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Abstract. Reference-based image super-resolution (RefSR) aims to ex-
ploit auxiliary reference (Ref) images to super-resolve low-resolution
(LR) images. Recently, RefSR has been attracting great attention as
it provides an alternative way to surpass single image SR. However, ad-
dressing the RefSR problem has two critical challenges: (i) It is difficult
to match the correspondence between LR and Ref images when they are
significantly different; (ii) How to transfer the relevant texture from Ref
images to compensate the details for LR images is very challenging. To
address these issues of RefSR, this paper proposes a deformable atten-
tion Transformer, namely DATSR, with multiple scales, each of which
consists of a texture feature encoder (TFE) module, a reference-based
deformable attention (RDA) module and a residual feature aggregation
(RFA) module. Specifically, TFE first extracts image transformation
(e.g., brightness) insensitive features for LR and Ref images, RDA then
can exploit multiple relevant textures to compensate more information
for LR features, and RFA lastly aggregates LR features and relevant
textures to get a more visually pleasant result. Extensive experiments
demonstrate that our DATSR achieves state-of-the-art performance on
benchmark datasets quantitatively and qualitatively.

Keywords: Reference-based Image Super-Resolution, Correspondence
Matching, Texture Transfer, Deformable Attention Transformer

1 Introduction

Single image super-resolution (SISR), which aims at recovering a high-resolution
(HR) image from a low-resolution (LR) input, is an active research topic due to
its high practical values [13,51,18,49,41,15,46,21,16,14,9,20]. However, SISR is a
highly ill-posed problem since there exist multiple HR images that can degrade
to the same LR image [38,8]. While real LR images usually have no correspond-
ing HR ground-truth (GT) images, one can easily find a high-quality image as
a reference (Ref) image with high-frequency details from various sources, such
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Fig. 1: Comparison with the state-of-the-art RefSR method C2-Matching [12].
When the brightness of LR and Ref image is different, our method performs
better than C2-Matching [12] in transferring relevant textures from the Ref image
to the SR image, which is closer to the ground-truth image.

as photo albums, video frames, and web image search, which has similar seman-
tic information (such as content and texture) to the LR image. Such an alter-
native SISR method is referred to as reference-based super-resolution (RefSR),
which aims to transfer HR textures from the Ref images to super-resolved images
and has shown promising results over SISR. Although various RefSR methods
[12,27,47,45] have been recently proposed, two challenges remain unsolved for
SR performance improvement.

First, it is difficult to match the correspondence between the LR and Ref
images especially when their distributions are different. For example, the bright-
ness of the Ref images is different from that of the LR images. Existing methods
[56,48] mostly match the correspondence by estimating the pixel or patch simi-
larity of texture features between LR and Ref images. However, such similarity
metric is sensitive to image transformations, such as brightness and color of im-
ages. Recently, the state-of-the-art (SOTA) method C2-Matching [12] trains a
feature extractor, which demonstrates strong robustness to scale and rotation.
However, it neglects to explore the effects of brightness, contrast, and color of
images. As a result, this method may transfer inaccurate textures from the Ref
image, when the Ref images have different brightness from the LR image, as
shown in Fig. 1. Based on the observation and analyses, we can see that the
quality of correspondence is affected by the similarity metric and the distribu-
tion gap between the LR and Ref images.

On the other hand, some methods [57,34] adopt optical flow or deformable
convolutions [4,59,3,42] to align spatial features between the Ref and LR im-
ages. However, these methods may find an inaccurate correspondence when the
distance between the LR and Ref images is relatively large. With the inaccurate



Reference-based Image SR with Deformable Attention Transformer 3

correspondence, their performance would deteriorate seriously since the irrel-
evant texture cannot provide meaningful details. Therefore, how to accurately
match the correspondence between the Ref and LR images is a challenging prob-
lem as it affects the quality of super-resolved results.

Second, it is also challenging to transfer textures of the high-quality Ref im-
ages to restore the HR images. One representative work CrossNet [57] estimates
the flow from the Ref image to the LR image and then warp the features based on
the optical flow. However, the optical flow may be inaccurate, since the Ref and
LR images could be significantly different. In addition, most existing methods
[56,48,27] search the most similar textures and the corresponding position, and
then swap the texture features from the Ref image. As a result, these methods
may transfer irrelevant textures to the output and have poor SR performance,
when the original estimated flow or position is inaccurate. Hence, it is important
and necessary to explore a new architecture to adaptively transfer texture and
mitigate the impact of inaccurate correspondence in the Ref image.

