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Abstract. Pan-sharpening aims to generate high-resolution multi-spectral
(MS) images by fusing PAN images and low-resolution MS images. Despite
its great advances, most existing pan-sharpening methods only work in
the spatial domain and rarely explore the potential solutions in the fre-
quency domain. In this paper, we first attempt to address pan-sharpening
in both spatial and frequency domains and propose a Spatial-Frequency
Information Integration Network, dubbed as SFIIN. To implement SFIIN,
we devise a core building module tailored with pan-sharpening, consisting
of three key components: spatial-domain information branch, frequency-
domain information branch, and dual domain interaction. To be specific,
the first employs the standard convolution to integrate the local informa-
tion of two modalities of PAN and MS images in the spatial domain, while
the second adopts deep Fourier transformation to achieve the image-wide
receptive field for exploring global contextual information. Followed by,
the third is responsible for facilitating the information flow and learning
the complementary representation. We conduct extensive experiments to
validate the effectiveness of the proposed network and demonstrate the
favorable performance against other state-of-the-art methods.
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1 Introduction

Pan-sharpening is the process of super-resolving the low-resolution (LR) multi-
spectral (MS) images in the spatial domain to generate the expected high-
resolution (HR) MS images, conditioning on the paired high-resolution PAN
images. In other words, pan-sharpening is essentially a PAN-guided MS image
super-resolution problem by learning the non-linear mapping between low- and
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Fig. 1. The frequency domain analysis of discrete Fourier transform (DFT) of PAN
image, MS image and the corresponding ground truth (GT) where phase and amplitude
are abbreviated as P and A respectively. The middle two columns represent the phase
and amplitude components in Fourier space while the last column shows the absolute
value of the amplitude subtraction among the connected pairs.

high-resolution MS images. Both high-spectral and high-spatial images are desir-
able in the field of remote sensing for a variety of applications such as military
systems, environmental monitoring, and mapping services. However, due to the
limits of hardware devices, such images can hardly be obtained. To this end,
pan-sharpening technique has drawn great attention from both image processing
and remote sensing communities.

Inspired by the success of deep neural networks (DNN) over image processing,
explosive DNN-based pan-sharpening methods [34,12,35,1] have been developed.
The pioneering one refers to PNN [37], which only adapts three-layer convolution
operation to account for the MS pan-sharpening learning motivated by the
representative super-resolution model SRCNN [9]. Since then, more complicated
and deeper architectures have been designed to improve the mapping capability
of pan-sharpening. Despite the remarkable progress, existing pan-sharpening
methods still suffer from the common limitation. All of them only focus on
learning the pan-sharpening function in the spatial domain and rarely explore the
potential solutions of pan-sharpening in the frequency domain, which deserves
more attention in pan-sharpening. However, pan-sharpening is essentially a PAN-
guided MS image super-resolution problem and super-resolution task is tightly
coupled to the frequency domain due to the removal of high frequency information
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during the down-sampling process, illustrated in [14]. Given this observation, we
devote considerable effort to pan-sharpening in frequency domain.

Our motivation. As shown in Figure 1, we conduct the comprehensive
frequency analysis of pan-sharpening by revisiting the properties of phase and
amplitude components via discrete Fourier transformation and deepening into
their difference of amplitude components. Targeting at pan-sharpening, there
are two observations in frequency domain: 1) The phase of PAN is more similar
with the phase of GT than that of MS, which is consistent with the spatial
observation that PAN has more detailed textures than MS images. As well
recognized, the phase component of the Fourier transformation characterises the
structure information. It is therefore natural to leverage the phase of PAN to
support that of MS for approximating the phase of GT; 2) In the last column, it
is noted that the amplitude difference of PAN and GT lies in low frequency while
the amplitude difference of MS and GT lies in both low and high frequency. We
can deduce that compared with GT, the missing frequency information of MS
can be borrowed from that of PAN. In short, the frequency domain provides the
more powerful tool to analyze and observe the degradation of pan-sharpening and
it motivates us to explore the potential solution of pan-sharpening in both space
and frequency domains. Besides, motivated by spectral convolution theorem [10],
we note that learning in frequency information allows the image-wide receptive
field that models the global contextual information. Therefore, leveraging the
global frequency information complements the local information by pixel values in
spatial domain with boosting the information representation and model capability.

