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Abstract. Recently, Deep Neural Networks (DNNs) are utilized to re-
duce the bandwidth and improve the quality of Internet video delivery.
Existing methods train corresponding content-aware super-resolution (SR)
model for each video chunk on the server, and stream low-resolution
(LR) video chunks along with SR models to the client. Although they
achieve promising results, the huge computational cost of network train-
ing limits their practical applications. In this paper, we present a method
named Efficient Meta-Tuning (EMT) to reduce the computational cost.
Instead of training from scratch, EMT adapts a meta-learned model to
the first chunk of the input video. As for the following chunks, it fine-
tunes the partial parameters selected by gradient masking of previous
adapted model. In order to achieve further speedup for EMT, we pro-
pose a novel sampling strategy to extract the most challenging patches
from video frames. The proposed strategy is highly efficient and brings
negligible additional cost. Our method significantly reduces the compu-
tational cost and achieves even better performance, paving the way for
applying neural video delivery techniques to practical applications. We
conduct extensive experiments based on various efficient SR architec-
tures, including ESPCN, SRCNN, FSRCNN and EDSR-1, demonstrat-
ing the generalization ability of our work. The code is released at https:
//github.com/Neural-video-delivery/EMT-Pytorch-ECCV2022.
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1 Introduction

With the popularity of High-Definition (HD) display devices, high-resolution
videos are strongly demanded by end users. This brings a huge burden to the
video delivery infrastructure. As the development of deep learning, several recent
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works are proposed to reduce the bandwidth of video delivery [14,29,19,13].
The motivation of these works is to stream both the low-resolution videos and
content-aware SR models from servers to clients. The clients run the inference
of SR models to super-resolve the LR videos. In this manner, high-resolution
videos can be delivered under limited Internet bandwidth.

In contrast to existing approaches on Single Image Super-Resolution (SISR)
[23,8,18,31,15] and Video Super-Resolution (VSR) [2,25,3,4], content-aware mod-
els utilize the overfitting property of DNNs to achieve higher SR performance.
To be more specific, a video is divided into several video chunks, and a corre-
sponding SR model is trained for each chunk. This type of DNN-based video
delivery system can achieve better performance even compared with commercial
techniques like WebRTC [14].

Although neural video delivery is a promising technique, the huge computa-
tional cost of training content-aware SR models limits its practical applications.
For example, existing methods [19,29] uniformly divide a 45s/1080P/30FPS
video into 5-second chunks, and train the SR models for all chunks. However,
even with efficient SR architectures like ESPCN [23], it still takes about 10.2
hours to train the content-aware SR models on a high-end NVIDIA V100 GPU.
Therefore, reducing the computational cost of network training is crucial for
neural video delivery.

In order to pave the way for practical applications, we propose Efficient Meta-
Tuning (EMT) in this paper. Instead of training from scratch [19,29], EMT
sequentially adapts a meta-learned model to the video chunks, delivering all the
content-aware SR models. Compared with random initialization or pre-trained
initialization, a meta-learned model can transfer better to different video chunks.
We collect a large-scale dataset of diverse video chunks and take each chunk as
one specific task. MAML [9] is adopted to train the meta-learned model, whose
parameters are shared by all content-aware SR models. For the chunks of the
input video, EMT adapts the meta-learned model to the first chunk. As for the
following chunks, it can fine-tune the partial parameters of the previous adapted
model due to the temporal consistency between neighboring chunks. The partial
parameters are selected by gradient masking, which masks a fraction of most
significant parameters after a few gradient updates. Since EMT sequentially
adapts the meta-learned model, each chunk simply needs to store the selected
partial parameters. The current content-aware SR model can be constructed by
updating the partial parameters of the previous model. This is important to
compress all the models into one shared model and a few private parameters.
Compared with CaFM [19], our method is more compact since the meta-learned
model is shared by all chunks, while CaFM can only share one model for chunks
within the input video.

