H,x) =
1√

2πσn
exp

(
−‖y −DHx‖22

2σ2
n

)
. (9)

For the prior term p(x) of the HR image, we propose to characterize each pixel
xi with a nonzero-mean Laplacian distribution of variance 2θ2i and mean ui

p (xi|θi) =
1

2θi
exp

(
−|xi − ui|

θi

)
. (10)
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With the assumption that xi and θi are independent, we can model x with the
following LSM model

p(x) =
∏
i

p (xi) , p (xi) =

∫ ∞
0

p (xi|θi) p (θi) dθi, (11)

where the scale prior p(θi) can be modeled by a general energy function - e.g.,
p (θi) ∝ exp (−J (θi)). Then Eq. (5b) is equivalent to a bivariate estimation
problem - i.e.,

(x∗,θ∗) = argmax
x,θ

log p(H,y|x) + log p(x|θ) + log p(θ). (12)

By substituting the Gaussian likelihood term of Eq. (9), the prior terms of Eq.
(10) into the MAP estimator Eq. (12), we can obtain the following objective
function

(x∗,θ∗) = argmin
x,θ

1

2
‖y −DHx‖22 +

N∑
i=1

σ2
n

θi
|xi − ui|+ Ω(θ), (13)

where Ω(θ) = σ2
n

∑N
i=1 log θi + σ2

nJ(θ), then the SR problem can be solved by
alternating optimizing x and θ. For the x-subproblem, with fixed θ, we can solve
x by

x∗ = argmin
x

1

2
‖y −DHx‖22 +

N∑
i=1

wi|xi − ui|, (14)

where wi = σ2
n/θi. Inspired by recent advances in image denoising [13, 38], the

mean ui can be predicted by a deep denoising module, i.e. ui = f(xi), where
f(·) denotes a denoiser. Then Eq. (14) can be solved by the iterative shrinkage-
thresholding algorithm [8] as

x(t+1) = Sτ (t),u(t)

(
x(t) +

1

c
A>

(
y −Ax(t)

))
, (15)

where A = DH, A> = H>D> and c is chosen to ensure convergence. Sτ (t),u(t)(·)
denotes a generalized shrinkage operator with threshold τ (t) = w(t)

c and u(t),
which is defined by

Sτ ,u(t) =


t+ τ , t < u− τ
u, u− τ ≤ t ≤ u+ τ

t− τ , t > u+ τ

(16)

Similarly, the θ-subproblem is equivalent to solve the w-subproblem. With
a fixed x, we have

w∗ = argmin
w

N∑
i=1

wi|xi − ui|+ Ω(w). (17)

Iterative algorithms [40] can be used to solvew, which depends on a hand-crafted
prior p(θ) in Ω(w) - e.g., Jeffrey’s prior. Instead of using a fixed prior, we propose
to estimate w(t) from x(t) using a universal DCNN-based denoiser [13,38].
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Original image t = 1 t = 2 t = 3 t = 4

Fig. 3. The visualization of the learned regularization parameter w estimated in 4
stages.

Multi-stage network for SR. Despite the theoretical rigor, alternatively solv-
ing x and w requires many iterations to converge and need a hand-crafted prior
p(θ). Meanwhile, all parameters and the denoiser can not be jointly optimized.
To address these issues, we replace all variables in Eq. (15) with a common ex-
pression containing x, so that x and w can be jointly optimized in a unified
framework.

x(t+1) = SGw(x(t))
c ,Gu(x(t))

(
x(t) +

1

c
A>

(
y −Ax(t)

))
, (18)

where Gw(·) denotes the CNN generator for estimating w, and the mean u is also
predicted by a generator - i.e., u(t) = Gu(x(t)). Note that the blur kernel H in A
has been estimated from y by our uncertain kernel estimation network. Similar
to [13], we can unfold the iterative optimization in Eq. (18) into a multi-stage
network implementation.