To address the above two challenges, we propose a novel deformable atten-
tion Transformer, namely DATSR, for reference-based image super-resolution.
DATSR is built on the U-Net and consists of three basic modules, including tex-
ture feature encoders, deformable attention, and residual feature aggregation.
Specifically, we first use texture feature encoders to extract multi-scale features
with different image transformations. Then, we propose a reference-based de-
formable attention to discover the multiple relevant correspondences and adap-
tively transfer the textures. Last, we fuse features and reconstruct the SR images
using residual feature aggregation. We conduct extensive comparisons with re-
cent representative SOTAmethods on benchmark datasets. The quantitative and
visual results demonstrate that our DATSR achieves the SOTA performance.

The main contributions are summarized as follows:

– We propose a novel reference-based image super-resolution with deformable
attention transformer (DATSR), which is end-to-end trainable by incorpo-
rating Transformer into RefSR. Compared with existing RefSR methods, our
DATSR performs more robust correspondence matching and texture transfer
and subsequently achieves SOTA performance quantitatively and visually.

– We design a new reference-based deformable attention module for correspon-
dence matching and texture transfer. Different from existing transformer-
based methods, our transformer is built on U-Net with multi-scale features
and alleviates the resolution gap between Ref and LR images. Moreover, our
transformer relieves the correspondence mismatching issue and the impact
of distribution gap between LR and Ref images.

– We conduct extensive experiments on benchmark datasets to demonstrate
that our DATSR achieves SOTA performance and is also robust to different
image transformations (e.g., brightness, contrast and hue). Moreover, we find
that our DATSR trained with a single Ref image outperforms existing Multi-
RefSR methods trained with multiple Ref images. In addition, our DATSR
still shows good performance even in some extreme cases, when the Ref
images have no texture information.
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2 Related Work

We will briefly introduce two related super-resolution paradigms, including single
image super-resolution and reference-based image super-resolution.

Single image super-resolution (SISR). The goal of SISR is to recover high-
resolution (HR) images from the low-resolution (LR) images. Recent years have
witnessed significant achievements of using deep neural networks to solve SISR
[6,55]. SRCNN [6] is the pioneer work of exploiting deep convolutional networks
to map LR image into HR image. To further improve SR performance, re-
searchers resort to employing deeper neural networks with attention mechanisms
and residual blocks [22,33,55,19,31,20,54,23,21,50,36,5]. However, it is difficult
for traditional SISR methods to produce realistic images when the HR textures
are highly degraded. To relieve this, some SR methods [17,44,53,11,40,43,58]
adopt generative adversarial networks (GANs) to further improve the percep-
tual quality of the super-resolved outputs.

Reference-based image super-resolution (RefSR). Different from SISR,
RefSR has auxiliary HR images and aims to super-resolves images by transfer-
ring HR details of Ref images. Such auxiliary information can be extracted from
the reference images which are similar to HR ground-truth images. CrossNet [57]
estimates the optical flow (OF) between Ref and LR images and then performs
the cross-scale warping and concatenation. Instead of estimating OF, SRNTT
[56] calculates the similarity between the LR and Ref images and transfer the
texture from the Ref images. Similarly, SSEN [34] proposes a similarity search
and extraction network and it is aware of the best matching position and the
relevancy of the best match. To improve the performance, TTSR [48] proposes
a hard and soft attention for texture transfer and synthesis. Instead of using
the features of a classifier, E2ENT2 [45] transfers texture features by using a
SR task-specific features. To improve the efficiency of matching, MASA [27]
proposes a coarse-to-fine correspondence matching module and a spatial adap-
tation module to map the distribution of the Ref features to that of the LR
features. Recently, a strong RefSR method C2-Matching [12] first proposes a
contrastive correspondence network to learn correspondence, and then adopts
a teacher-student correlation distillation to improve LR-HR matching, and last
uses a residual feature aggregation to synthesize HR images.