To further reduce the computational cost, we propose a novel sampling strat-
egy for EMT, which selects the most challenging patches from video frames. Our
motivation is that previous adapted SR model already possesses the ability to
super-resolve current chunk due to temporal consistency. Therefore, the train-
ing efforts of EMT should focus on challenging patches, which cannot be well
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handled by the previous model. However, performing the evaluation of previous
model on all patches of current chunk is time-consuming and brings additional
cost. Inspired by video codec, we extract the I-frames from the input video and
only perform the evaluation on I-frames. The positions of challenging patches
are extracted based on I-frames and propagated to other frames. Since I-frame is
very sparse within a video, the computational cost of the evaluation is negligible.
On the other side, as the frames between two I-frames are temporally consis-
tent, the propagated positions can extract reasonable patches on the in-between
frames. Our sampling strategy is simple yet effective and can further reduce the
computational cost of EMT.

Our contributions can be concluded as follows:

– We propose Efficient Meta-Tuning (EMT) for neural video delivery, signifi-
cantly reducing the cost of training content-aware SR models and achieving
even better performance.

– We present a novel challenging patch sampling strategy, which further re-
duces the cost of EMT. Our strategy improves the convergence of EMT with
negligible additional cost.

– We conduct detailed experiments based on various efficient SR architectures
to evaluate the advantage and generalization of our method.

2 Related work

DNN-based Image Super-Resolution SRCNN [8] is the first work that in-
troduces DNNs to SR task. Their method consists of three stages, namely fea-
ture extraction, non-linear mapping and image reconstruction. With the rapid
advance of DNN, plenty of methods are proposed to improve the performance
of SISR following the pipeline of SRCNN. For example, VDSR [15] adopts a
very deep DNN to predict the image residual instead of HR image. Motivated
by ResNet [10], SRResNet [16] introduces Residual Block to the network and
improves the SR performance. EDSR [18] modifies the structure of SRResNet
by removing the Batch Normalization layer [11], further boosting the SR per-
formance. RCAN [31] introduces the attention mechanism to the networks and
presents deeper DNNs for SR. However, RCAN is computationally complicated,
which limits its practical usage. To reduce the computational cost, many effi-
cient methods are proposed for SR. ESPCN [23] uses LR image as input and
up-samples the feature map by the pixel-shuffle layer to obtain the HR output.
LAPAR [17] proposes a method based on linearly-assembled adaptive regression
network. All of those methods are external methods, which train one model on
large-scale image databases like DIV2K [1] and test on given input images. How-
ever, external methods fail to explore the overfitting property of DNNs, which
can significantly boost the performance for practical video delivery system.

DNN-based Video Super-ResolutionDifferent from image super-resolution,
video super-resolution can additionally exploit the neighboring frames for SR.
Therefore, temporal alignment plays an essential role and should be thoroughly
considered. VESPCN [2] first predicts the motions between neighboring frames,
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and then performs image warping before feeding neighboring frames into the SR
network. However, it is difficult to accurately estimate the optical flow. TOFlow
[27] proposes a task-oriented flow designed for specific video processing tasks.
They jointly train the motion estimation component and video processing com-
ponent in a self-supervised manner. DUF [12] solves the problem of accurate
explicit motion compensation by training a network to generate dynamic up-
sampling filters and a residual image. In order to reduce the computational cost
of VSR, FRVSR [22] presents a recurrent framework that uses the previous SR
result to super-resolve the following frame. Their recurrent framework naturally
ensures temporally consistency and reduces the computational cost by warping
only one image in each step. All these VSR approaches also belong to external
methods that fail to explore the overfitting property of DNN. Apart from this,
handling temporal alignment brings huge additional computational and storage
costs, which limits their practical applications in resource-limited devices like
mobile phone.