Network architecture. The architecture of the proposed multi-stage SR net-
work is shown in Fig. 2(c). All modules in the network strictly correspond
to the steps in the optimization process, the network executes T iterations of
Eq. (18). The input LR image y ∈ RC×H×W first goes through a convolution
(Conv) layer parameterized by the degradation matrix A> for an initial esti-
mate x(0) ∈ RC×sH×sW , s denotes the scale factor. For the upper branch, x(t)

is fed to a U-Net followed by two generators to estimate the weight w(t) and
mean u(t). The lightweight U-net consists of five encoding blocks (EBs) and four
decoding blocks (DBs), each EB and DB contain two Conv layers with ReLU ac-
tivation function. The average pooling and bilinear interpolation layer are used
to downsample and upsample the feature maps. The channel number of the out-
put features in 5 EBs and 4 DBs are set to 32, 64, 64, 128, 128, 128, 64, 64,
and 32, respectively. The weight and mean generator both contain three Conv
layers. The estimated weight w in each stage are visualized (with normalization)
in Fig. 3, we can see that w is sparse and helps the network concentrate more
and more on high-frequency edges and textures.

To leverage information of multiple stages, we use long connections to con-
catenate previous features with current features, leading to more faithful recon-
struction of the missing high-frequency information. As illustrated in Fig. 2(b),
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the layers A and A> are designed for a specific blur kernel H obtained by our
uncertain kernel estimation network. For Gaussian degradation, A = DH, where
H and D denote the Gaussian blur matrix and the downsampling matrix respec-
tively. In layer A, the input feature maps are convoluted with the estimated blur
kernel H and then downsampled via bicubic interpolation. Similarly, the layer
A> = H>D> corresponds to first upsample the LR image and then put the up-
sampled image into a transpose convolution layer with the blur kernel. Module
S denotes a shrinkage operator with threshold w and u.

3.4 Network Training

We combine the above uncertain kernel estimation network and multi-stage SR
network into a whole training framework, called Kernel Uncertianty Learning
network (KULNet). For the kernel estimation network, we use a combination
loss of the L1 loss between the estimated kernel K̂ and the GT kernel K (Le =
1
m

∑m
i=1 ‖K̂i −Ki‖1) and the KL loss in Eq. (8), denoted by LK = Le + λLkl,

where λ is set to be 0.001. For the SR network, all parameters of each stage
are shared except c. The L1 loss function is adopted to train the proposed deep
network, written as

L1 =
1

m

m∑
i=1

‖F (yi)− xi‖1 , (19)

where m denotes the total number of the training samples, yi and xi denote
the i-th pair of LR and HR image patches, and F(yi) denotes the SR image
by the network. The total loss is described as Ltotal = LK + L1. The ADAM
optimizer [28] is used to train the network with setting β1 = 0.9, β2 = 0.999 and
ε = 10−8. The learning rate is set as 2×10−4. The parameters of the convolutional
layers are initialized by the Xavier initialization [19]. We implement the proposed
method by PyTorch and train the network using an Nvidia RTX 2080Ti GPU.

4 Experimental Results

4.1 Datasets and Settings

Following [15, 46], the training set consists of 3450 HR images, including 800
images in DIV2K [1] and 2650 images in Flickr2K [45]. The LR training patches
are generated by Gaussian blur and bicubic downsampling with a size of 48×48.
Four standard benchmark datasets: Set5 [5], Set14 [49], BSD100 [36] and Ur-
ban100 [21] are used for testing. We train our network on the general degradation
with anisotropic Gaussian kernels and noises, the Gaussian kernels are generated
by randomly selecting the kernel width determined by a diagonal covariance ma-
trix with σ1, σ2 ∼ U(0.2, 4) and a random rotation angle θ ∼ U(0, π), the range
of noise level is set to [0, 25]. The kernel size is fixed to 21× 21. For evaluation,
9 typical blur kernels in [46] and different noise levels are used to generate the
test images. Performances in terms of PSNR and SSIM metrics are conducted
on the Y channel of YCbCr space.
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Fig. 4. The visualization of anisotropic blur kernels used for testing.

Table 1. MAE (↓) results of the estimated kernels by kernel estimation network with
or without Uncertainty Learning (UL).