It should be noted that RefSR can be extended to the case of multiple refer-
ence images, called Multi-RefSR, which aims to transfer the texture features
from multiple Ref images to the SR image. Recently, a content independent
multi-reference super-resolution model CIMR-SR [47] is proposed to transfer
the HR textures from multiple reference images. To improve the performance,
AMRSR [32] proposes an attention-based multi-reference super-resolution net-
work to match the most similar textures from multiple reference images. Differ-
ent from RefSR, Multi-RefSR can exploit more training information as it has
multiple Ref images. In this paper, we mainly study RefSR and train the model
with single Ref image. Nevertheless, we still compare our model with the above
Multi-RefSR methods to further demonstrate the effectiveness of our DATSR.
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Fig. 2: The architecture of our DATSR network. At each scale, our model con-
sists of texture feature encoders (TFE), a reference-based deformable attention
(RDA) module and a residual feature aggregation module (RFA).

3 Proposed Method

Due to the the intrinsic complexity of RefSR, we divide the problem into two
main sub-tasks: correspondence matching and texture transfer. To address these,
we propose a multi-scale reference-based image SR with deformable Transformer,
as shown in Fig. 2. Specifically, we first use TFE to extract multi-scale texture
features of Ref and LR images, then propose RDA to match the correspondences
and transfer the textures from Ref images to LR images, and last use RFA to
aggregate features and generate SR images.

3.1 Texture Feature Encoders

In the RefSR task, it is important to discover robust correspondence between
LR and Ref images. However, there are some underlying gaps between LR and
Ref images, i.e., the resolution gap and the distribution gap (e.g., brightness,
contrast and hue). To address this, we propose texture feature encoders to extract
robust features of LR and Ref images. For the resolution gap, we propose to use
pre-upsampling in the LR image and extract multi-scale features of LR and Ref
images. Specifically, given an LR image XLR and a reference image XRef , we
upsample the LR image to the resolution of the Ref image, denoted as XLR↑.
Then, we calculate multi-scale features of the LR and Ref images, i.e.,

Ql = Eq
l (XLR↑), Kl = Ek

l (XRef ), Vl = Ev
l (XRef ), (1)

where Eq
l , E

k
l and Ev

l are feature encoders at the l-th scale. In our architecture,
we use three scales in the texture feature encoders. With the help of the multi-
scale features in U-Net, we are able to alleviate the resolution gap between the
Ref and LR images since they contain the complementary scale information.
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For the distribution gap, we augment images with different image trans-
formations (e.g., brightness, contrast and hue) in the training to improve the
robustness of our model. In addition to data augmentation, we use contrastive
learning to train the encoder be less sensitive to different image transformations,
inspired by [12]. To estimate the stable correspondence betweenXLR↑ andXRef ,
the feature encoders Eq

l and Ek
l are the same, and the feature encoder Er

l is pre-
trained and fixed in the training. In contrast, TTSR [48] directly uses a learnable
feature encoder, resulting in limited performance since the textures are changing
during training and the correspondence matching is unstable. For C2-Matching
[12], it neglects to improve the robustness to brightness, contrast and hue. To
address these, we propose to learn robust multi-scale features Ql,Kl,Vl, which
can be regraded as Query, Key, and Value, and can be used in our attention
mechanism conditioned on the LR features.

3.2 Reference-based Deformable Attention

Existing attention-based RefSR methods (e.g., [48]) tend to suffer from limited
performance when the most relevant features between LR and Ref images are
inaccurate, i.e., the learned LR features may not well match the Ref features.
To address this, we propose a new reference-based attention mechanism, called
RefAttention, as shown in Fig. 3. Formally, given Query Ql, Key Kl, Value Vl,
and LR features Fl, the attention feature Al is defined as follows:

Al = RefAttention(Ql,Kl,Vl,Fl) = T
(
σ
(
Q⊤

l Kl

)
,Vl,Fl

)
. (2)

Different from existing attention mechanism [39], our attention is conditioned
on the LR features and designed for the RefSR task. In Fig. 3, we denoted by
Al and Fl in the downscaling process, and Ãl and F̃l in the upscaling process.
σ(·) is a correspondence matching function to calculate the relevance between
the Ref and LR images. Based on the relevance, we propose a texture transfer
function T (·) to transfer the textures from the Ref to the LR image.