Neural Video Delivery NAS [29] is a promising Internet video delivery
framework that integrates DNN for quality enhancement. It can solve the video
quality degradation problem under limited Internet bandwidth. NAS can en-
hance the average Quality of Experience (QoE) by 43.08% using the same band-
width budget, or saving 17.13% of bandwidth while providing the same user
QoE. The main idea is to leverage DNN’s overfitting property and use the train-
ing accuracy to deliver high SR performance. Many following works are proposed
to apply the idea of NAS to different scenarios, like UAV video streaming [26],
live streaming [14], 360 video streaming [7,5], volumetric video streaming [30],
and mobile video streaming [28], etc. Recent methods [19,13] propose to fur-
ther reduce the bandwidth budget by sharing most of the parameters over video
chunks. Therefore, only a small portion of private parameters are streamed for
each video chunk. However, they still need huge computational cost for network
training and fail to study the scene conversion for constructing optimal video
chunks.

3 Method

3.1 Overview

In this section, we present our method to significantly accelerate the training
of content-aware SR models. Our method adapts the meta-learned model to
the first chunk of the video, and sequentially adapts partial parameters of the
previous model to the following chunks. The partial parameters are selected by
gradient masking and the challenging patches are extracted for adaption. The
pipeline of our method is illustrated in Fig. 1. We first introduce Efficient Meta-
Tuning (EMT) to sequentially deliver the models from a meta-learned model in
Sec. 3.2. Then we propose a novel challenging patch sampling strategy to further
accelerate EMT in Sec. 3.3.
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Fig. 1: The pipeline of our method. CPS and GM indicate challenging patch
sampling and gradient masking respectively. The selected challenging patches
are used to mask the parameters and fine-tune the models.

3.2 Efficient Meta-Tuning

Following former works [19,29], we uniformly divide the input video into chunks,
and train the corresponding content-aware SR model for each chunk. [29] pro-
poses to apply deep super-resolution networks to video delivery by training one
model for each chunk from scratch. [19] presents a method to compress all the
models by one shared model and a few private parameters. However, both meth-
ods train the content-aware SR models from scratch, resulting in huge compu-
tational cost. Since neighboring chunks are temporally consistent, fine-tuning is
much more reasonable compared with training from scratch. Precisely, finding
a generic initial model that can not only generalize over diverse video chunks
but also adapt rapidly to any specific video chunk, plays a key role in fine-
tuning. In order to obtain a better initialization, we adopt MAML [9] to train a
meta-learned model. Although MAML has been applied to Zero-Shot SR [21,24]
and video frame interpolation [6], it has never been studied in neural video de-
livery to the best of our knowledge. Compared with random initialization or
pretrained initialization, a meta-learned model has better transferability. To ob-
tain the content-aware SR models, we sequentially fine-tune partial parameters
of the previous model. In contrast to fine-tuning the whole model, our method
can compress the parameters of all models into one shared meta-learned model
and a few partial parameters.

Meta-Learned Initialization We take one chunk as a specific task and
aim to learn a SR model that can adapt to various chunks. Specifically, we
first pretrain the SR model fθ on DIV2K [1], then we utilize meta learning to
optimize the pretrained parameters as illustrated by Alg. 1. This step enables
the SR model to converge to a transferable point, which can be rapidly fine-
tuned. In order to build a variety of tasks, we collect several video sequences
and uniformly divide them into video chunks. Totally, we obtain N chunks for
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Algorithm 1 Meta-Learned Initialization

Input: Initialized SR model fθ, meta-learning dataset DN

Output: Meta-learned model fm
θ

1: while not done do
2: Sample n tasks Dn from DN

3: for ti ∈ Dn do
4: Sample pairs (IiHR, I

i
LR) from ti

5: Copy fθi from the latest fθ
6: Evaluate training loss according to Eq. 1
7: Update parameters according to Eq. 2
8: end for
9: Calculate Lfθi with respect to ti
10: Update fθ according to Eq. 3
11: end while
12: return Meta-learned model fm

θ

meta-learning, and each chunk is set as the task ti. The collected dataset is
denoted as DN . We apply bicubic downsampling to the frames and generate
LR-HR pairs (IiLR, I

i
HR). Our goal is to optimize fθ according to each LR-HR

pair by minimizing the L1 loss as shown in Eq. 1.