Kernel estimation Noise 1 2 3 4 5 6 7 8 9 Average

w/o UL
0 0.252 0.174 0.204 0.167 0.151 0.226 0.181 0.157 0.195 0.190
10 0.259 0.183 0.218 0.186 0.171 0.240 0.201 0.183 0.216 0.206
20 0.269 0.202 0.251 0.235 0.223 0.271 0.251 0.267 0.302 0.252

w/ UL
0 0.191 0.120 0.181 0.140 0.095 0.208 0.168 0.098 0.117 0.146
10 0.212 0.141 0.186 0.143 0.110 0.210 0.170 0.119 0.145 0.160
20 0.239 0.152 0.189 0.148 0.119 0.217 0.176 0.136 0.169 0.172

Table 2. PSNR results produced by the proposed multi-stage network with (!) or
without (%) Uncertainty Learning (UL).

Scale UL Set5 Set14 BSD100 Urban100

Noise 0 10 20 0 10 20 0 10 20 0 10 20

×2
% 33.78 30.76 29.27 30.55 28.21 27.10 29.87 27.56 26.54 27.75 25.82 24.93

! 34.36 31.03 29.54 30.93 28.42 27.27 30.43 27.69 26.62 28.16 26.10 25.08

×3
% 31.77 29.72 28.08 28.39 27.24 26.20 27.72 26.67 25.77 25.88 24.95 24.22

! 32.27 29.91 28.34 28.92 27.53 26.45 28.17 26.83 25.88 26.26 25.19 24.31

×4
% 30.39 28.80 27.34 27.49 26.52 25.53 26.82 25.97 25.15 24.86 24.15 23.49

! 30.79 29.07 27.56 27.81 26.76 25.74 27.02 26.12 25.27 25.07 24.36 23.62

4.2 Comparing UL with Deterministic Network

In the proposed kernel estimation network, uncertainty learning is used to im-
prove the robustness to the degraded images. To demonstrate the effectiveness
of uncertainty learning, we modify the network into a deterministic model by
removing the Conv layer of variance σ and the Gaussian sampling operation.
The KL loss is also excluded during training. The test images are generated by
applying the blur kernels to the datasets followed by subsampling of scale factors
2, 3 and 4, then added with additive Gaussian noise. The visualization of the 9
anisotropic blur kernels used for testing is shown in Fig. 4.

We first compare the mean absolute error (MAE) of the blur kernels esti-
mated by our uncertain network and the modified deterministic network. As
shown in Table 1, by introducing uncertainty learning, we can estimate more
accurate kernels with lower error compared with deterministic network. Note
that when the LR image is disturbed by large noise, the deterministic network
suffer an obvious performance drop. And our uncertain network can handle the
noise inherent in the observation data well, thus produces more stable results
robustly. We further verify the blind SR performance of the multi-stage network
with two kinds of kernel estimations. Table 2 and Fig. 1 prove that our multi-
stage network can produce higher PSNR results and shaper edges due to more
accurate estimation of blur kernels.
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4.3 Comparison with State-of-the-Art Methods

We have compared our method with several recent state-of-the-art blind SR
methods, including ZSSR [42], IKC [15], DASR [46], KOALAnet [27] and MANet
[32]. For a fair comparison, the results are generated by the official codes released
by authors or directly cited from the original papers; all models are trained
under the same training settings. Since IKC model was trained under a noise-
free isotropic setting, we also retrained it under an anisotropic blur kernel setting
with noise.

Quantitative and visual comparison. Following [46], anisotropic blur ker-
nels (as illustrated in Fig. 4) and different noise levels are used to evaluate the
performance. The average PSNR results of the test methods for blind SR are
reported in Table 3. Since zero-shot method ZSSR (blur kernel estimated by
KernelGAN [4]) only leverages the internal information of test images, it has
a relatively limited performance. We noticed that the image noise is preserved
and magnified significantly after SR by ZSSR, so it is only tested under a noise-
free setting. It can be seen that MANet slightly outperforms KOALAnet. And
we have achieved some superior advantages over the other methods, especially
at higher noise levels and scale factors. We compare the blind SR visualization
results produced by different methods in Fig. 5, the specific blur kernel used for
generating the LR image is displayed on the upper left. The LR images with a
scale factor of 4 are added with Gaussian noise of level 10. It is obvious that
the proposed method can reconstruct more high-frequency details and sharper
edges than other methods.