Correspondence matching. The first important sub-task in RefSR is to
match correspondences between LR and Ref images. Most existing methods
[56,48] are sensitive to different image transformations (e.g., brightness, con-
trast and hue) and may match inaccurate correspondences. To relieve this is-
sue, we propose a correspondence matching module in our RefAttention, as
shown in Fig. 3. Specifically, we estimate the relevance between XLR↑ and
XRef by calculating similarity between Ql ∈ RC×H1×W1 and Kl ∈ RC×H2×W2 .
First, we unfold Ql and Kl into patches Q′

l = [q1, . . . , qH1W1
]∈RC×H1W1 and

K ′
l = [k1, . . . ,kH2W2

]∈RC×H2W2 . Then, for the given query qi in Q′, the top K
relevant positions in K ′ can be calculated by normalized inner product,

Pi =
[
σ
(
Q′⊤

l K ′
l

)]
i
= TopKj

(
q̃i · k̃j

)
, (3)

where q̃i = qi/∥qi∥ and k̃j = kj/∥kj∥ are normalized features, and TopK(·) is
a function and returns top K relevant positions Pi=

{
p1i , . . . , p

K
i

}
. Here, Pi is
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Fig. 3: The architecture of RDA.
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Fig. 4: The architecture of RFA.

the i-th element of Pl, and the position p1i is the most relevant position in the
Ref image to the i-th position in LR. When K > 1, it helps discover multiple
correspondences, motivated by KNN [24]. For fair comparisons with other RefSR
methods, we setK = 1 and exploit the most relevant position in the experiments.

Similarity-aware texture transfer. The second important sub-task in RefSR
is to transfer textures from Ref images to LR images based on the matched
correspondence. Most existing RefSR methods [56,48] directly swap the most
relevant texture from Ref image. However, it may degrade the performance when
the most relevant texture is inaccurate. To address this, we propose to improve
the deformable convolution (DCN) [4,59] to transfer the texture around every
position pki of Ref images. Specifically, let ∆pki be the spatial difference between
the position pi and the k-th relevant position pki , i.e., ∆pki = pki − pi. Then, we
calculate a feature at the position p using modified DCN, i.e.,

Al(pi) =
∑K

k=1
ski

∑
j
wjVl(pi +∆pki + pj +∆pj) mj , (4)

where pj ∈ {(−1, 1), (−1, 0), . . . , (1, 1)}, ski is the cooperative weight to aggregate

the K textures from the Ref image, i.e., ski = exp(q̃i · k̃pk
i
)/
∑

j∈Pi
exp(q̃i · k̃j),

wj is the convolution kernel weight, ∆pj is the j-th learnable offset of ∆Pl, and
mj is the j-th learnable mask of Ml, which can be calculated as follows,{

∆Pl = r · Tanh (Conv([Fl; ω(Vl,Pl)])) ,

Ml = Sigmoid (Conv([Fl; ω(Vl,Pl)])) ,
(5)

where ω is a warping function, [; ] is a concatenation operation, Conv is convolu-
tional layers. Sigmoid and Tanh are activation functions, r is the max magnitude
which is set as 10 in default, and Fl is the feature of upsampled LR images at
the l-th scale. With the help of the mask, we can adaptively transfer textures
even if LR and Ref images are significantly different. When the Ref image has
irrelevant texture or no information, our model is able to guild whether to trans-
fer the textures in Ref images. In this sense, it can relieve the correspondence
mismatching issue. In this paper, we mainly compare with RefSR methods with
single Ref image. Thus, we transfer one relevant textures from the Ref image for
fair comparison. With the help of our architecture, the proposed RDA module
is able to improve the RefSR performance by transferring textures at each scale
in both downscaling and upscaling, which is different from C2-Matching [12].
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3.3 Residual Feature Aggregation

To aggregate the multi-scale LR features at different layers and the transferred
texture features, we propose a residual feature aggregation module (RFA) to
perform feature fusion and extraction. As shown in Fig. 4, RFA consists of
CNNs and Swin Transformer layers (STL) [25] which gain much attention in
many tasks [19,2,26]. Specifically, we first use a convolution layer to fuse the LR
feature Fl and attention features Al, i.e., F

′
l+1 = Conv(Fl,Al), where Conv is

convolutional layers. Then, we use Swin Transformer and a residual connection
to extract deeper features of the LR and transferred features,

