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In the supplementary materials, we first provide the theoretical analysis of
the method in Section A. In Section B, we provide more details of RVE. In
Section C, we introduce more experiment settings. In Section D, we provide more
visual comparisons with state-of-the-art methods. In Section E, we provide the
comparisons of the model size, reference time and performance. Last, we provide
further analyses on a blurry kernel for real videos, an impact of the order of video
restoration and an impact of number of frames in Section F.

A Theoretical Analysis

Based on the linearity of convolution and the properties of downsampling, there
exist a blurring matrix H and a decimation matrix S, then we can rewrite the
video degradation model in the paper as follows:

Y = (X ⊗K) ↓s + N (S1)

⇒ y = SHx+ n, (S2)

where y = vec(Y ),x = vec(X) and n = vec(N). Here, vec(·) is the vectorization
of a tensor, i.e., stacking the corresponding frames into column vectors in the
order which is the same as “view” in Pytorch.

To develop our analysis, we use a block circulant matrix circulant blocks
assumption of the blurring matrix, which widely used in many studies [9,11,5].

Assumption 1 [15] The blurring matrix H is the matrix representation of the
cyclic convolution, i.e., H is a block circulant matrix with circulant blocks.

In this definition, the convolution is periodic because of the shift-invariant blur-
ring kernel and the boundary conditions. Note that the assumption can be used
in any kind of blurring, e.g., motion blur, out-of-focus blur and atmospheric tur-
bulence, etc. Based on the assumption of cyclic convolution, the blurring matrix
and its conjugate transpose can be decomposed as

H = F ∗ΛF and H∗ = F ∗Λ∗F , (S3)

⋆ Corresponding author.
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where the matrices F and F ∗ are the Fourier and inverse Fourier transforms,
which satisfy FF ∗ = F ∗F = I. The matrix Λ = diag(Fh) is a diagonal, and its
diagonal elements are the Fourier coefficients of the first column of the blurring
matrix H, denoted as h.

In addition, we also use an assumption of the decimation matrix for down-
sampling, which is widely used in many literatures [12,13,9].

Assumption 2 [15] The decimation matrix S is a down-sampling operator,
while its conjugate transpose S interpolates the decimated video with zeros.

In this assumption, the decimation matrix satisfies SS∗ = I.
We can rewrite the space-time video super-resolution problem as:

min
X

E(X) :=
1

2σ2
∥Y − (X ⊗K) ↓s ∥2 + λΦ(X), (S4)

⇒ min
x

E(x) :=
1

2σ2
∥y − SHx∥2 + λΦ(x). (S5)

Based on the Half-Quadratic Splitting (HQS) algorithm [1,14], we introduce an
auxiliary variable z and a penalty parameter µ to reformulate Eq. (S5) as

E(x, z) =
1

2σ2
∥y − SHx∥2 + λΦ(x) +

µ

2
∥z − x∥2. (S6)

Then, Eq. (S6) can be solved by alternately optimizing two sub-problems Eq.
(S7) (for z) and Eq. (S8) (for x) as follows

zk = argmin
z

∥y − SHz∥2 + µσ2∥z − xk−1∥2, (S7)

xk = argmin
x

µ

2
∥zk − x∥2 + λΦ(x). (S8)

One can directly calculate the close-form solution of the problem (S7) as

zk =
(
H∗S∗SH + µσ2I

)−1 (
H∗S∗y + µσ2xk−1

)
. (S9)

However, the solution Eq. (S9) requires the inversion of a high dimensional ma-
trix, whose computational complexity is O(T 3

hW
3
hH

3
h).

Based on [15], we extend the case of 2D to 3D, and the decimation matrix S
has the following property in the Fourier Domain,

Lemma 1. [10] Let Js ∈ Rd×d be a matrix of ones, then the decimation matrix
has the following property:

FS∗SF ∗ =
1

swshst
(Jst ⊛ It)⊛ (Jsw ⊛ Iw)⊛ (Jsh ⊛ Ih), (S10)

where It ∈ Rt×t is the an identiry matrix and ⊛ is the Kronecker product.

