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In the supplementary materials, we first introduce more details of STL in
Section A. In Section B, we provide more experiment details and network ar-
chitectures. In Section C, we provide the comparisons of model size and the
performance. In Section D, we provide more ablation studies of our proposed
method. In Section E, we provide more disccusions for our method. In Section
F, we provide more visual comparisons with state-of-the-art methods.

A More Details of STL

Recall that we use Swin Transformer layers STL(·) and a residual connection to
extract deeper features of the LR and transferred features,

F ′
l+1 = STL(F ′

l+1) + Fl, (S1)

where F ′
l+1 is the output feature of the Conv3 and Fl is the LR feature at

the l-th scale. Based on the standard multi-head self-attention of the original
Transformer layer [7], Swin Transformer [4] uses a shifted window mechanism to
improve the performance. Specifically, given a feature F ′

l+1∈RH×W×C , we first

reshape it to local window features F̂∈R
HW
M2 ×M2×C by partitioning the input

into non-overlapping M×M local windows, where HW
M2 is the total number of

windows. Then, for a local window feature F̂∈RM2×C , the Query, Key and Value
matrices Q̂, K̂ and V̂ can be computed as

Q̂ = F̂Wq ∈ RM2×d,

K̂ = F̂Wk ∈ RM2×d,

V̂ = F̂Wv ∈ RM2×d,

(S2)

where Wq, Wk and Wv are weights shared across different windows. Then, in a
local window, the attention matrix can be computed with softmax function,

Attention(Q̂, K̂, V̂ ) = Softmax
(
Q̂K̂⊤/

√
d+B

)
V̂ , (S3)

⋆ Corresponding author.
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where B is the learnable relative positional encoding. Next, STL uses a reg-
ular multi-head self-attention (W-MSA), a shifted windowing multi-head self-
attention (SW-MSA) and a multi-layer perceptron (MLP), followed by a Layer-
Norm (LN) layer and a residual connection. Here, MLP has two fully-connected
layers with GELU non-linearity. Then, the above can be formulated as

F̂ = W-MSA(LN(F̂ )) + F̂ ,

F̂ = MLP(LN(F̂ )) + F̂ ,

F̂ = SW-MSA(LN(F̂ )) + F̂ ,

F̂ = MLP(LN(F̂ )) + F̂ .

(S4)

With the help of W-MSA and SW-MSA, STL can enable cross-window connec-
tions, which can relieve the issues of traditional vision Transformer.

B More Experiment Details

More implementation details. Besides, we also augment the training data by
randomly changing the brightness, contrast and hue of an image by using Color-
Jitter in pytorch. Specifically, the factors of brightness, contrast and saturation
are chosen uniformly from [0.8, 1.2], and the hue factor is chosen uniformly from
[−0.05, 0.05]. Following [1], we set the hype-parameters λ1 and λ2 as 1e−4 and
1e−6, respectively. We set the learning rate of the SR model and discriminator
as 1e−4. For the Adam optimizer, we set β1=0.9 and β2=0.999 in the training.
The SR and LR images have the same aspect ratio. LR image is upsampled to
the HR image size (the same as Ref image size) in training. In testing, when
their sizes mismatch, we pad the smaller one with zeros to match the larger one.
User study contains 20 users, and each user is asked to choose the image with
better visual quality (e.g., ours v.s. TTSR) from SR image pairs for the WR-SR
dataset. The final percentage is the average user preference of all images.

B.1 Network Architectures

Table S1: The architecture of the
feature encoder.

l-th layer Layer information

0 Conv(3, 64), ReLU
1 Conv(64, 64), ReLU
2 MaxPool(2 × 2)
3 Conv(64, 128), ReLU
4 Conv(128, 128), ReLU
5 MaxPool(2 × 2)
6 Conv(128, 256)