F ′
l+1 = STL(F ′

l+1) + Fl, (6)

where the details of STL are put in the supplementary materials. At the end of
RFA, we use another convolutional layer to extract the features of STL, Fl+1 =
Conv(F ′

l+1). Based on the aggregated features FL at the last scale, we synthesize
SR images with a skip connection as

XSR = FL +XLR↑. (7)

3.4 Loss Function

In the training, we aim to i) preserve the spatial structure and semantic infor-
mation of LR images; ii) discover more texture information of Ref images; iii)
synthesize realistic SR images with high quality. To this end, we use a recon-
struction loss, a perceptual loss and an adversarial loss, which is the same as
[48,12]. The overall loss with the hype-parameters λ1 and λ2 is written as:

L = Lrec + λ1Lper + λ2Ladv. (8)

Reconstruction loss. In order to make the SR image XSR to be close to the
HR ground-truth image XHR, we adopt the following reconstruction loss

Lrec = ∥XHR −XSR∥1, (9)

where ∥ · ∥1 is the ℓ1-norm.
Perceptual loss. To enhance the visual quality of SR images, the perceptual
loss is widely used in SR models [56,12]. The perceptual loss is defined as:

Lper =
1

V

∑C

i=1
∥ϕi(XHR)− ϕi(XSR)∥F , (10)

where ∥·∥F is the Frobenius norm, and V and C are the volume and channel
number of the feature maps, respectively. The function ϕi is the i-th intermediate
layer in VGG19 [35], and we use the relu5 1 layer of VGG19 in the experiment.
Adversarial loss. To improve the visual quality of SR images, many SR meth-
ods [17,44] introduce GANs [7,1] which have achieved good performance for SR.
Specifically, we use WGAN [1] loss as follows,

Ladv=EXSR∼PSR
[D(XSR)]− EXHR∼PHR

[D(XHR)], (11)

whereD(·) is a discriminator, PSR is the distribution of the generated SR images,
and PHR is the distribution of the real data.
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4 Experiments

Datasets. In the experiment, we consider the RefSR dataset, i.e., CUFED5
[56], which consists of a training set and a testing set. The CUFED5 training set
contains 11,871 training pairs, and each pair has an original HR image and a cor-
responding Ref image at the size of 160×160. The CUFED5 testing set has 126
input images and each image has 4 reference images with different similarity lev-
els. For fair comparisons, all models are trained on the training set of CUFED5.
To evaluate the generalization ability, we test our model on the CUFED5 test-
ing set, Urban100 [10], Manga109 [30], Sun80 [37] and WR-SR [12]. The Sun80
and WR-SR datasets contain 80 natural images, and each paired with one or
more reference images. For the Urban100 dataset, we concatenate the LR and
random sampled HR images as the reference images. For the Manga109 dataset,
we randomly sample HR images as the reference images since there are no the
reference images. All experiments are conducted for 4× SR.

Evaluation metrics. Existing RefSR methods [48,12,48] mainly use PSNR and
SSIM to compare the performance. Here, PSNR and SSIM are calculated on the
Y channel of YCbCr color space. In general, larger PSNR and SSIM correspond
to better performance of the RefSR method. In addition, we compare the model
size (i.e., the number of trainable parameters) of different models.

Implementation details. The input LR images are generated by bicubicly
downsampling the HR images with scale factor 4. For the encoders and discrim-
inator, we adopt the same architectures as [12]. We use a pre-trained relu1 1,
relu2 1 and relu3 1 of VGG19 to extract multi-scale features. we augment the
training data with randomly horizontal and vertical flipping or different random
rotations of 90◦, 180◦ and 270◦. Besides, we also augment the training data by
randomly changing different brightness, contrast and hue of an image by using
ColorJitter in pytorch. In the training, we set the batch size as 9, i.e., each batch
has 9 LR, HR and Ref patches. The size of LR images is 40×40, and the size of
HR and Ref images is 160×160. Following the training of [12], we set the hype-
parameters λ1 and λ2 as 1×10−4 and 1×10−6, respectively. We set the learning
rate of the SR model and discriminator as 1×10−4. For the Adam optimizer, we
set β1=0.9 and β2=0.999. We provide more detailed network architectures and
training details in the supplementary material.