Computational complexity comparison. We have further compared the pro-
posed network with other methods in terms of computational complexity. The
total number of parameters of each deep network are listed in Table 4. We can
see that the MANet contains the largest number of parameters over three times
of the proposed network, as its RRDB-SFT architecture is very deep. Since we
enforce the DCNNs in each stage to share the same parameters, the total number
of parameters of the proposed multi-stage network is much smaller. Though there
are T = 4 stages in the proposed network, the running time is similar to that of
MANet. This is because the feature maps in the U-Net structure are gradually
downsampled, thus the computational complexity can be much reduced.

4.4 Results on Real-World Images

We also conduct experiments on real-world images to demonstrate the general-
ization property and effectiveness of our method. We have only compared the
visualization results of different methods, as there is no ground-truth. All models
are trained on the anisotropic setting with noise, since real-world degradation
is complicated. As shown in Fig. 6, our method can produce more natural and
visually more pleasant results than other methods.
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25.49 / 0.8249
24.27 / 0.7918

DASR

26.64 / 0.8465
25.57 / 0.8186

MANet

28.29 / 0.8827
27.81 / 0.8720

KULNet (Ours) 

28.69 / 0.8877 
27.88 / 0.8743

Img_011 from Set14

( b ) Scale factor ×4

( a ) Scale factor ×2

IKC

20.82 / 0.5993 
20.78 / 0.5950 

DASR

22.07 / 0.6806
21.29 / 0.6179

Img_039 from Urban100 LR

PSNR / SSIM

MANet

23.86 / 0.7867 
23.81 / 0.7795

KULNet (Ours) 

24.30 / 0.8044 
24.01 / 0.7860
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KOALAnet

27.97 / 0.8796
27.69 / 0.8711

KOALAnet

23.58 / 0.7652
23.44 / 0.7523

Fig. 5. Visual comparison to other methods. The blur kernels are illustrated on the
top left. Noise levels are set to 0 and 10 for scale factor ×2 and ×4, respectively.

Table 3. Quantitative comparison of the SOTA blind SR methods and the proposed
method on various datasets and noise levels.

Method Scale Set5 Set14 BSD100 Urban100

Noise 0 10 20 0 10 20 0 10 20 0 10 20

KernelGAN [4]+ZSSR [42]

×2

26.94 - - 23.96 - - 23.17 - - 21.69 - -
IKC [15] 27.89 27.62 26.86 26.29 25.90 25.26 26.03 25.67 25.12 23.84 23.35 22.82

DASR [46] 29.89 28.13 27.18 27.25 26.06 25.41 26.97 25.78 25.21 24.58 23.54 22.98
KOALAnet [27] 33.96 30.59 29.05 30.53 27.98 26.87 29.77 27.23 26.28 27.56 25.59 24.52

MANet [32] 33.99 30.77 29.28 30.61 28.22 27.11 29.85 27.48 26.49 27.64 25.71 24.76
KULNet (Ours) 34.36 31.03 29.54 30.93 28.42 27.27 30.43 27.69 26.62 28.16 26.10 25.08

IKC [15]

×3

28.40 27.01 26.00 26.42 25.32 24.54 26.20 25.20 24.56 23.59 23.24 22.35
DASR [46] 29.40 27.54 26.43 26.92 25.68 24.89 26.65 25.42 24.76 24.23 23.45 22.57
MANet [32] 31.78 29.65 28.10 28.50 27.22 26.18 27.79 26.64 25.74 25.42 24.62 23.85

KULNet (Ours) 32.27 29.91 28.34 28.92 27.53 26.45 28.17 26.83 25.88 26.26 25.19 24.31