Lf = |fθ(ILR)− IHR|1 (1)

During the inner loop (Line 4-7), we conduct one or more gradient updates
for the task ti in each iteration. The temporary model for task ti is denoted as
fθi. During each inner gradient update, the task-specific parameters are updated
according to Eq. 2, where α is the inner learning rate.

fθi ← fθi − α∇fθiLfθi (2)

As for the outer loop (Line 9-10), we evaluate the loss of fθi on each ti
and sum up the losses of all tasks to update the SR model fθ. For one outer
gradient update, it considers the gradients from all tasks. The outer update can
be formulated as Eq. 3, where β is the outer learning rate.

fθ ← fθ − β∇fθ

∑
i

Lfθi (3)

Partial Model Adaption The meta-learned model fm
θ is shared by all the

video chunks. To obtain the content-aware SR models for the input video, we
adapt the meta-learned model to the first chunk, and sequentially fine-tune the
partial parameters of previous adapted model. Formally, we denote the content-
aware SR model of jth chunk as f j

θ . For the first chunk, we rapidly fine-tune the
meta-learned model fm

θ to obtain the adapted model f1
θ . We use the gradient

masking to select p1% most significant parameters before adapting fm
θ . As for

other chunks, we fine-tune previous model f j−1
θ on jth chunk, delivering the

adapted model f j
θ . We also adopt the gradient masking to select p2% most
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Fig. 2: Illustration of challenging patch sampling. Different colors in PSNR map
represent patch’s difficult levels for previous chunk’s model. ’propagate’ arrow
indicates the propagation of PSNR map from I frame to its in-between frames.

significant parameters before fine-tuning f j−1
θ . It has to be noted that we adopt

different percentages for the first chunk and other chunks in this work. Our
partial model adaption requires much fewer epochs for both the first chunk
and other chunks. Therefore, the computational cost can be greatly reduced
compared with training from scratch under the same performance.

Gradient Masking In order to compress the parameters of content-aware
models, we design a simple yet effective strategy to find the p% most significant
parameters. Given a reference model f , we need to find a fraction of parameters
before fine-tuning f . Specifically, we adopt a few iterations to update f , obtain-
ing a temporal model f̂ . Afterwards, we calculate |θf̂ − θf | and choose the p%

parameters that vary most, delivering the parameter mask M(θf ).
Once we collect the p% most significant parameters, we can fine-tune the

reference model f and simply update the significant parameters. In this manner,
our method only needs to store p% private parameters of the reference model.
When fine-tuning for the first chunk, we choose the meta-learned model fm

θ as
the reference model. For jth chunk of the input video, we choose the previous
adapted model f j−1

θ as the reference model.

3.3 Challenging Patch Sampling

Previous adapted SR model already possesses the ability to super-resolve current
chunk due to the temporal consistency. Thus it can achieve satisfying results on
the majority of regions. However, some hard regions are still challenging for the
previous adapted model. Since SR networks are fine-tuned on sampled LR-HR
patch pairs, we further present a strategy to sample the r% most challenging
patches for EMT. Our strategy is highly efficient and brings negligible additional
cost. Inspired by the video codec, it first locates the positions of challenging
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patches in I-frames, then propagates the positions to in-between frames as shown
in Fig. 2.

Formally, we denote the frames of input video as I1, ..., IT , where T is the
number of frames. The I-frames are denoted as Ik1

, ..., IkM
, where k1, ..., kM

are the indices of M I-frames. We also denote the chunk indices of M I-frames
as c1, ..., cM . In order to localize the challenging patches for Ikm

, we run the
inference of previous adapted model f cm−1

θ to super-resolve the downsampled
I-frame ILR

km
:

ISR
km

= f cm−1
θ (ILR

km
) (4)

We can calculate the PSNR between ISR
km

and Ikm in terms of all possible
patches as illustrated by Fig. 2. The time of calculating the PSNR map for 1080P
frames is 0.1 seconds. Therefore, it is time-consuming to produce PSNR maps
for all frames. For instance, when dealing with a 45-second video, it usually takes
around 135 seconds to generate PSNR maps for all frames. Instead, we localize
the positions of r% (r=20) most challenging patches in Ikm

, and then extract the
patches from frames between Ikm and Ikm+1 according to the coordinates. As the
frames between two I-frames are temporally consistent, the localized positions
at I-frame can also choose reasonable patches on the in-between frames. Since
I-frame is very sparse within a video, the computational cost is negligible. For
a 45-second video, the total time of position localization and patch extraction
is 0.7 seconds. However, the results of EMT using challenging patches are the
same as results using all frames to some extent. In this way, the training efforts
of EMT focus on challenging patches, resulting in faster convergence.