4.1 Comparison with State-of-the-art Methods

We compare with the SISR methods (SRCNN [6], EDSR [22], RCAN [55],
SwinIR [19], SRGAN [17], ENet [33], ESRGAN [44], and RankSR-GAN [53]) and
RefSR methods (CrossNet [57], SRNTT [56], SSEN [34], TTSR [48], E2ENT2
[45], and MASA [27]). For fair comparisons, the above models are trained on
CUFED5 training set, and tested on CUFED5 testing set, Urban100, Manga109,
Sun80 and WR-SR. In this experiment, we train our model on two cases only
with reconstruction loss (denoted as ‘-rec’), and with all loss functions.
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Table 1: Quantitative comparisons (PSNR and SSIM) of SR models trained with
only reconstruction loss (with the suffix ‘-rec’). We group methods by SISR and
RefSR. We mark the best results in bold.

SR paradigms Methods
CUFED5 [56] Urban100 [10] Manga109 [30] Sun80 [37] WR-SR [12]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SISR

SRCNN [6] 25.33 0.745 24.41 0.738 27.12 0.850 28.26 0.781 27.27 0.767
EDSR [22] 25.93 0.777 25.51 0.783 28.93 0.891 28.52 0.792 28.07 0.793
ENet [33] 24.24 0.695 23.63 0.711 25.25 0.802 26.24 0.702 25.47 0.699
RCAN [55] 26.06 0.769 25.42 0.768 29.38 0.895 29.86 0.810 28.25 0.799
SwinIR [19] 26.62 0.790 26.26 0.797 30.05 0.910 30.11 0.817 28.06 0.797

RefSR

CrossNet [57] 25.48 0.764 25.11 0.764 23.36 0.741 28.52 0.793 - -
SRNTT-rec [56] 26.24 0.784 25.50 0.783 28.95 0.885 28.54 0.793 27.59 0.780
TTSR-rec [48] 27.09 0.804 25.87 0.784 30.09 0.907 30.02 0.814 27.97 0.792
SSEN-rec [34] 26.78 0.791 - - - - - - - -
E2ENT2-rec [45] 24.24 0.724 - - - - 28.50 0.789 - -
MASA-rec [27] 27.54 0.814 26.09 0.786 30.24 0.909 30.15 0.815 28.19 0.796
C2-Matching-rec [12] 28.24 0.841 26.03 0.785 30.47 0.911 30.18 0.817 28.32 0.801
DATSR-rec (Ours) 28.72 0.856 26.52 0.798 30.49 0.912 30.20 0.818 28.34 0.805

Table 2: Quantitative comparisons (PSNR and SSIM) of SR models trained with
all losses. We mark the best results in bold.

SR paradigms Methods
CUFED5 [56] Urban100 [10] Manga109 [30] Sun80 [37] WR-SR [12]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SISR
SRGAN [17] 24.40 0.702 24.07 0.729 25.12 0.802 26.76 0.725 26.21 0.728
ESRGAN [44] 21.90 0.633 20.91 0.620 23.53 0.797 24.18 0.651 26.07 0.726
RankSRGAN [53] 22.31 0.635 21.47 0.624 25.04 0.803 25.60 0.667 26.15 0.719

RefSR

SRNTT [56] 25.61 0.764 25.09 0.774 27.54 0.862 27.59 0.756 26.53 0.745
TTSR [48] 25.53 0.765 24.62 0.747 28.70 0.886 28.59 0.774 26.83 0.762
SSEN [34] 25.35 0.742 - - - - - - - -
E2ENT2 [45] 24.01 0.705 - - - - 28.13 0.765 - -
MASA [27] 24.92 0.729 23.78 0.712 27.26 0.847 27.12 0.708 25.74 0.717
C2-Matching [12] 27.16 0.805 25.52 0.764 29.73 0.893 29.75 0.799 27.80 0.780
DATSR (Ours) 27.95 0.835 25.92 0.775 29.75 0.893 29.77 0.800 27.87 0.787

Quantitative comparison.We provide quantitative comparisons of SR models
trained with only reconstruction loss and all losses in Tables 1 and 2, respec-
tively. In Table 1, our model has the best PSNR and SSIM on all testing sets
and significantly outperforms all SISR and RefSR models. It implies that our
Transformer achieves the state-of-the-arts and good generalization performance.
For the SISR setting, our method performs better than the state-of-the-art SISR
method [19]. It is difficult for these SISR methods to synthesize since the high-
frequency information is degraded. In contrast, our model is able to adaptively
discover the useful information from a reference image on the Urban100 and
Manga109 datasets even if it is a random image. For the RefSR setting, our
proposed DATSR significantly outperforms all methods with the help of the
cooperative transfer with deformable convolution module.