Based on above analysis, we introduce a novel perspective for pan-sharpening
in this paper. Specifically, we first attempt to address pan-sharpening in both
spatial-frequency domain and propose a Spatial-Frequency Information Integra-
tion Network, dubbed as SFIIN. To implement SFIIN, the fundamental building
module called SFIB is devised, which consists of three key components: spatial-
domain information branch, frequency-domain information branch and dual
domain information interaction. The spatial branch employs the ordinary convo-
lution to exploit the local information of two modalities of PAN and MS images
in spatial domain while the frequency branch is responsible for extracting and
transforming the global frequency information via deep Fourier transformation
over amplitude and phase components in frequency domain. Motivated by spec-
tral convolution theorem, we argue that the frequency information branch allows
the image-wide receptive field that models the global contextual information,
thus boosting the model capability. Followed by, the dual domain information
interaction is performed to facilitate the information flow and learn the comple-
mentary representation in spatial and frequency domain. We conduct extensive
experiments to analyze the effectiveness of the proposed network and demonstrate
the favorable performance against state-of-the-art methods qualitatively and
quantitatively while generalizing well to real-world scenes.

In summary, the contributions of this work are as follows:

– To the best of our knowledge, this is the first attempt to explore the potential
solution of pan-sharpening in both spatial and frequency domain. In this



4 M. Zhou et al.

paper, a Spatial-Frequency Information Integration Network is proposed and
substantially improves the Pan-sharping performance.

– We devise a core building module tailored with pan-sharpening, consisting
of three key components: spatial domain information branch, frequency
domain information one and dual domain information interaction. It enables
the local spatial information and global frequency information to learn the
complementary representation, thus boosting the model capability.

– Extensive experiments over different satellite datasets demonstrate that
our proposed method performs the best qualitative and quantitative while
generalizing well to real-world full-resolution scenes.

Fig. 2. The framework of our proposed pan-sharpening network. The network is equipped
with the core building module SFIB which is tailored with pan-sharpening and consists
of three key components: spatial domain information S, frequency domain information
F and dual domain interaction DI. Therefore, it is capable of effectively exploring the
space and frequency domain information of MS and PAN images. In addition, we design
the new loss function in both spatial and frequency domain to better optimize the
proposed network.

2 Related work

2.1 Traditional pan-sharpening methods

Component Substitution (CS), Multi-resolution Analysis (MRA), and Varia-
tional Optimization (VO) are the three categories under which traditional pan-
sharpening techniques are categorized [39,40]. The principal component analysis
(PCA) methods [29,38], Brovey transforms [17], and the Gram-Schmidt (GS)
orthogonalization approach [31] are the most used CS techniques. Researchers
have also suggested various enhancements to the approaches mentioned above,
such as the nonlinear IHS (NIHS) method [15], which reduces the spectrum
distortion of IHS, and the GSA method, which has adaptive capabilities for the
GS method [2]. These CS algorithms are quite quick to calculate, however the
artifacts that are produced in the photos are quite common. When sharpening
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MS images, MRA approaches produce less spectral distortion than CS methods.
Decimated wavelet transform (DWT), high-pass filter fusion (HPF), indusion
method [28], Laplacian pyramid (LP) [42], and atrous wavelet transform (ATWT)
are examples of common MRA techniques. The first variational method, P+XS
pan-sharpening approach [4], makes the assumption that PAN images are created
by linearly combining different bands of HRMS images, while upsampled low
resolution multi-spectral (LRMS) images are created from fuzzy HRMS images.
The pan-sharpening task is then subjected to a variety of constraints, including
the dynamic gradient sparsity property (SIRF) [8], the local gradient constraint
(LGC) [11], the group low-rank constraint for texture similarity (ADMM) [40], and
others. These numerous priors and restrictions, which call for manual parameter
setup, can only imperfectly reflect the images’ restricted structural relationships,
which can also lead to degradation.