Lemma 2. Given a Fourier matrix F and a decimation matrix S, we have

Λ∗FS∗S∗F ∗Λ =
1

s
[Λ1, ...,Λs]

⊤[Λ1, ...,Λs] :=
1

s
Λ∗Λ. (S11)
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Proof. Based on Lemma (1) and the property of the Kronecker product, we have

Λ∗FS∗S∗F ∗Λ

=
1

s
Λ∗(Jst ⊛ It)⊛ (Jsw ⊛ Iw)⊛ (Jsh ⊛ Ih)Λ

=
1

s
Λ∗((1st1

⊤
st)⊛ (ItIt))⊛ ((1sw1

⊤
sw)⊛ (IwIw))⊛ ((1sh1

⊤
sh
)⊛ (IhIh))Λ

=
1

s
Λ∗((1st ⊛ It)(1

⊤
st ⊛ It))⊛ ((1sw ⊛ Iw)(1

⊤
sw ⊛ Iw))⊛ ((1sh ⊛ Ih)(1

⊤
sh

⊛ Ih))Λ

=
1

s
Λ∗([It, ..., It]⊤[It, ..., It])⊛([Iw, ..., Iw]⊤[Iw, ..., Iw])⊛([Ih, ..., Ih]⊤[Ih, ..., Ih])Λ

=
1

s
Λ∗([It, ..., It]⊤⊛[Iw, ..., Iw]

⊤⊛[Ih, ..., Ih]
⊤) ([It, ..., It]⊛[Iw, ..., Iw]⊛[Ih, ..., Ih])Λ

=
1

s
Λ∗[Itwh, ..., Itwh]

⊤[Itwh, ..., Itwh]Λ

=
1

s
[Λ1, ...,Λs]

⊤[Λ1, ...,Λs]

=
1

s
Λ∗Λ.

Lemma 3. (Woodbury formula [3]) Given matrices A1,A2,A3 and A4, the
following equality holds conditional on the existence of A−1

1 and A−1
3 , we have

(A1 +A2A3A4)
−1 = A−1

1 −A−1
1 A2(A

−1
3 +A4A

−1
1 A2)

−1A4A
−1
1 . (S12)

Theorem 1 Assume the blurring matrix is a block circulant matrix with circu-
lant blocks, and the conjugate transpose of the decimation matrix interpolates the
decimated image with zeros [15]. Then the solution of Eq. (S7) can be computed
using the following closed-form expression

zk =
1

µσ2
rk−1 −

1

µσ2
F ∗Λ∗ (µσ2sI +ΛΛ∗)−1

ΛFrk−1, (S13)

where s = swshst, rk−1 =
(
H∗S∗y + µσ2xk−1

)
.

Proof. Based on Lemmas 1, 2 and 3, we have

zk =
(
F ∗Λ∗FS∗S∗F ∗ΛF + µσ2I

)−1
F
(
H∗S∗y + µσ2xk−1

)
(S14)

=F ∗
(
1

s
Λ∗Λ+ µσ2I

)−1

F
(
H∗S∗y + µσ2xk−1

)
(S15)

=F ∗
(
1

s
Λ∗Λ+ µσ2I

)−1

Frk−1 (S16)

=F ∗

(
1

µσ2
I − 1

µσ2
Λ∗
(
sI +

1

µσ2
ΛΛ∗

)−1

Λ
1

µσ2

)
Frk−1 (S17)

=
1

µσ2
rk−1 −

1

µσ2
F ∗Λ∗ (µσ2sI +ΛΛ∗)−1

ΛFrk−1, (S18)
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Eq. (S14) can be directly obtained by taking the derivative of Problem (S7) and
make it equal to 0, i.e.,(