Feature encoder. In our Transformer, we
adopt two feature extractors because of the
resolution gap between the LR and Ref im-
ages. In Table S1, we show the detailed ar-
chitecture of the encoders. Following [1], the
encoders Eq

l and Ek
l have the same archi-

tecture and share the same parameters, and
the extractor Ev

l uses pretrained VGG-19 at
each scale. Specifically, Conv is a convolution
layer, and its the kernel size is 3×3. We use
MaxPool to denote a Max pooling operation,
and its kernel size is 2×2. Besides, ReLU is
an activation function.
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RefSR network. The RefSR network consists of reference-based deformable
attention (RDA) modules and residual feature aggregation (RFA) modules in
both downsacling and upscaling, and the architecture is illustrated in Table. S2.
Given an LR image, we first use bilinear to upsample it to the size of 160×160.
For each image, we extract Query, Key and Value using pretrained VGG at each
scale. For example, we use its relu1 1 features [6]) to denote i.e., Query1, Key1
and Value1, and the size is 160×160. Similarly, we use its relu2 1 features to
denote i.e., Query2, Key2 and Value2, and the size is 80×80. Besides, we use
relu3 1 features to denote Query3, Key3 and Value3, and the size is 40×40.

Then, we perform the RDA and RFA modules according to Figure 2 in the
paper. For the RDA module, we take the Query, Key, Value and LR features as
inputs. For the RFA module, it consists of two convolution layers and 8 Swin
Transformer layers, and it takes the attention features as an input. For the
convolution layer, the kernel size of convolution layers is 3× 3, and S2 indicates
the stride of 2. For the upsampling, we use PixelShuffle layers with the scale
of 2×. The negative slope of LeakyReLU is 0.1. In SwinT, the window size is
8, the depth is [4, 4], and the number of heads is [4, 4]. In the training, the
learning rate is set as 10−4. For the training of the network with adversarial loss
and perceptual loss, we adopt the same training setting as [12], and we use the
RefSR model pre-trained on the reconstruction loss.

Table S2: The architecture of the SR network.

l-th layer Layer information

0 Conv(3, 128), LeakyReLU(0.1)

1 RDA(Query1, Key1, Value1, #0)

2 Concat(#0, #1)

3 RFA(Conv(192, 128), SwinT×8, Conv(128, 128, S2), #2)

4 RDA(Query2, Key2, Value2, #3)

5 Concat(#3, #4)

6 RFA(Conv(256, 128), SwinT×8, Conv(128, 128, S2), #5)

7 RDA(Query3, Key3, Value3, #6)

8 Concat(#6, #7)

9 RFA(Conv(384, 128), SwinT×8, Conv(128, 512), #8)

10 PixelShuffle, LeakyReLU(0.1)

11 RDA(Query2, Key2, Value2, #10)

12 ElementwiseAdd(#3, #10)

13 Concat(#11, #12)

14 RFA(Conv(256, 128), SwinT×8, Conv(128, 512), #13)

15 PixelShuffle, LeakyReLU(0.1)

16 RDA(Query1, Key1, Value1, #15)

17 ElementwiseAdd(#0, #15)

18 Concat(#16, #17)

19 RFA(Conv(384, 128), SwinT×8, Conv(128, 64), #18)

20 LeakyReLU(0.1)

21 Conv(64, 3)
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C More Comparisons of Model Size

Table S3: Performance of different
methods in terms of model sizes.

Methods Params PSNR SSIM

RCAN [11] 16M 26.06 0.769
SwinIR [3] 11.9M 26.62 0.790
RankSRGAN [10] 1.5M 22.31 0.635
CrossNet [13] 33.6M 25.48 0.764
SRNTT [12] 4.2M 26.24 0.784
TTSR [9] 6.4M 27.09 0.804
C2-Matching [1] 8.9M 28.24 0.841
Ours 18.0M 28.72 0.856

As shown in Table S3, we show the com-
parison of model size (i.e., the number of
trainable parameters) of different models.
Our proposed model has a total number
of 18.0M parameters and achieves the best
PSNR and SSIM of 28.72dB and 0.856, re-
spectively. Our PSNR and SSIM are bet-
ter than C2-Matching [1] with a large mar-
gin, although our model size is higher than
it. The light version has fewer parameters
than C2-Matching but has significantly bet-
ter performance.

D More Ablation Studies

Effect on components in RDA. We conduct ablation studies on deformable
convolution (DCN) in Table S4. Our model with DCN has higher PSNR/SSIM
results as it can transfer better texture from reference images.

