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This document provides additional materials to supplement our main manuscript.
We first present more details about EFNet in Sec. 1, and then we show more in-
formation about the REBlur dataset in Sec. 2. In Sec. 4, we present more results
on the GoPro [4] and REBlur datasets. Finally, we discuss potential negative
impacts in Sec. 5.

1 More Details on EFNet

1.1 Supervision Attention Module

To help the second stage of EFNet also gain access to the input image, we
place a supervision attention module [10] between the two stages of EFNet. As
illustrated in Fig. 1, the feature maps from the first stage Fin ∈ RH×W×C first
generate a residual image, via a 1× 1 convolution. H, W , and C are the height,
width, and number of channels. The blurry image is added with the residual
image and we obtain the predicted deblurred image from the first stage. Then,
after a 1× 1 convolution and sigmoid function, the resulting attention maps are
added to the identity mapping path. Finally, the output Fout ∈ RH×W×C is
concatenated with the feature maps in the second stage.

1.2 Loss Function

We adopt the Peak Signal-to-Noise Ratio (PSNR) loss as the loss function for
training our network. The definition of PSNR is:

PSNR(x, y) = 20log10
MAX√
MSE

, (1)

where MAX is the maximum possible pixel value of the image, and MSE is the
mean squared error:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[x(i, j)− y(i, j)]2, (2)

where m, n are the number of rows and the number of columns in the images x
and y, respectively.



2 L. Sun et al.

Conv

Conv

Conv+Sigmoid

Blurry image Deblurred image from 1st stage

𝐹!" 𝐹#$%

Fig. 1: The architecture of the supervision attention module [10].

The definition of PSNR loss in our model is:

Loss = −1

2

2∑
i=1

PSNR(Xi, Y ) (3)

where Xi is the predicted image of the i-th stage in EFNet, and Y is the ground-
truth image.

2 More Details on REBlur dataset

2.1 Dataset Distribution

To enhance the generalization of the network for different objects and moving
processes, REBlur includes 12 kinds of linear and nonlinear motions for 3 differ-
ent moving patterns and for the camera itself, as detailed in Fig. 2. The dataset
consists of 36 sequences and 1469 groups of blurry-sharp image pairs with as-
sociated events, where 486 pairs are used for training and 983 for testing. We
include an additional set of 4 sequences including extreme blur, without ground
truth. Please refer to the supplement for more details on REBlur.

2.2 Event Camera Detail

We choose Insightness Seem 1 camera, which is a Dynamic and Active Pixel
Vision Sensor (DAVIS) outputting time-aligned 360×262 gray images and event
streams. For the convenience of data processing, we discard the last two columns,
so the image size is 360× 260 in the dataset. Table 1 shows detailed information
about our camera.
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Fig. 2: Distribution of different motion categories in our REBlur dataset.

Table 1: Detailed information about Insightness Seem 1 camera.

Generation SEEM1

Lens F2.0, 2.5mm, FOV 130°

Spatial resolution 320 (horizontal) × 262 (vertical) active pixels

Optical format 1/3.2 inch, pixel field is centered

Pixel pitch 13um

Data type Change detection events Image frames

Temporal resolution Up to 10kHz (configurable) Up to 30Hz (configurable)

Dynamic range >98 dB 50 dB

Shutter mode - Electronic global shutter

Sensitivity/

Intensity resolution

Configurable threshold down

to 50% contrast
10-bit on-chip ADCs

Latency
<1 ms for >150 lux scene illumination

<5 ms for >30 lux scene illumination
-

Readout USB 2.0 and MIPI-CSI 2 (under development)

Readout bandwith
∼12 Meps (USB 2.0)

>40 Meps (MIPI)
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2.3 Data Capture

We adopt the two-shot strategy in blurry-sharp image collection. To ensure the
motion of the object or the motion of the camera being the only factor that
changes in the two shots, we keep the illumination still and other objects in the
field of view of the camera still.

In the first shot, we capture images with motion blur for the pattern on
the slide-rail and corresponding event streams. In the second shot, according to
the timestamp ts of the blurry images, we select events within the time range
[ts − 125µs, ts + 125µs] and visualize these events in the preview of the sharp
image capture program. Referring to the edge information from high-temporal-
resolution events, we can relocate the slide-rail to the coordinate corresponding
to the timestamp ts by an electronic-controlled stepping motor and then capture
the latent sharp image.

Fig. 3 shows blurry images and corresponding sharp ground truth images
with visualized events in the time range [ts−125µs, ts+125µs]. In all sequences,
the object movement distance in the direction perpendicular to the optical axis
corresponds to a movement distance of less than one pixel on the sensor in the
image space.

2.4 Dataset evaluation and analysis

Rationality: The rationality and accuracy of our two-shot capturing method
can be supported by the following two facts: (1) Latent sharp image align-
ment. The positioning error of the high-precision slide-rail (0.05mm) and the
maximum displacement of the pattern within the exposure time corresponds to
projected distances of less than one pixel on the sensor in the image plane. (2)
Background consistency. Due to the highly stable optical laboratory environ-
ment, the illumination is strictly constant during the alignment process and the
acquisition of blurry images. For the background part of blurry and sharp images
in the same pair, PSNR is 44.94, indicating that they are highly consistent.
Relative PSNR/SSIM results: REBlur contains both object- and camera-
motion blur. For object-motion blur, the background of the blurry image is
identical to that of the sharp one, which results in overall higher scores for all
methods on REBlur than on GoPro, as they simply need to leave the background
unchanged. Thus, the average PSNR/SSIM value is higher than that in REBlur,
but it is harder to improve scores on REBlur than on GoPro.