F ∗Λ∗FS∗S∗F ∗ΛF + µσ2I
)
zk −

(
H∗S∗y + µσ2xk−1

)
= 0 (S19)

⇒ zk = F ∗ (Λ∗FS∗S∗F ∗Λ+ µσ2I
)−1

F
(
H∗S∗y + µσ2xk−1

)
. (S20)

Eq. (S15) follows by Lemma 2, i.e.,

Λ∗FS∗S∗F ∗Λ =
1

s
Λ∗Λ. (S21)

Eq. (S16) can be rewritten by using

rk−1 =
(
H∗S∗y + µσ2xk−1

)
. (S22)

Eq. (S17) can be calculated by using the Woodbury formula in Lemma 3.

Based on Theorem 1, we rewrite the blurring kernel and decimation matrix as
original matrices, and the closed-form solution can be rewritten as the following
expression in Theorem 2.

Theorem 2 Let F and F−1 be the fast Fourier transform (FFT) and inverse
FFT, and F be the complex conjugate of F . Assume the blur kernel K and the
downsampling ↓s satisfy some properties [15]. Given a video Xk−1 at the k-th
iteration and a low-resolution video Y , the solution of Eq. (S7) can be computed
using the following closed-form expression, i.e.,

Zk=F−1

 1

αk

F(Rk−1)−F(K)

 (F(K)F(Rk−1)) ↓as(
sαkI+

(
F(K)F(K)

)
↓as
)
xr

s

 , (S23)

where Rk−1=F(K)F(Y ↑s) − αkXk−1 with αk=µkσ
2, ↑s is a standard s-fold

upsampler , i.e., upsampling the spatial size by filling the new entries with zeros,
↑rs is an upsampler by repeating the tensor the desired dimension, and ↓as is a
distinct block downsampler, i.e., averaging the st×sh×sw distinct blocks.

In Theorem 2, Eq. (S23) requires three FFT computations and one inverse FFT
computation, which are the most expensive parts in implementation. Consider-
ing the computation complexities of FFT and inverse FFT, and the size of a
frame is ThWhHh (here, we ignore the constant number of channels), the com-
putation complexity of Eq. (S23) is O(ThWhHh log(ThWhHh)) [10], which is
much smaller than the complexity of Eq. (S9) (i.e., O(T 3

hW
3
hH

3
h)) and can be

computed efficiently on the modern GPU devices.
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B More Details of RVE

We implement G in the RVE module by using the architecture of the flow-
guided deformable alignment of [2] to predict offset and mask in DCN [16].
Given features gi

k, we use the optical-flow-guided deformable alignment as G to
compute the features at every branch, i.e.,

z̃i
k = G

(
gi
k, ẑ

i−1
k , ẑi−2

k ,f i→i−1
k ,f i→i−2

k

)
, (S24)

= DCN([ẑi−1
k ; ẑi−2

k ], [oi→i−1
k ;oi→i−2

k ], [mi→i−1
k ;mi→i−2

k ]), (S25)

where [·; ·] is the concatenation along channel dimension, the offsets oi→i−1
k and

oi→i−2
k and masks mi→i−1

k and mi→i−2
k are formulated as

oi→i−p
k = f i→i−p

k +Conv([gi
k; z̄

i−1
k ; z̄i−2

k ]), (S26)

mi→i−p
k = Sigmoid(Conv([gi

k; z̄
i−1
k ; z̄i−2

k ])), (S27)

where p = 1, 2, and z̄i−1
k and z̄i−2

k are warped features using the optical flows
f i→i−1
k and f i→i−2

k , i.e.,

z̄i−1
k =warp(ẑi−1

k ,f i→i−1
k ), (S28)

z̄i−2
k =warp(ẑi−2

k ,f i→i−2
k ), (S29)

where warp(·) is a warp function according to the optical flow.