KernelGAN [4]+ZSSR [42]

×4

23.85 - - 22.55 - - 21.37 - - 19.12 - -
IKC [15] 27.91 26.51 25.52 26.06 24.92 24.19 25.80 24.83 24.21 23.26 22.47 21.90

DASR [46] 30.33 27.29 25.94 27.31 25.48 24.54 26.77 25.16 24.42 24.34 22.98 22.28
KOALAnet [27] 30.36 28.56 27.13 27.35 26.19 25.33 26.72 25.73 24.95 24.37 23.76 23.01

MANet [32] 30.38 28.73 27.31 27.41 26.46 25.50 26.78 25.96 25.16 24.49 23.91 23.23
KULNet (Ours) 30.79 29.07 27.56 27.81 26.76 25.74 27.02 26.12 25.27 25.07 24.36 23.62

Table 4. Complexity comparison with other methods. The average running time is
measured on the Set14 dataset for ×4.

Method IKC DASR KOALAnet MANet Ours

#Params. 5.2M 5.8M 6.2M 14.3M 3.9M
Run Time(ms/image) 568 96 991 157 176
PSNR(dB) 24.92 25.48 26.29 26.46 26.76
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KOALAnetDASR MANet KULNet (Ours) Real-world image 

Fig. 6. Visualization results of different methods on real-world images upscaled by ×4.
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Fig. 7. Ablation study on the effect of the number of stage T .
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Fig. 8. Intermediate visual results of different stages for ×4 blind SR.

4.5 Ablation Study

We conduct several ablation studies to verify the impacts of different modules
in the proposed network, including the number of stages, the value of hyperpa-
rameter λ and the effect of dense connections.

Fig. 7 shows the ×2 and ×4 PSNR results on Set14 produced by the proposed
method with different number of stages, we can draw a conclusion that increasing
the stage number T leads to better results. We set T = 4 in our implementation,
targeting a good trade-off between SR performance and computational com-
plexity. Moreover, we have shown the intermediate image comparison results of
different stages in Fig. 8, from which we can see that more high-frequency in-
formation has been recovered along with the increasing number of stages during
the process of SR reconstruction.
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Table 5. Results trained with different value of hyperparameter λ.

λ 0 0.0001 0.001 0.01 0.1 1

Set14 26.49 26.67 26.76 26.71 26.15 25.89
BSD100 25.95 26.01 26.12 26.05 25.62 25.43

We have studied the influence of KL divergence regularization term by adjust-
ing the value of hyperparameter λ. The PSNR results on Set14 and BSD100 are
shown in Table 5. As the previous analysis has shown, if there are no constraints
on mean and variance (λ = 0), the network tends to predict small σ for all sam-
ples, thus there exists almost no uncertainty in the network, the results are also
similar to the deterministic networks in section 4.2. As λ increasing, uncertainty
learning can effectively improve the performance. When the KL constraint is too
strong (λ = 1), the network will predict large variance for all samples, making
the mean µ deviate from the original feature maps. Here we set λ as 0.001.

Finally, we have conducted an ablation study on the proposed network with
or without dense connections. The PSNR results increase 0.13 dB on the Set14
dataset for a scale factor of 4, justifying the effectiveness of dense connections
to KULNet.

5 Conclusions

In this paper, we formulate the blind SR problem as a joint maximum a poste-
riori probability (MAP) problem for estimating the unknown kernel and high-
resolution image simultaneously. To improve the robustness of the kernel esti-
mation network, we introduce uncertainty learning in the latent space instead
of using deterministic feature maps. Then we propose a novel multi-stage SR
network by unfolding the MAP estimator with the learned LSM prior and the
estimated kernel. Both the scale prior coefficient and the local means of the LSM
model are estimated through deep convolutional neural networks. All parame-
ters of the MAP estimation algorithm and the DCNN parameters are jointly
optimized through end-to-end training. Extensive experimental results on both
synthetic and real datasets demonstrate that the proposed method outperforms
existing state-of-the-art methods. Future research directions include the exten-
sion of this work to spatially varying blur kernels and the generalization study
to more real-world test images.
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Foundation of China under Grant 61991451, Grant 61632019, Grant 61621005,
and Grant 61836008.