3 More Training details

Dataset split: We use 2103 pairs for training and 1111 pairs for testing for
GoPro [4] (standard setting). We train EFNet on GoPro dataset with 4 Nvidia
Titan RTX GPUs and last for about 40 hours. We arrange 486 pairs for training
and 983 for testing for REBlur. The training and test set each contain three
different moving speeds, and distinct moving objects. Fine-tuning on REBlur is
conduct on 1 Nvidia Titan RTX GPU and last for about 10 minutes.
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(a) Blurry Image (b) Visual Event (c) Ground Truth

Fig. 3: Example images from the dataset collection procedure for REBlur.
(a): Blurry images in the first shot. (b): In the second shot, we align the pattern with
the visualized events. (c): The captured ground truth.

Training strategies: Fine-tuning on REBlur uses the same training strategies
as on GoPro, except for the l.r. and iterations. For the other image-only and
event-based methods, all the training and fine-tuning settings are the same for
a fair comparison.
Synthetic events in GoPro. We use ESIM [6] to produce synthetic events
from sharp image sequences. This is an common practice for the other event-
based image deblur methods [2,3,7,5].

4 More Qualitative Results

In this section we compare our EFNet with SRN [8], HINet [1], MPRNet [10],
SRN+ (the enhanced version of SRN), HINet+ (the enhanced version of HINet),
and BHA [5]. We show more qualitative results in Fig. 4 and Fig. 4.

4.1 GoPro Dataset

As illustrated in Fig. 4, our method restores the structural elements (i.e. num-
bers, characters, and lines) and detailed textures (i.e. face detail). Compared
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to state-of-the-art image-based and event-based methods, our method achieves
better restoration results.

4.2 REBlur Dataset

Fig. 4 shows more qualitative results from the REBlur dataset. Image-only meth-
ods (SRN [8], HINet [1], MPRNet [10]) perform poorly in such severe blurry con-
ditions. Event-based methods are more robust, but BHA [5] is prone to noise.
SRN+ and HINet+ show artifacts because of the insufficient use of event infor-
mation. Our EFNet achieves the best performance.

5 Potential Negative Societal Impacts

Since event cameras will likely go to mass production, some of the cell phones
may be equipped with this advanced sensor in the near future and our event-
based deblurring algorithm may be applied in these cell phones. Our algorithm
improves image deblurring performance compared to image-only methods, espe-
cially in severe blurry conditions. After mitigating motion blur in the images,
one potential negative impact is that intrusive shots are made easier and thus
cause bad social effects. This can be alleviated by forcing shutter sound and
other methods.

6 Limitations

Although we have achieved impressive deblurring results in most situations,
EFNet also shows performance degradation in the most adverse blurring condi-
tions. Here we show some failure examples on the additional set of the REBlur
dataset in Fig. 5 and Fig. 4 (b).

These are the most severe blur conditions. Even the basic shape of the moving
objects cannot be distinguished based only on the blurry image. Although the
deblurring performance is not ideal, the basic pattern and shape of the moving
object can be recognized. The main reason for failure in these examples is due
to the limitation of the hardware: (1) The temporal resolution of event
camera is not enough for such blurry conditions. This is determined by
the event camera itself and the degradation would be alleviated if the hardware
improved. (2) The refractory period makes each pixel not able to react
to next intensity changes after last events in a short time, and this
is also a random factor [9]. Because we train models on the synthetic events
from ESIM [6], this may be mitigated if more simulation settings are added in
ESIM [6].

References
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(b)

Blurry Image
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(c)

Blurry Image
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(d)

Fig. 4: More visual comparisons on the GoPro dataset. SRN+ and HINet+:
event enhanced versions of SRN [8] and HINet [1] respectively. Our method restores
the structural elements (i.e. numbers, characters, and lines) and detailed textures (i.e.
face detail). Compared to state-of-the-art image-based and event-based methods, our
method achieves better restoration results. Best viewed on a screen and zoomed in.
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Blurry Image

SRN [8] HINet [1] BHA [5] MPRNet [10]
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Fig. 3: (continued) More visual comparisons on the GoPro dataset. SRN+ and
HINet+: event enhanced versions of SRN [8] and HINet [1] respectively. Our method re-
stores the structural elements (i.e. numbers, characters and lines) and detailed textures
(i.e. face detail). Compared to image-based and event-based state-of-the-art methods,
our method achieves better restoration results. Best viewed on a screen and zoomed
in.
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(a) (b) (c) (d) (e)

Fig. 4: More visual comparisons on the REBlur dataset. SRN+ and
HINet+: event enhanced versions of SRN [8] and HINet [1] respectively. (a) is
from the test set and (b), (c), (d), and (e) are from the additional set of REBlur.
Image-only methods (SRN [8], HINet [1], MPRNet [10]) perform poorly in such
severe blurry conditions. Event-based methods are more robust, and our EFNet
achieves the best performance. Best viewed on a screen and zoomed in.



10 L. Sun et al.

(a) (b) (c) (d) (e)

Fig. 4: (continued) More visual comparisons on the REBlur dataset.
SRN+ and HINet+: event enhanced versions of SRN [8] and HINet [1] respec-
tively. (a) is from the test set and (b), (c), (d), and (e) are from the additional
set of REBlur. Image-only methods (SRN [8], HINet [1], MPRNet [10]) perform
poorly in such severe blurry conditions. Event-based methods are more robust,
and our EFNet achieves the best performance. Best viewed on a screen and
zoomed in.

(a) Blurry Image (b) Deblurred Image

Fig. 5: Failure example in the most severe blur condition. In the blurry
image, the chessboard cannot be delineated. The deblurred image shows some
artifacts, and some black squared of the chessboard are merged.
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