2.2 CNN-based pan-sharpening methods

Convolutional neural networks (CNN), which have strong nonlinear fitting and
feature extraction capabilities, have rapidly developed in computer vision and
have been frequently used in hyperspectral images [27,44,13,18,7,25,23,24,26] and
remote sensing images [49,55,58,50,59,57,56]. Recently, a number of CNN-based
techniques have been proposed to support the fusion quality of pan-sharpening
[36,47,54]. For instance, Masi et al. [37] are the first to apply CNN to address
the problem of pan-sharpening. Even though the structure is straightforward,
the results are far superior to those of conventional techniques. Then, Yang et al.
[51] then used resblock in [20] to create a deeper convolutional network. In the
meantime, Yuan et al. [53] added the multi-scale module into the fundamental
CNN design. Later, Cai et al. [5] and Wu et al. [45] had a similar idea: continuously
introducing images of various scales into the backbone network. The two methods
differ in that the former uses PAN images and the latter MS images. A few
model-driven CNN models with obvious physical meaning have recently surfaced.
The fundamental concept is to create optimization issues for computer vision
tasks using previous knowledge, and then to develop the optimization algorithms
into deep neural networks. For instance, to build the unfolding structure for
pan-sharpening, Xu et al. [48] constructed two distinct priors of PAN and MS.
The model-driven approaches are comprehensible and have obvious physical
significance. CNN was updated with an alternative optimization approach by
Cao et al. [6]. Variational optimization and deep residual CNN were integrated
by Tian et al. [41] and Wu et al. [46].

3 Method

In this section, we will first revisit the properties of Fourier Transformation of
images and then present an overview of the proposed pan-sharpening network,
illustrated in Figure 2 and Figure 3. We further provide details of the fundamental
building block of our method, containing three key elements: (a) frequency domain
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Fig. 3. The detailed flowchart of the proposed core building module SFIB, consisting of
three components: frequency domain branch, spatial domain branch and dual domain
interaction.

information branch for extracting the global frequency information representations
via DFT, (b) spatial domain information branch to explore the local information
via ordinary convolution, (c) dual domain information interaction to facilitate
the information flow and learn the complementary representation. Finally, we
deepen into the newly-designed loss functions.

3.1 Fourier transformation of Images

As recognized, the Fourier transform is widely used to analyze the frequency
content of images. For the images of multiple color channels, the Fourier transform
is calculated and performed for each channel separately. For simplicity, we
eliminate the notation of channels in formulas. Given a image x ∈ RH×W×C ,
the Fourier transform F converts it to Fourier space as the complex component
F(x), which is expressed as:

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v), (1)

F−1(x) defines the inverse Fourier transform accordingly. Both the Fourier
transform and its inverse procedure can be efficiently implemented with the FFT
algorithm in [10]. The amplitude component A(x)(u, v) and phase component
P(x)(u, v) are expressed as:

A(x)(u, v)) =
√
R2(x)(u, v)) + I2(x)(u, v)),

P(x)(u, v)) = arctan[
I(x)(u, v))

R(x)(u, v))
],

(2)
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where R(x) and I(x) represent the real and imaginary part of F(x) respectively.
In our method, the Fourier transformation and inverse procedure is computed
independently on each channel of feature maps.

Targeting at pan-sharpening, we employ Fourier transformation to conduct
the detailed frequency analysis of MS, PAN and GT images by revisiting the
properties of phase and amplitude components, as shown in Figure 1. There are
two observations in frequency domain: 1) The phase of PAN has more similar
appearance with that of GT than that of MS. This claim also keeps consistent
with the spatial observation that PAN has the more detailed textures than MS
images. With the well-known properties of the Fourier transformation, the phase
component characterises the structure information. 2) The amplitude difference
of PAN and GT lies in low frequency while the amplitude difference of MS and
GT lies in both low and high frequency. We can deduce that compared with
GT, the missing frequency information of MS can be borrowed from that of
PAN to restore that of GT. It motivates us to explore the potential solution of
pan-sharpening in both spatial and frequency domains.

3.2 Framework

Structure flow. Based on above analysis, we introduce a novel spatial-frequency
information integration-based perspective for pan-sharpening, detailed in Figure
2. Given PAN image P ∈ RH×W×1 and MS image L ∈ RH/r×W/r×C , the network
first applies the convolution layer to project the r-times L by Bibubic upsampling
into shallow feature representations while P is progressively fed into multiple
cascaded convolution to extract the series of informative features. Next, the
obtained modality-aware feature maps of MS and PAN are jointly pass through
N number of the core building module SFIB with space-frequency information
extraction and integration, yielding the effective feature representation. Next, we
apply a convolution layer to transform the collected features from all N SFIBs
back to image space and then combine with the input L as the output image.