C More Experiment Settings

For the flow network, we use the pre-trained SpyNet [7], and set the initial
learning rate to 2.5×10−5. In the FAT layer, we use torch.rfft and torch.irfft to
calculate FFT and inverse FFT operators, respectively. At the beginning, µk

is initialized as a small value to accelerate the convergence and then increased
gradually during optimization. In the RVE layer, βk decreases as the iteration
increases, whose setting is the same as [14]. At the iteration k=0, we initialize
X0 by interpolating Y with scale factor s via the Bicubic and some interpolation
approach (e.g., linear interpolation or SuperSloMo [4]) in space and time. The
number of the input LSTR frames is 5, and the number of the output HSTR
frames is 25.
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D More Qualitative Comparisons

We provide more visual results of different models on REDS4 in Fig. A. These
results demonstrate that our model is able to synthesize frames with better
quality than two-stage and three-stage methods. We also show an example of a
video (clip 011) of our model in the attachment.

Frame 116, Clip 015, REDS4 [6]

Bicubic DAIN+EDVR†+SwinIR SuperSloMo+BasicVSR++ DAIN+BasicVSR++

BIN+BasicVSR++ DAIN+EDVR†+BasicVSR++ Ours GT

Frame 040, Clip 011, REDS4 [6]

Bicubic DAIN+EDVR†+SwinIR SuperSloMo+BasicVSR++ DAIN+BasicVSR++

BIN+BasicVSR++ DAIN+EDVR†+BasicVSR++ Ours GT

Frame 374, Clip 020, REDS4 [6]

Bicubic DAIN+EDVR†+SwinIR SuperSloMo+BasicVSR++ DAIN+BasicVSR++

BIN+BasicVSR++ DAIN+EDVR†+BasicVSR++ Ours GT

Fig.A: Visual comparison of different methods on REDS4.
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E More Discussions on Model size and Inference Time

We compare the model size and inference time of different models on the REDS4
dataset in Table A. Our model achieves the smallest model size, the fastest
reference time and the largest PSNR/SSIM. For example, it is more than 3×
smaller than SuperSloMo+BasicVSR++∗ and it is also more than 2× faster than
SuperSloMo+EDVR†+BasicVSR++. These results demonstrate the superiority
of our one-stage framework over two-stage and three-stage frameworks.

Table A: Comparison of model size, inference time and performance on REDS4.
The best results are highlighted.
Methods Model size (M) Inference time (s) PSNR/SSIM

BIN+EDVR 25.3 0.658 23.52/0.662
BIN+BasicVSR 11.0 0.343 24.06/0.678
BIN+IconVSR 13.4 0.350 24.24/0.687
BIN+BasicVSR++ 12.0 0.357 24.44/0.711

CDVD-TSP+Zooming Slow-Mo 27.3 3.460 25.99/0.759
EDVR+Zooming Slow-Mo 31.7 0.438 26.12/0.764

DAIN+CDVD-TSP+SwinIR 52.1 - 25.01/0.720
DAIN+CDVD-TSP+EDVR 60.8 4.104 25.38/0.737
DAIN+CDVD-TSP+BasicVSR 46.5 3.788 25.61/0.748
DAIN+CDVD-TSP+IconVSR 48.9 3.796 25.74/0.753
DAIN+CDVD-TSP+BasicVSR++ 47.5 3.803 25.90/0.758

DAIN+EDVR†+SwinIR 56.5 - 25.43/0.730

DAIN+EDVR†+EDVR 65.2 1.082 25.78/0.747

DAIN+EDVR†+BasicVSR 50.9 0.767 25.81/0.748

DAIN+EDVR†+IconVSR 53.3 0.774 25.89/0.752

DAIN+EDVR†+BasicVSR++ 51.9 0.781 25.98/0.755

DAIN+EDVR∗ 44.6 0.704 25.77/0.747
DAIN+BasicVSR∗ 30.3 0.389 26.08/0.763
DAIN+IconVSR∗ 32.7 0.396 26.24/0.768
DAIN+BasicVSR++∗ 31.3 0.403 26.53/0.778