4 Experiments

In this section, we conduct extensive experiments to show the advantages of
our method. The experimental details are given in Sec. 4.1. We first present the
comparison with baseline and codec standards in Sec. 4.2, and then compare
EMT with other neural video delivery methods in Sec. 4.3. We also conduct
comprehensive ablation study to evaluate the contribution of each component
in Sec. 4.4. In order to show the generalization ability, we report results across
different scaling factors and architectures in Sec. 4.5.

4.1 Experimental Details

For meta-learning, we conduct two gradient updates for each individual task
in the inner loop. After updating on all sampled tasks, we conduct one outer
gradient update on the SR model. We randomly select training patches with a
resolution of 144×144 and set mini-batch size as 16∗n, where n is the number of
sampled tasks. Particularly, we set n to 15 and each task consists of 50 frames.
We set inner learning rate α = 0.5e− 5 and outer learning rate β = 1e− 3. We
adopt Adam optimizer with β1 = 0.9, β2 = 0.999, ϵ = 10−8. ESPCN serves as
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the default architecture, x2 is utilized as the default scaling factor and PSNR is
the default metric.

For fine-tuning, we conduct experiments on two video lengths, including 45
seconds and 2 minutes. The batch size is 16 and learning rate is 1e− 4. We set
p1% as 20% and p2% as 1% to compress the parameters as default. We design
three settings of our method, including S, M, and L. S and M settings adopt 0.1
epoch and 3 epochs for fine-tuning respectively. As for L setting, we alter p1%
to 100%. We conduct all the experiments on NVIDIA V100 GPUs.

4.2 Comparison with Baseline and Codec Standards

In this section, we compare our method against the baseline [29] and two codec
standards. The baseline uniformly divides a video into chunks and trains one
SR model for each chunk from scratch with 300 epochs. We denote the baseline
as C1−n. For the two commercial codec standards H.264 and H.265, we use
ffmpeg with libx264 codec and libx265 codec to compress the HR videos to
lower bit-rate while maintaining the resolution. The compressed videos are of
the same storage size as our method (LR videos and SR models). We report
three variants of our method under S, M, and L settings. Under the L setting,
we aim to show the potential of meta-tuning by updating all the parameters for
the first chunk. As shown in Tab. 1, our method achieves better performance
with less time and parameters compared with baseline [29]. Our results with 0.1
epoch already outperform the baseline with 300 epochs. In terms of parameter
compression, given a video with n chunks, we compress all models n ∗ P to
1 ∗ p1%P + (n − 1) ∗ p2%P . In comparison with H.264 and H.265, our results
outperform H.264 and H.265 in most cases as shown in Tab. 2. We also show the
qualitative comparison in Fig. 3. As can be seen, our method can restore better
details compared with codec standards.

4.3 Comparison with Neural Video Delivery Methods

In this section, we compare our work with other neural video delivery meth-
ods. CaFM [19] uses content-aware models to compress parameters and achieve
competitive performance. However, its joint training strategy takes huge com-
putational cost. Therefore, CaFM is not practical for delivering long videos.
SRVC [13] also sequentially delivers the content-aware SR models by fine-tuning
previous model. However, they fail to generalize on various architectures and
have to train from scratch for a new video. Deep Video Compression (DVC) [20]
is an end-to-end DNN-based video compression method. We also compare our
method with (DVC) at four different bitrate-distortion trade-off operating points
λ ∈ {256, 512, 1024, 2048} (DVC1, DVC2, DVC3, DVC4). In Fig. 4 and Tab. 3,
we demonstrate the advantages of our method in terms of accuracy, training
time, and storage. In Fig. 4, we calculate the average PSNR and storage cost
on 45s videos from VSD4K [19]. Under the same storage, our method outper-
forms other methods at most circumstances. Though CaFM achieves promising
results, it takes a huge computational cost. As shown in Tab. 3, we demonstrate