Supervision flow. Orthogonal to structure design, we also introduce a
newly-designed loss functions to enable the network for better optimization, thus
reconstructing the more pleasing results in both spatial and frequency domains.
As shown in Figure 2, it consists of two parts: spatial domain loss and frequency
domain loss. In contrast to existing methods that usually adopt pixel losses
with local guidance in the spatial domain, we additionally propose the frequency
domain supervision loss via Fourier transformation that is calculated on the
global frequency components. Motivated by spectral convolution theorem, direct
emphasis on the frequency content is capable of better reconstructing the global
information, thus improving the pan-sharpening performance.

3.3 The core building block

As shown in Figure 3, the fundamental building block of our method contains
three key elements: (a) frequency domain information branch for extracting
the global frequency information representation via deep Fourier transform, (b)
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spatial domain information branch to explore the local information via ordinary
convolution, (c) dual domain information interaction to facilitate the information
flow and learn the complementary representation.

Frequency domain information branch. In the frequency branch, we
first adopt Fourier transform to convert the modality-aware features of MS and
PAN images and generate the amplitude and phase components. Suppose that
the features of MS and PAN images denote as Fp and Fms, the corresponding
Fourier transform is expressed as

A(Fp),P(Fp) = F(Fp), (3)

A(Fms),P(Fms) = F(Fms), (4)

where A(.) and P(.) indicate the amplitude and phase respectively. Then we uses
two groups of independent operation OA(·) and OP (·), consisting of 1× 1 convo-
lution and Relu activation function to integrate the corresponding amplitude and
phase components for providing the enhanced global frequency representations

A(F ) = OA(Cat[A(Fp),A(Fms)]), (5)

P(F ) = OP(Cat[P(Fp),P(Fms)]), (6)

where Cat indicates the concatenation operation by channel dimension. Next, we
apply the inverse DFT to transform the fused amplitude and phase components
of A(F ) and P(F ) back to spatial domain

Ffre = F−1(A(F ),P(F )). (7)

According to spectral convolution theorem in Fourier theory, processing informa-
tion of Fourier space is capable of capturing the global frequency representation in
frequency domain. In short, the frequency branch generates the global information
representation Ffre.

Spatial domain information branch. In contrast, the spatial branch first
adopts a residual block [21] with 3× 3 convolution layers to integrate information
of MS and PAN features and generate the space representation Fspa in spatial
domain. It is well recognized that the ordinary convolution focuses on learning
local representations in spatial domain. In short, the spatial branch provides the
local information representation Fspa. Based on the above spatial and frequency
domain branches, we note that the generated information representation from
both branches is complementary. Therefore, interacting and integrating them is
beneficial to compensate each other and provide more informative representation.

Dual domain information interaction. The schematic of Dual domain
information interaction mainly consists of information compensation and in-
formation integration part. (a) information compensation: Owing the the
complementary property of the frequency and spatial representation Ffre and
Fspa, this motivates us to extract the distinguished components of local spatial
information Fspa to compensate the global frequency information Ffre. Therefore,
we first calculate the absolute difference among them and then employ the spatial
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attention mechanism SA to exploit the inter-spatial dependencies. It outputs the
spatial attention map and multiplies it over Fspa to select the more informative
content, impose it over global frequency representation Ffre to the enriched
representation Fgl

Fgl = Ffre + SA(Ffre − Fspa)× Fspa. (8)

(b) information integration: When obtaining the enhanced global frequency
feature Fgl, we combine it with the local feature Fspa and then perform the
channel attention to exploit the inter-channel relationship, thus facilitating the
complementary learning and providing the more informative feature representa-
tion Ffuse. Finally, the residual learning mechanism is adopted by adding the
input MS feature Fms to the fused one

Ffuse = CA([Fgl, Fspa]) + Fms. (9)

Equipped with the core building block, our proposed network is capable of
modeling and integrating the global and local information representation by
exploring the potential of spatial and frequency dual domains.