In Table 2, our DATSR also achieves the much higher PSNR/SSIM values
than other RefSR methods with a large margin. Our DATSR trained with ad-
versarial loss reduces PSNR and SSIM but increases the visual quality. Still, it
has the best performance over all compared methods. The above quantitative
comparison results on different SR paradigms demonstrate the superiority of our
Transformer over state-of-the-art SISR and RefSR methods.
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Fig. 5: Qualitative comparisons of SISR and RefSR models trained with the
reconstruction loss.
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Fig. 6: Qualitative comparisons of SISR and RefSR models trained with all loss.

Qualitative comparison. The visual results of our method are shown in Figs.
5 and 6. In these figures, our model also achieves the best performance on vi-
sual quality when trained with the reconstruction loss and all loss. These results
demonstrate that our proposed method is able to transfer more accurate tex-
tures from the Ref images to generate SR images with higher quality. When
trained with the reconstruction loss, our medel can synthesize SR images with
sharp structure. Moreover, our method is able to search and transfer meaning-
ful texture in a local regions even if the Ref image is not globally relevant to
the input image. When trained with the adversarial loss, our model is able to
restore the realistic details in the output images which are very close to the HR
ground-truth images with the help of the given Ref images. In contrast, it is
hard for ESRGAN and RankSRGAN to generate realistic images without the
Ref images since the degradation is severely destroyed and high frequency de-
tails of images are lost. For RefSR methods, our model is able to synthesize more
realistic texture from the Ref images than SRNTT [56], TTSR [48], MASA [27],
and C2-Matching [12]. For example, in the top of Fig. 6, our model is able to
recover the “window” with sharper edge and higher quality than C2-Matching,
but other methods fail to restore it even if they have a Ref image.



12 Jiezhang Cao et al.

small medium large
Brightness degree

28.00

28.25

28.50

28.75
PS

NR
C2-Matching
Ours

small medium large
Contrast degree

C2-Matching
Ours

small medium large
Hue degree

C2-Matching
Ours

Fig. 7: Robustness to different image transformations. Our DATSR is more ro-
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Fig. 8: Investigation on different types of reference images.

4.2 Further Analyses

Robustness to image transformations. We analyze the robustness of our
model to different kinds of image transformations. Specifically, we use ColorJitter
to augment the CUFED5 testing set by randomly change the brightness, contrast
and hue of Ref images into three group: small, medium and large. The detailed
settings are put in the supplementary materials. In Fig. 7, our model is more
robust than C2-Matching [12] under different image transformations. Note that
the medium and large transformations are not included during training but our
model still has superior performance.

Effect on type and number of Ref images. We test our model on differ-
ent Ref images, such as extreme images (i.e., may have only one color or noise
without any information) and random images from different testing sets. In Fig.
8, our method has robust performance and high visual quality even if the Ref
images have no useful texture information. In addition, our model has better
performance when increasing #Ref images in Fig. 9. Table 3 shows the results
of four similarity levels (“L1” to “L4”) where L1 is the most relevant level. Our
method achieves the best performance across all similarity levels.

Comparisons with multi-RefSR methods. We compare our model with
multi-RefSR methods, i.e., CIMR-SR [47] and AMRSR [32]. Note that these
multi-RefSR methods are trained with a collection of reference images. In Table
4, our model trained with single reference image performs better than CIMR-
SR and AMRSR with many reference images, which further demonstrate the
superiority of our proposed DATSR.
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Fig. 10: User study.

Table 3: Performance in terms of different similarity levels on CUFED5 test set.