SuperSloMo+CDVD-TSP+SwinIR 47.9 - 25.26/0.726
SuperSloMo+CDVD-TSP+EDVR 56.6 4.058 25.62/0.739
SuperSloMo+CDVD-TSP+BasicVSR 42.3 3.743 25.88/0.752
SuperSloMo+CDVD-TSP+IconVSR 44.7 3.750 26.04/0.756
SuperSloMo+CDVD-TSP+BasicVSR++ 43.3 3.757 26.24/0.762

SuperSloMo+EDVR†+SwinIR 52.3 - 25.60/0.732

SuperSloMo+EDVR†+EDVR 61.0 1.036 26.05/0.751

SuperSloMo+EDVR†+BasicVSR 46.7 0.721 26.06/0.753

SuperSloMo+EDVR†+IconVSR 49.1 0.728 26.16/0.756

SuperSloMo+EDVR†+BasicVSR++ 47.7 0.735 26.26/0.759

SuperSloMo+EDVR∗ 40.4 0.658 26.05/0.752
SuperSloMo+BasicVSR∗ 26.1 0.343 26.41/0.769
SuperSloMo+IconVSR∗ 82.5 0.350 26.60/0.775
SuperSloMo+BasicVSR++∗ 27.1 0.357 26.93/0.785

Ours 8.0 0.29 29.12/0.859
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F Further Analysis

F.1 Blurry Kernel for Real Video

Fig. B: Visual comparison on Re-
alBlur for real application.

Blur videos can be generated by two ways: 1)
convolving with a blur kernel and 2) averag-
ing several successive frames. Our chosen ker-
nel assumption is based on the latter which
has been pointed out to be more realistic for
its nonuniformity properties [31]. Note that
the commonly used blur dataset (i.e., REDS
[31]) also adopts such assumption. To demon-
strate the effectiveness for real applications, we show in Fig. B that our trained
deep model can generalize well to real videos [8]. Without knowing the under-
lying kernels, our model is able to remove the bluriness, and outperforms the
baseline (DAIN+EDVR+BasicVSR++).

Table B: Comparison of other
kernels on REDS4.

Methods PSNR

w/ dynamic blur 28.78
w/ dynamic and Gaussian/disk blur 28.92

The generalization performance on real-
world videos can be further improved if
more types of kernels are considered. To
this end, we additionally train our model
by adding Gaussian/disk blur to simulate
camera-specific defocus. Then we test our model on synthetic data of REDS4
with the above blur. As shown in Table B, the model trained with these two
blur types achieves better performance.

F.2 Impact of the Order of Video Restoration

Table C: Comparison of different
order of VFI, VD and VSR.

Order PSNR/SSIM

VFI→VD→VSR 26.26/0.759
VD→VFI→VSR 26.24/0.759
VSR→VFI→VD 26.23/0.756

Ours 29.12/0.859

To investigate the impact of the order of VFI,
VD and VSR in baseline models, we change
the order for SuperSloMo, EDVR and Ba-
sicVSR++ and provide the results in Table
C. Since “VFI→VD→VSR” has slightly bet-
ter performance than other orders, we choose
it for the comparison in the paper.

F.3 Impact of Number of Frames

Table D: PSNR/SSIM of differ-
ent ntrain and ntest.
#frames ntest=5 ntest=10
ntrain=4 28.40/0.848 29.02/0.852
ntrain=5 28.81/0.857 29.12/0.859
ntrain=6 28.89/0.860 29.17/0.862

Using more frames can reduce the approxi-
mation error of FFT in the analytic solution
and benefit from information accumulation
in the recurrent video enhancement layer. As
shown in Table D, more training and testing
frames (denoted as ntrain and ntest) lead to
better PSNR/SSIM results. To balance the performance and computation cost,
we trained our model with 5 blurry LR frames and 25 clean HR frames.
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