Table S4: Ablation study on the CUFED5 testing set.
Methods w/o DCN Ours

PSNR/SSIM 28.34/0.844 28.72/0.856

Effect of λ1 and λ2. We conduct an experiment to investigate the impact of the
hyper-parameters λ1 and λ2. Following the settings of [12,1], we set λ1=1e−4
and λ2=1e−6. Based on this, we also select λ1 from {1e−3, 1e−4, 1e−5}, and
select λ2 from {1e−5, 1e−6, 1e−7}. From Tables S5 and S6, when we set λ1 as
1e−4 or 1e−5, we have the comparable PSNR but has the better LPIPS at 1e−4.
Similarly, we have the same conclusion for λ2. To obtain a good trade-off among
the regression loss, perceptual loss and adversarial loss, we set λ1 = 1e−4 and
λ2 = 1e−6 in practice, which is the same as [12,1].

Table S5: Performance in terms of λ1.
λ1 1e−3 1e−4 1e−5

PSNR 27.89 27.95 28.09
LPIPS 0.150 0.140 0.184

Table S6: Performance in terms of λ2.
λ2 1e−5 1e−6 1e−7

PSNR 27.95 27.95 28.10
LPIPS 0.152 0.140 0.196
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E More Disccusions

Contribution on using multiple patches. MuCAN [2] and IGNN [14] ag-
gregate similar patches across frames and in local regions, respectively, but their
performance may be limited when patches are from different distributions. In
contrast, our model is robust to this case (see Fig. 7 in the paper) due to our
deformable convolution.
Confidence intervals on performance results. We compare our model with
C2-Matching, and calculate the improvement gains of our method for each sam-
ple in the CUFED5 testing set. The histogram of improved PSNR values is shown
in Fig. S1, from which we can see over 96% samples outperform C2-Matching-rec
and C2-Matching in [0.002dB, 3dB].
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Fig. S1: The number of samples for performance gain.

Social impact concerns. In this paper, we propose a new reference-based
image super-resolution Transformer, which is end-to-end trainable and achieves
state-of-the-art performance. However, there may bring some societal impacts,
such as subject identity change. RefSR is an ill-posed problem. Its input is
severely degraded and may correspond to multiple HR images by nature. The
model may reconstruct SR images with different details especially with GAN
training, which may change the object identity.
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F More Visual Comparisons

In Fig. S2, we provide more visual comparisons with RCAN [11], SwinIR [3],
ESRGAN [8], RankSRGAN [10], SRNTT [12], TTSR [9], MASA [5] and C2-
Matching [1]. Our model achieves the best performance on visual quality. Thus,
our method is able to transfer accurate textures from the Ref images to generate
SR images. Moreover, our method can search and transfer meaningful texture in
a local regions even if the Ref image is not globally relevant to the input image.

Reference imageInput LR image GT

RCAN SwinIR SRNTT-rec TTSR-rec

C2-Matching-rec Ours-recMASA-rec

GT

RCAN SwinIR SRNTT-rec TTSR-rec

C2-Matching-rec Ours-recMASA-recReference imageInput LR image

GT

RCAN SwinIR SRNTT-rec TTSR-rec

C2-Matching-rec Ours-recMASA-recReference imageInput LR image

Reference imageInput LR image GT

RCAN SwinIR SRNTT-rec TTSR-rec

C2-Matching-rec Ours-recMASA-rec

Fig. S2: Qualitative comparisons of SISR and RefSR models trained with the
reconstruction loss.
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In Fig. S3, when trained with adversarial loss, our model is able to restore
the realistic details in the output images which are very close to the HR ground-
truth images with the help of the given Ref images. In contrast, it is hard for
ESRGAN and RankSRGAN to generate realistic images without the Ref images
since the degradation is severely destroyed and high frequency details are lost.

GT

ESRGAN RankSRGAN SRNTT TTSR

C2-Matching OursMASAInput LR image Reference image

GT

ESRGAN RankSRGAN SRNTT TTSR

C2-Matching OursMASAReference imageInput LR image

ESRGAN RankSRGAN SRNTT TTSR

C2-Matching OursMASA GTReference imageInput LR image

GT

ESRGAN RankSRGAN SRNTT TTSR

C2-Matching OursMASAReference imageInput LR image

Fig. S3: Qualitative comparisons of SISR and RefSR models trained with all loss.
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