10 X. Li et al.

Table 1: Comparisons with baseline [29]. We show the results of our method
under S, M, and L settings. Paras indicates the model parameters and P denotes
the parameters of ESPCN. m and h in Time column represent minutes and hours
respectively.

inter-45s sport-45s game-45s
PSNR Paras Time PSNR Paras Time PSNR Paras Time

C1−n 38.95 9P 11.2h 46.03 9P 11.2h 35.61 9P 11.2h
Ours(S) 39.08 0.28P 1.2m 46.11 0.28P 1.2m 36.32 0.28P 1.2m
Ours(M) 39.18 0.28P 7.6m 46.25 0.28P 7.6m 36.51 0.28P 7.6m
Ours(L) 39.56 1.08P 55.5m 46.41 1.08P 1.76h 37.09 1.08P 1.64h

dance-45s vlog-45s game-2min
PSNR Paras Time PSNR Paras Time PSNR Paras Time

C1−n 43.47 9P 11.2h 46.20 9P 11.2h 34.46 24P 11.2h
Ours(S) 44.13 0.28P 1.2m 46.48 0.28P 1.2m 34.35 0.43P 1.2m
Ours(M) 44.24 0.28P 7.6m 46.71 0.28P 7.6m 34.50 0.43P 7.6m
Ours(L) 44.59 1.08P 1.53h 46.97 1.08P 48.6m 35.33 1.23P 56.3m

Table 2: Comparisons with H.264 and H.265. Under the same storage size, our
PSNR results outperform H.264 and H.265 in most cases.

inter sport game dance vlog
45s 2min 45s 2min 45s 2min 45s 2min 45s 2min

H.264 36.32 44.82 38.29 36.75 37.29 35.13 28.86 29.36 42.37 43.02
H.265 36.78 45.47 39.98 38.44 38.17 36.87 30.83 31.06 43.35 43.97
Ours(M) 39.18 46.73 46.25 40.44 36.51 34.50 44.24 42.74 46.71 48.66
Storage(mB) 13.19 35.21 13.65 37.43 13.97 35.17 13.81 36.80 13.83 36.37

the trade-off between accuracy and training time. Our method shows competitive
performance while maintaining low computational cost.

4.4 Ablation Study

Variants of EMT We intend to evaluate the contribution of each component
in EMT. Firstly, we compare our method with pretrained initialization, which is
denoted as P1−n. Similar to our meta-learned initialization, P1−n first initializes
the SR model on DIV2K, and is normally finetuned on the meta-learning dataset
DN . We replace the meta-learned model of EMT by the normally finetuned
model to obtain the results of P1−n. To be mentioned, P1−n still utilizes gradient
masking and challenging patch sampling for a fair comparison. Therefore, we are
able to evaluate the effectiveness of meta-learned initialization. To evaluate the
effectiveness of Challenging Patch Sampling (CPS), we remove the step of patch
sampling in our full pipeline and the results are denoted as MT1−n. As shown in
Tab. 4, in order to achieve the same PSNR, P1−n takes extra cost compared with
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Original Bicubic H.264 H.265 DVC Ours GT

Fig. 3: Qualitative results. This figure shows the qualitative comparison against
H.264, H.265 and DVC. Our method can restore better details compared with
other methods. Best viewed by zooming x4.

our meta-learned initialization. Meanwhile, our method outperforms MT1−n in
regard to efficiency, demonstrating the effectiveness of CPS.