Uncertainty Learning in Kernel Estimation for Multi-Stage Blind SR 15

References

1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution:
Dataset and study. In: Proceedings of the IEEE conference on computer vision and
pattern recognition workshops. pp. 126–135 (2017) 9

2. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. IEEE transactions on pat-
tern analysis and machine intelligence 39(12), 2481–2495 (2017) 4

3. Begin, I., Ferrie, F.: Blind super-resolution using a learning-based approach. In:
Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004. vol. 2, pp. 85–89. IEEE (2004) 2

4. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation
using an internal-gan. In: NeurIPS. pp. 284–293 (2019) 2, 11, 12

5. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity
single-image super-resolution based on nonnegative neighbor embedding (2012) 9

6. Chang, J., Lan, Z., Cheng, C., Wei, Y.: Data uncertainty learning in face recog-
nition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 5710–5719 (2020) 4, 6

7. Cornillere, V., Djelouah, A., Yifan, W., Sorkine-Hornung, O., Schroers, C.: Blind
image super-resolution with spatially variant degradations. ACM Transactions on
Graphics (TOG) 38(6), 1–13 (2019) 2

8. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences 57(11), 1413–1457 (2004) 7

9. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it matter? Struc-
tural safety 31(2), 105–112 (2009) 4

10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for
image super-resolution. In: European conference on computer vision. pp. 184–199.
Springer (2014) 1

11. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional
neural network. In: European conference on computer vision. pp. 391–407. Springer
(2016) 1

12. Dong, W., Huang, T., Shi, G., Ma, Y., Li, X.: Robust tensor approximation with
laplacian scale mixture modeling for multiframe image and video denoising. IEEE
Journal of Selected Topics in Signal Processing 12(6), 1435–1448 (2018) 4

13. Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep
neural network for image restoration. IEEE transactions on pattern analysis and
machine intelligence 41(10), 2305–2318 (2018) 7, 8

14. Garrigues, P., Olshausen, B.: Group sparse coding with a laplacian scale mixture
prior. Advances in neural information processing systems 23 (2010) 4

15. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel
correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 1604–1613 (2019) 2, 3, 9, 11, 12

16. Gu, Y., Jin, Z., Chiu, S.C.: Active learning combining uncertainty and diversity
for multi-class image classification. IET Computer Vision 9(3), 400–407 (2015) 4

17. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-
resolution. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 1664–1673 (2018) 1



16 Z. Fang et al.

18. He, H., Siu, W.C.: Single image super-resolution using gaussian process regression.
In: CVPR 2011. pp. 449–456. IEEE (2011) 2

19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015) 9

20. He, Y., Yap, K.H., Chen, L., Chau, L.P.: A soft map framework for blind super-
resolution image reconstruction. Image and Vision Computing 27(4), 364–373
(2009) 2, 3

21. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed
self-exemplars. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5197–5206 (2015) 3, 9

22. Huang, T., Dong, W., Xie, X., Shi, G., Bai, X.: Mixed noise removal via laplacian
scale mixture modeling and nonlocal low-rank approximation. IEEE Transactions
on Image Processing 26(7), 3171–3186 (2017) 4

23. Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior
for spectral compressive imaging. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16216–16225 (2021) 4

24. Jo, Y., Oh, S.W., Vajda, P., Kim, S.J.: Tackling the ill-posedness of super-resolution
through adaptive target generation. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 16236–16245 (2021) 3

25. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for
computer vision? NeurIPS (2017) 4

26. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1646–1654 (2016) 1

27. Kim, S.Y., Sim, H., Kim, M.: Koalanet: Blind super-resolution using kernel-
oriented adaptive local adjustment. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 10611–10620 (2021) 3, 11, 12

28. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 9

29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. ICLR (2014) 5
30. Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A., Aitken,