3.4 Loss function

Let HL and GT denote the network output and the corresponding ground truth
respectively. To generate the pleasing pan-sharpening results, we propose a joint
spatial-frequency domain loss for supervising the network training. In spatial
domain, we adopt the L1 loss

Lspa = ∥HL −GT∥1 . (10)

In frequency domain, we first employ the DFT to convert HL and GT into
Fourier space where the amplitude and phase components are calculated. Then,
the L1-norms of amplitude difference and phase difference between HL and GT
are summed to produce the total frequency loss

Lfre = ∥A(HL)−A(GT )∥1 + ∥P(HL)− P(GT )∥1 . (11)

Finally, the overall loss function is formulated as follows

L = Lspa + λLfre, (12)

where λ is weight factor and set to 0.1 empirically.

4 Experiments

4.1 Baseline methods

To demonstrate the efficacy of our proposed method, we compare its performance
to that of several representative pansharpening methods: 1) five cutting-edge deep-
learning methods, such as PNN [37], PANNET [51], MSDCNN [52], SRPPNN
[5], and GPPNN [48]; 2) five promising traditional methods, including SFIM [33],
Brovey [16], GS [30], IHS [19], and GFPCA [32].
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4.2 Implementation details

On a personal computer with a single NVIDIA GeForce GTX 2080Ti GPU,
the PyTorch framework is used to construct each of our networks. During the
training phase, the Adam optimizer will optimize them using four-epoch batches
over a total of 2000 iterations. 8× 10−4 yields the initial value for the learning
rate. After 200 epochs, the pace of learning will begin to decrease by a factor
of two. Due to the lack of pan-sharpened ground-truth images, we generate the
training set by employing the Wald protocol tool [43], as was done in previous
studies. Specifically, given the MS image H ∈ RM×N×C and the PAN image
P ∈ RrM×rN×b, both of them are downsampled with ratio r, and the resulting
images are denoted by L ∈ RM/r×N/r×C and p ∈ RM×N×b respectively. In the
training set, L and p are regarded as the inputs, whereas H is the ground truth.

We have chosen to assess the worldview II, worldview III, and GaoFen2
satellite image datasets for this study. The PAN images for each database are
cropped into patches measuring 128× 128 pixels, while the corresponding MS
patches are 32× 32 pixels. Image quality assessment (IQA) metrics such as the
relative dimensionless global error in synthesis (ERGAS) [3], the peak signal-
to-noise ratio (PSNR), the structural similarity (SSIM) and SAM [22], are used
for performance evaluation. These measures are frequently employed in the
pan-sharpening field.

To compare the generalization of models, we create an additional real-world
full-resolution dataset of 200 samples over the newly-selected GaoFen2 satellite
for evaluation. Specifically, the additional dataset is generated when the full-
resolution setting is used to generate the PAN and MS images as aforementioned
manner without performing the down-sampling with PAN images of 32 × 32
and MS images of 128 × 128 resolutions. Due to the lack of ground-truth MS
images, we measure the model’s performance using the three commonly-used
IQA metrics: the spectral distortion index Dλ, the spatial distortion index DS ,
and the quality without reference (QNR).

4.3 Comparison with state-of-the-art methods

Evaluation on reduced-resolution scene. Table 1 displays the assessment
metrics for three datasets, with the red-highlighted values denoting the best
results. On three satellite datasets, it is evidently discovered that our technique
outperforms other comparison algorithms in all assessment measures. Specifically,
on the WorldView-II, GaoFen2, and WorldView-III datasets, our technique
improves PSNR by 0.27 dB, 0.28 dB, and 0.16 dB over the second-best findings,
respectively. Similar gains may be observed in the other parameters in addition
to PSNR. We greatly outperform the most recent deep learning-based algorithms,
demonstrating the viability of the suggested approach.

We also compare the visual results to demonstrate the efficacy of our method-
ology using typical samples from the WorldView-II and GaoFen2 datasets in
Figure 4 and Figure 5, respectively. The MSE residual between the pan-sharpened
findings and the actual data are shown by the images in the last row. Our model
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Table 1. Quantitative comparison. The best values are highlighted by the red bold.
The up or down arrow indicates higher or lower metric corresponding to better images.