Variants of Meta Learning During meta-learning, we randomly sample
15 tasks and each task contains 50 frames. We also study the effect of different
numbers of tasks and frames. For the number of tasks, we compare the results
of 10, 15 and 20. For the number of frames, we evaluate the results of 10, 50 and
150. As shown in Tab. 5, all the variants achieve similar results, and the setting
of 15 tasks with 50 frames already achieves competitive performance.

Variants of Gradient Masking We conduct extensive experiments to ex-
plore the performance under different variants of gradient masking. Since our
method uses different portions of parameters for fine-tuning the first chunk
and other chunks. We report the results of p1 ∈ {10, 20, 30, 100} and p2 ∈
{0.5, 1, 5, 10}. As can be seen from Tab.6, we empirically set p1 = 20 and p2 = 1
as our default setting since it can already achieve satisfying results.

4.5 The Generalization of Our Method

Generalization of Various Scaling Factors We evaluate the generalization
ability of EMT using ESPCN as the backbone across scaling factors x2, x3 and
x4. As shown in Tab. 7, EMT outperforms C1−n under various scaling factors,
demonstrating the generalization ability of EMT across various scaling factors.

Generalization of Various Efficient Backbones In this part, we present
the results of our method using different efficient SR backbones. We evaluate
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Fig. 4: Comparisons with neural video delivery methods in terms of PSNR and
storage.

Table 3: Comparisons with neural video delivery in terms of PSNR and training
time. Red and blue indicate the best and the second best results among all
methods.

inter-45s sport-45s game-45s dance-45s vlog-45s

Acc Time Acc Time Acc Time Acc Time Acc Time

C1-n 38.95 11.2h 46.03 11.2h 35.61 11.2h 43.47 11.2h 46.20 11.2h

CaFM 38.90 10.2h 46.12 10.2h 35.96 10.2h 43.63 10.2h 46.45 10.2h

SRVC 37.26 12.1m 41.38 12.1m 33.34 12.1m 40.87 12.1m 45.59 12.1m

DVC1 31.98 35.6m 35.52 33.6m 31.76 35.8m 27.67 34.8m 37.86 35.3m

DVC2 34.44 36.1m 37.45 34.3m 33.93 36.0m 32.46 35.2m 39.92 35.8m

DVC3 36.60 37.1m 39.58 34.8m 36.10 36.5m 34.40 35.4m 41.67 36.2m

DVC4 38.70 38.0m 41.28 34.8m 38.10 36.2m 36.33 35.8m 43.22 36.4m

Ours(M) 39.18 7.6m 46.25 7.6m 36.51 7.6m 44.24 7.6m 46.71 7.6m

Table 4: Variants of EMT. We show the results of our method under S setting.
MT stands for meta-tuning strategy. m and h in Time column represent minutes
and hours respectively. P denotes the parameters of SR architecture (ESPCN).

Method MT CPS
inter-45s sport-45s

PSNR Paras Time PSNR Paras Time

C1−n - - 38.95 9P 11.2h 46.03 9P 11.2h
P1−n - ✓ 39.08 0.28P 18.4m 46.11 0.28P 4.2m
MT1−n ✓ - 39.08 0.28P 9.7m 46.11 0.28P 2.7m
Ours(S) ✓ ✓ 39.08 0.28P 1.2m 46.11 0.28P 1.2m

our method on 45 seconds videos and adopt three additional efficient backbones,
including SRCNN [8], FSRCNN [8], and EDSR with one residual block in body



Efficient Meta-Tuning(EMT) 13

Table 5: Variants of meta-learning. Ours(S) adopt S setting.
task frame inter-45s sport-45s game-45s vlog-45s

C1−n - - 38.95 46.03 35.61 46.20

Ours(S) 10 50 39.06 46.06 36.25 46.51
Ours(S) 15 50 39.08 46.11 36.32 46.48
Ours(S) 20 50 39.07 46.09 36.22 46.45

Ours(S) 15 10 39.09 45.94 36.34 46.57
Ours(S) 15 50 39.08 46.11 36.32 46.48
Ours(S) 15 150 39.03 46.20 36.39 46.58

Table 6: Variants of gradient masking. Ours(S) adopt S setting.
p1% p2 % inter-45s sport-45s game-45s vlog-45s