Similarity levels
L1 L2 L3 L4 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CrossNet [57] 25.48 0.764 25.48 0.764 25.47 0.763 25.46 0.763 25.47 0.764
SRNTT-rec [56] 26.15 0.781 26.04 0.776 25.98 0.775 25.95 0.774 26.03 0.777
TTSR-rec [48] 26.99 0.800 26.74 0.791 26.64 0.788 26.58 0.787 26.74 0.792
C2-Matching-rec [12] 28.11 0.839 27.26 0.811 27.07 0.804 26.85 0.796 27.32 0.813

DATSR-rec (Ours) 28.50 0.850 27.47 0.820 27.22 0.811 26.96 0.803 27.54 0.821

4.3 More Evaluation Results

Perceptual metric. We further use the perceptual metric LPIPS [52] to evalu-
ate the visual quality of the generated SR images on the CUFED5 and WR-SR
testing sets. Recently, this metric is also widely used in many methods [28,29].
In general, smaller LPIPS corresponds to the better performance for RefSR. As
shown in Table 5, our model achieves smaller LPIPS than C2-Matching. Thus,
our model generates SR images with better quality than C2-Matching.

User study. To further evaluate the visual quality of the SR images, we conduct
the user study to compare our proposed method with previous state-of-the-art
methods, including SRNTT [56], TTSR [48], MASA [27] and C2-Matching [12]
on the WR-SR testing set. The user study contains 20 users, and each user
is given multiple pairs of SR images where one is our result. Then, each user
chooses one image with better visual quality. The final percentage is the average
user preference of all images. In Fig. 10, over 80% of the users prefer that our
results have better quality than existing RefSR methods.

4.4 Discussion on Model Size

To further demonstrate the effectiveness of our model, we also show the compari-
son of model size (i.e., the number of trainable parameters) with the state-of-the-
art model (i.e., C2-Matching [12]) in Table 6. Our model has a total number of
18.0M parameters and achieves PSNR and SSIM of 28.72 and 0.856, respectively.
The results demonstrate that our proposed model outperforms C2-Matching
with a large margin, although our model size is higher than this method. The
part of our model size comes from the Swin Transformer in the RFA module.
More discussions of other RefSR models are put in the supplementary materials.
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Table 4: Comparisons with Multi-RefSR on the
CUFED5 testing set.
Methods CIMR-SR [47] AMRSR [32] DATSR-rec

w/ rec. loss 26.35/0.789 28.32/0.839 28.72/0.856
w/ all losses 26.16/0.781 27.49/0.815 27.95/0.835

Table 5: Comparisons of
LPIPS [52] with C2-Matching.
Methods CUFED5 WR-SR

C2-Matching [12] 0.164 0.219
DATSR (Ours) 0.140 0.211

Table 6: Comparisons of model size
and performance with C2-Matching.
Methods Params PSNR SSIM

TTSR-rec [48] 6.4M 27.09 0.804
C2-Matching-rec [12] 8.9M 28.24 0.841
DATSR-rec (Ours) 18.0M 28.72 0.856

Table 7: Ablation study on the RDA
and RFA modules.
Methods PSNR SSIM

RDA (w/ feature warping) 28.25 0.844
RFA (w/ ResNet blocks) 28.50 0.850
DATSR-rec 28.72 0.856

4.5 Ablation Study

We first investigate the effectiveness of RDA and RFA in Table 7. Specifically,
we replace the texture transfer method in RDA with a feature warping based on
the most relevant correspondence, and replace RFA with several convolutional
neural networks (CNNs). The model with feature warping or CNNs is worse
than original model with RDA or RFA. Therefore, RDA is able to discover more
relevant features especially when the correspondence is not inaccurate.

For RFA, our model has better performance than the directly using simple
CNNs. Nevertheless, with the help of RDA, training with CNNs still outperforms
C2-Matching with large margin. Therefore, it verifies that the effectiveness of
RFA and it is able to aggregate the features at different scales. More discussions
on ablation studies are put in the supplementary materials.

5 Conclusion

In this work, we propose a novel reference-based image super-resolution with
deformable attention Transformer, called DATSR. Specifically, we use texture
feature encoders module to extract multi-scale features and alleviate the reso-
lution and transformation gap between LR and Ref images. Then, we propose
reference-based deformable attention module to discover relevant textures, adap-
tively transfer the textures, and relieve the correspondence mismatching issue.
Last, we propose a residual feature aggregation module to fuse features and gen-
erate SR images. Extensive experiments verify that DATSR achieves the state-
of-the-arts performance as it is robust to different brightness, contrast, and color
between LR and Ref images, and still shows good robustness even in some ex-
treme cases, when the Ref images have no useful texture information. Moreover,
DATSR trained with a single Ref image has better performance than existing
Multi-RefSR methods trained with multiple Ref images.
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