Method
worldview II GaoFen2 worldview III

PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓ PSNR↑ SSIM↑ SAM↓ EGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 36.9060 0.8882 0.0318 1.7398 21.8212 0.5457 0.1208 8.9730

Brovey 35.8646 0.9216 0.0403 1.8238 37.7974 0.9026 0.0218 1.372 22.5060 0.5466 0.1159 8.2331

GS 35.6376 0.9176 0.0423 1.8774 37.2260 0.9034 0.0309 1.6736 22.5608 0.5470 0.1217 8.2433

IHS 35.2962 0.9027 0.0461 2.0278 38.1754 0.9100 0.0243 1.5336 22.5579 0.5354 0.1266 8.3616

GFPCA 34.5581 0.9038 0.0488 2.1411 37.9443 0.9204 0.0314 1.5604 22.3344 0.4826 0.1294 8.3964

PNN 40.7550 0.9624 0.0259 1.0646 43.1208 0.9704 0.0172 0.8528 29.9418 0.9121 0.0824 3.3206

PANNET 40.8176 0.9626 0.0257 1.0557 43.0659 0.9685 0.0178 0.8577 29.6840 0.9072 0.0851 3.4263

MSDCNN 41.3355 0.9664 0.0242 0.9940 45.6874 0.9827 0.0135 0.6389 30.3038 0.9184 0.0782 3.1884

SRPPNN 41.4538 0.9679 0.0233 0.9899 47.1998 0.9877 0.0106 0.5586 30.4346 0.9202 0.0770 3.1553

GPPNN 41.1622 0.9684 0.0244 1.0315 44.2145 0.9815 0.0137 0.7361 30.1785 0.9175 0.0776 3.2593

Ours 41.7244 0.9725 0.0220 0.9506 47.4712 0.9901 0.0102 0.5462 30.5971 0.9236 0.0741 3.0798

Table 2. Evaluation on the real-world full-resolution scenes from GaoFen2 dataset. The
best results are highlighted in bold.

Metrics SFIM GS Brovey IHS GFPCA PNN PANNET MSDCNN SRPPNN GPPNN Ours

Dλ↓ 0.0822 0.0696 0.1378 0.0770 0.0914 0.0746 0.0737 0.0734 0.0767 0.0782 0.0681

Ds↓ 0.1087 0.2456 0.2605 0.2985 0.1635 0.1164 0.1224 0.1151 0.1162 0.1253 0.1119

QNR↑ 0.8214 0.7025 0.6390 0.6485 0.7615 0.8191 0.8143 0.8251 0.8173 0.8073 0.8466

exhibits very slight spectral and spatial aberrations as compared to other com-
peting techniques. It is obvious to draw from the examination of MSE maps.
Regarding the MSE residues, it has been observed that our suggested tech-
nique is more accurate than previous comparison methods. We can thus state
with confidence that our approach outperforms other competing pan-sharpening
methods.

Evaluation on full-resolution scene We apply a pre-trained model created
using GaoFen2 data to some unused full-resolution GaoFen2 satellite datasets in
order to evaluate the performance of our network in the full resolution situation
and the generalizability of the model. Table 2 provides an overview of the
experimental findings for all approaches. Table 2 shows that our devised technique
performs almost at the top of all the indices, which suggests that it has superior
generalization capacity than other conventional and deep learning-based methods.

4.4 Parameter numbers vs model performance

In order to conduct a more in-depth analysis of the methods, we will analyze the
complexity of the suggested technique by looking at the number of floating-point
operations (FLOPs) and the number of parameters (by 10 million) in Table
3. Compared to other deep learning-based methods, our network achieves the
highest performance with the fewer parameters and storage space.
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Fig. 4. The visual comparisons between other pan-sharpening methods and our method
on WorldView-II satellite.

Table 3. Comparisons of FLOPs (G) and parameters number (M). ’Param’ denotes
parameters number.

PNN PANNET MSDCNN SRPPNN GPPNN Ours

Param 0.0689 0.0688 0.2390 1.7114 0.1198 0.0871

FLOPs 1.1289 1.1275 3.9158 21.1059 1.3967 1.2558

4.5 Ablation experiments

We have performed thorough ablation investigations using the WorldView-II
satellite dataset of the Pan-sharpening task to examine the contribution of the
created modules in our suggested network. The two fundamental designs are,
more precisely, the frequency information branch in the core building module and
the frequency loss in the optimization function. Additionally, research is done
about the quantity of fundamental building modules used in the network. The
commonly used IQA measures, such as ERGAS [3], PSNR, SSIM, SCC, Q index,
SAM [22], Dλ, DS , and QNR, are utilized to evaluate all of the experimental
data.