C1-n - - 38.95 46.03 35.61 46.20

Ours(S) 10 1 39.04 46.00 36.28 46.42
Ours(S) 20 1 39.08 46.11 36.32 46.48
Ours(S) 30 1 39.11 46.13 36.33 46.49
Ours(S) 100 1 39.19 46.13 36.35 46.56

Ours(S) 20 0.5 39.08 46.10 36.31 46.47
Ours(S) 20 1 39.08 46.11 36.32 46.48
Ours(S) 20 5 39.09 46.18 36.34 46.53
Ours(S) 20 10 39.11 46.23 36.37 46.57

Table 7: Results of ESPCN on various scaling factors. We show the results of
our method under M setting for fine-tuning.

inter-45s sport-45s vlog-45s
x2 x3 x4 x2 x3 x4 x2 x3 x4

C1−n 38.95 32.19 28.73 46.03 40.43 37.21 46.20 41.68 39.52

Ours(M) 39.18 32.55 29.05 46.25 40.51 37.22 46.71 42.25 40.08

dance-45s game-45s city-45s
x2 x3 x4 x2 x3 x4 x2 x3 x4

C1−n 43.47 36.86 35.22 35.61 30.67 28.80 36.44 31.60 29.23

Ours(M) 44.24 37.42 35.88 36.51 31.13 29.01 36.42 31.56 29.16

(EDSR-1). As shown in Tab. 8, our method also generalizes well to different
efficient backbones, validating the generalization ability of our method.

5 Extension to Long Videos

In this section, we extend EMT to long videos beyond 2 minutes. Since former
works [19,29] take too much time to train the content-aware SR models, we
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Table 8: Results of various SR architectures. We show the results of our method
under M setting for fine-tuning.

Backbone
inter-45s sport-45s game-45s dance-45s vlog-45s
C1−n Ours C1−n Ours C1−n Ours C1−n Ours C1−n Ours

SRCNN 39.02 39.06 46.21 46.19 35.37 35.64 43.28 43.92 46.25 46.42
FSRCNN 39.06 39.25 46.29 46.32 35.84 35.90 43.61 44.08 46.09 46.47
EDSR-1 39.17 39.13 45.99 46.02 35.51 35.58 44.04 44.05 46.28 46.28

Table 9: Comparisons with H.264 and H.265 on long videos. We show the re-
sults of our method using 3 epochs for fine-tuning. The storage is measured in
megabytes.

vlog-5min vlog-10min vlog-20min vlog-30min
PSNR Storage PSNR Storage PSNR Storage PSNR Storage

Ours(M) 37.67 18.62 38.33 35.64 38.31 71.19 38.41 145.12
H.264 34.68 18.62 37.15 35.64 35.29 71.19 35.02 145.12
H.265 36.75 18.62 35.78 35.64 37.18 71.19 37.07 145.12

only compare with commercial codec standards. Directly applying EMT to long
videos may achieve degraded results since the temporal consistency between
neighboring chunks is not always true for long videos. Therefore, in order to
extend EMT to long videos, we first divide the video frames into groups and
apply EMT to each group. To be specific, we extract all the I-frames from the
input video and make each group contain 30 I-frames. As shown in Tab. 9, our
method outperforms commercial codec standards even on long videos, showing
the great potential of our method.

6 Conclusion

To pave the way for practical applications, we propose Efficient Meta-Tuning
(EMT) to significantly reduce the computational cost of neural video delivery.
Instead of training from scratch, EMT sequentially fine-tunes a meta-learned
model to deliver the content-aware SR models of the input video. Gradient mask-
ing is introduced to select partial parameters for fine-tuning, compressing all the
models into one shared model and a few private parameters. In addition, we also
present a sampling strategy to extract the challenging patches for fine-tuning,
further reducing the cost of EMT. We conduct detailed comparisons with the
commercial codec standards and other neural video delivery methods to demon-
strate the advantages of our approach. We hope this paper can inspire future
work on neural video delivery.
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