A., Tejani, A., Totz, J., Wang, Z., et al.: Photo-realistic single image super-
resolution using a generative adversarial network. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 4681–4690 (2017) 1

31. Lee, C., Chung, K.S.: Gram: Gradient rescaling attention model for data uncer-
tainty estimation in single image super resolution. In: 2019 18th IEEE Interna-
tional Conference On Machine Learning And Applications (ICMLA). pp. 8–13.
IEEE (2019) 4

32. Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for
spatially variant kernel estimation in blind image super-resolution. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 4096–4105
(2021) 3, 4, 11, 12

33. Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior
with application to blind super-resolution. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 10601–10610 (2021) 3

34. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for
single image super-resolution. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. pp. 136–144 (2017) 1

35. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Unfolding the alternating optimiza-
tion for blind super resolution. arXiv preprint arXiv:2010.02631 (2020) 3



Uncertainty Learning in Kernel Estimation for Multi-Stage Blind SR 17

36. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natu-
ral images and its application to evaluating segmentation algorithms and measur-
ing ecological statistics. In: Proceedings Eighth IEEE International Conference on
Computer Vision. ICCV 2001. vol. 2, pp. 416–423. IEEE (2001) 9

37. Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 945–952 (2013) 2, 3

38. Ning, Q., Dong, W., Shi, G., Li, L., Li, X.: Accurate and lightweight image super-
resolution with model-guided deep unfolding network. IEEE Journal of Selected
Topics in Signal Processing (2020) 1, 7

39. Ning, Q., Dong, W., Shi, G., Li, L., Li, X.: Uncertainty-driven loss for single image
super-resolution. NeurIPS (2021) 4

40. Ning, Q., Dong, W., Wu, F., Wu, J., Lin, J., Shi, G.: Spatial-temporal gaussian
scale mixture modeling for foreground estimation. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 34, pp. 11791–11798 (2020) 4, 7

41. Shi, G., Huang, T., Dong, W., Wu, J., Xie, X.: Robust foreground estimation via
structured gaussian scale mixture modeling. IEEE Transactions on Image Process-
ing 27(10), 4810–4824 (2018) 4

42. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal
learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 3118–3126 (2018) 2, 11, 12

43. Soh, J.W., Cho, S., Cho, N.I.: Meta-transfer learning for zero-shot super-resolution.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3516–3525 (2020) 2

44. Tao, G., Ji, X., Wang, W., Chen, S., Lin, C., Cao, Y., Lu, T., Luo, D., Tai, Y.:
Spectrum-to-kernel translation for accurate blind image super-resolution. Advances
in Neural Information Processing Systems 34, 22643–22654 (2021) 3

45. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 chal-
lenge on single image super-resolution: Methods and results. In: Proceedings of
the IEEE conference on computer vision and pattern recognition workshops. pp.
114–125 (2017) 9

46. Wang, L., Wang, Y., Dong, X., Xu, Q., Yang, J., An, W., Guo, Y.: Unsupervised
degradation representation learning for blind super-resolution. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
10581–10590 (2021) 2, 3, 9, 11, 12

47. Wang, Q., Tang, X., Shum, H.: Patch based blind image super resolution. In: Tenth
IEEE International Conference on Computer Vision (ICCV’05) Volume 1. vol. 1,
pp. 709–716. IEEE (2005) 2

48. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-
resolution by deep spatial feature transform. In: Proceedings of the IEEE confer-
ence on computer vision and pattern recognition. pp. 606–615 (2018) 2

49. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-
representations. In: International conference on curves and surfaces. pp. 711–730.
Springer (2010) 9

50. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-
resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 3217–3226 (2020) 2

51. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution
network for multiple degradations. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 3262–3271 (2018) 2



18 Z. Fang et al.

52. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using
very deep residual channel attention networks. In: Proceedings of the European
conference on computer vision (ECCV). pp. 286–301 (2018) 1

53. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image
super-resolution. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 2472–2481 (2018) 1


	Uncertainty Learning in Kernel Estimation for Multi-Stage Blind Image Super-Resolution