The number of the core building modules. We experiment the suggested
network with various numbers of the core building module to examine the
influence of the number of the core building modules. Table 4 gives the equivalent
quantitative figures K comparison from 1 to 5. It is evident from the findings in
Table 4 that as the number of IQAs rises, the model performance has significantly
improved at the expense of computation for nearly all of them. Performance and
computational complexity were balanced in this work by using the default option
of K = 5.

The frequency information branch. To assess the influence of the fre-
quency information, we merely substitute the spatial information branch in the
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Ground TruthGPPNN OursSRPPNNMSDCNNPANNet

PAN PCA SFIM GFPCAMS PNN

PCA SFIM GFPCA PNN GPPNN OursSRPPNNMSDCNNPANNet

Fig. 5. The visual comparisons between other pan-sharpening methods and our method
on GaoFen2 satellite.

Table 4. Average performance comparison on the WorldView-II datasets as the number
of SFIB increases. The best performance is shown in red bold.

Number (K) PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q ↑ Dλ ↓ DS ↓ QNR ↑
1 41.1343 0.9644 0.0257 1.0218 0.9651 0.7548 0.0639 0.1188 0.8249

2 41.2566 0.9650 0.0249 1.0126 0.9661 0.7554 0.0635 0.1176 0.8264

3 41.4781 0.9677 0.0242 0.9841 0.9696 0.7681 0.0627 0.1170 0.8276

4 41.6287 0.9690 0.0226 0.9527 0.9711 0.7699 0.0618 0.1168 0.8286

5 41.7244 0.9725 0.0220 0.9506 0.9720 0.7751 0.0613 0.1167 0.8290

core building module with the frequency information branch in the first experi-
ment of Table 5. The results in Table 5 show that eliminating it will impair the
performance of our network. The global frequency information modeling will be
broken if it is deleted, which would worsen the pan-sharpening results.

The frequency loss. The newly developed frequency loss intends to clearly
highlight the optimization of global frequency information. We erase it in the
second trial of Table 5 to test its efficacy. The findings in Table 5 show that
deleting it would significantly worsen all metrics, demonstrating its importance
to our network.

4.6 Visualization of feature maps in dual domains

To verify the effect of the designed dual domain information integration mech-
anism, we deepen into the feature maps of Fms, Ffre, Fspa, Ffre − Fspa, Fgl,
Ffuse. As illustrated in section 3.3, the frequency feature Ffre and the spatial
feature Fspa are complementary. In Figure 6, it is clearly seen that the frequency
feature Ffre characterizes the global information while the spatial feature Fspa
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Table 5. Ablation studies comparison on the WorldView-II datasets. The best perfor-
mance is shown in bold.

Config FSB FSF PSNR↑ SSIM↑ SAM↓ ERGAS↓ SCC↑ Q ↑ Dλ ↓ DS ↓ QNR ↑
(I) # ! 41.2664 0.9651 0.0253 1.0117 0.9658 0.7553 0.0633 0.1181 0.8260

(II) ! # 41.6766 0.9698 0.0227 0.9524 0.9747 0.7746 0.0621 0.1174 0.8267

(III) ! ! 41.7244 0.9725 0.0220 0.9506 0.9720 0.7751 0.0613 0.1167 0.8290

Fig. 6. The Visualization of feature maps in dual domains.

focuses on the local content. With integrating them, the response of Ffuse is
more informative. It demonstrates the powerful capability of the core module.

5 Conclusion

In this paper, we propose a spatial-frequency information integration network for
pan-sharpening. To implement the network, we devise a core building module
tailored with pan-sharpening to learn the complementary information representa-
tion of spatial and frequency domains, thus boosting the model capability. To the
best of our knowledge, this is the first attempt to explore the potential solution of
pan-sharpening in both spatial-frequency domain. Extensive experiments demon-
strate that the proposed network performs favorably against state-of-the-art
methods while generalizing well to real-world full-resolution scenes.
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