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Abstract. Traditional frame-based cameras inevitably suffer from mo-
tion blur due to long exposure times. As a kind of bio-inspired camera,
the event camera records the intensity changes in an asynchronous way
with high temporal resolution, providing valid image degradation infor-
mation within the exposure time. In this paper, we rethink the event-
based image deblurring problem and unfold it into an end-to-end two-
stage image restoration network. To effectively fuse event and image fea-
tures, we design an event-image cross-modal attention module applied
at multiple levels of our network, which allows to focus on relevant fea-
tures from the event branch and filter out noise. We also introduce a
novel symmetric cumulative event representation specifically for image
deblurring as well as an event mask gated connection between the two
stages of our network which helps avoid information loss. At the dataset
level, to foster event-based motion deblurring and to facilitate evalua-
tion on challenging real-world images, we introduce the Real Event Blur
(REBlur) dataset, captured with an event camera in an illumination-
controlled optical laboratory. Our Event Fusion Network (EFNet) sets
the new state of the art in motion deblurring, surpassing both the prior
best-performing image-based method and all event-based methods with
public implementations on the GoPro dataset (by up to 2.47dB) and on
our REBlur dataset, even in extreme blurry conditions. The code and our
REBlur dataset are available at https://ahupujr.github.io/EFNet/

1 Introduction

Motion blur often occurs in images due to camera shake or object motion dur-
ing the exposure time. The goal of deblurring is to recover a sharp image with
clear edge structures and texture details from the blurry image. This is a highly
ill-posed problem because of the infinitely many feasible solutions [2,10,53].
Traditional methods explicitly utilize natural image priors and various con-
straints [2,11,17,18,22,23,48]. To better generalize when addressing the deblur-
ring problem, modern learning-based methods choose to train Convolutional
Neural Networks (CNNs) on large-scale data to learn the implicit relationships
between blurry and sharp images [13,27,40,41,52]. Despite their high perfor-
mance on existing public datasets, these learning-based methods often fail when
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facing extreme or real-world blur. Their performance heavily relies on the qual-
ity and scale of the training data, which creates the need for a more general and
reliable deblurring method.

Event cameras [5,12,30,37] are bio-inspired asynchronous sensors with high
temporal resolution (in the order of µs) and they operate well in environments
with high dynamic range. Different from traditional frame-based cameras, event
cameras capture the intensity change of each pixel (i.e. event information) in-
dependently, if the change surpasses a threshold. Event cameras encode the
intensity change information within the exposure time of the image frame into
an event stream, making it possible to deblur an image frame with events [28].
However, because of sensor noise and uncertainty in the aforementioned thresh-
old, it is difficult to use a physical model to deblur images based solely on events.
Thus, some methods [15,24,35] utilize CNNs to deal with noise corruption and
threshold uncertainty. Nevertheless, these methods only achieve slight perfor-
mance gains compared to image-only methods, due to rather ineffective event
representations and fusion mechanisms between events and images.

In this paper, we first revisit the mechanism of motion blur and how event
information is utilized in image reconstruction. To deal with the inherent defect
of the event-based motion deblurring equation, we propose EFNet, an Event Fu-
sion Network for image deblurring which effectively combines information from
event and frame-based cameras for image deblurring. Motivated by the physical
model of event-based image deblurring [28], we design a symmetric cumulative
event representation (SCER) specifically for deblurring and formulate our net-
work based on a two-stage image restoration model. Each stage of the model
has a U-Net-like architecture [33]. The first stage consists of two branches, an
image branch and an event branch, the features of which are fused at multiple
levels. In order to perform the fusion of the two modalities, we propose an Event-
Image Cross-modal Attention (EICA) fusion module, which allows to attend to
the event features that are relevant for deblurring via a channel-level attention
mechanism. To the best of our knowledge, this is the first time that a multi-head
attention mechanism is applied to event-based image deblurring. We also enable
information exchange between the two stages of our network by applying Event
Mask Gated Connections (EMGC), which selectively transfer feature maps from
the encoder and decoder of the first stage to the second stage. A detailed abla-
tion study shows the effectiveness of our novel fusion module using cross-modal
attention, our gated connection module and our multi-level middle fusion design.
Additionally, we record a real-world event blur dataset named Real Event Blur
(REBlur) in an optical laboratory with stable illumination and a high-precision
electronically controlled slide-rail which allows various types of motion. We con-
duct extensive comparisons against state-of-the-art deblurring methods on the
GoPro dataset [27] with synthetic events and on REBlur with real events and
demonstrate the superiority of our event-based image deblurring method.

In summary, we make the following main contributions:
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– We design a novel event-image fusion module which applies cross-modal
channel-wise attention to adaptively fuse event features with image features,
and incorporate it at multiple levels of a novel end-to-end deblurring network.

– We introduce a novel symmetric cumulative event voxel representation for
deblurring, which is inspired by the physical model that connects blurry
image formation and event generation.

– We present REBlur, a real-world dataset consisting of tuples of blurry im-
ages, sharp images and event streams from an event camera, which provides
a challenging evaluation setting for deblurring methods.

– Our deblurring network, equipped with our proposed modules and event
representation, sets the new state of the art for image deblurring on the
GoPro dataset and our REBlur dataset.

2 Related Work

Image deblurring. Traditional approaches often formulate deblurring as an op-
timization problem [11,17,18,22,23,48]. Recently, with the success of deep learn-
ing, image deblurring has achieved impressive performance thanks to the usage
of CNNs. CNN-based methods directly map the blurry image to the latent sharp
image. Several novel components and techniques have been proposed, such as
attention modules [39,42], multi-scale fusion [27,41], multi-stage networks [8,50],
and coarse-to-fine strategies [9], improving the accuracy and robustness of de-
blurring. Despite the benefits they have shown for deblurring, all aforementioned
deep networks operate solely on images, a modality which does not explicitly
capture motion and thus inherently limits performance when facing real-world
blurry images, especially in extreme conditions.
Event-based deblurring. Recently, events have been used for motion deblur-
ring, due to the strong connection they possess with motion information. Pan et
al . [28] proposed an Event Double Integral (EDI) deblurring model using the
double integral of event data. They established a mathematical event-based
model mapping blurry frames to sharp frames, which is a seminal approach
to deblurring with events. However, limited by the sampling mechanism of event
cameras, this method often introduces strong, accumulated noise. Jiang et al . [15]
extracted motion information and sharp edges from events to assist deblurring.
However, their early fusion approach, which merely concatenates events into the
main branch of the network, does not account for higher-level interactions be-
tween frames and events. Lin et al . [24] fused events with the image via dynamic
filters from STFAN [54]. In addition, Shang et al . [35] fused event information
into a weight matrix that can be applied to any state-of-the-art network. To
sum up, most of the above event-based learning methods did not use event infor-
mation effectively, achieving only minor improvements compared to image-only
methods on standard benchmarks.
Event representation. Different from synchronous signals such as images from
frame-based cameras, events are asynchronous and sparse. A key point in how
to extract information from events effectively is the representation of the events.
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Fig. 1: (a): The architecture of our Event Fusion Network (EFNet).
EFNet consists of two UNet-like backbones [33] and an event extraction branch.
After each residual convolution block (“Res Block”), feature maps from the event
branch and the image branch are fused. The second UNet backbone refines the
deblurred image further. “SCER”: symmetric cumulative event representation,
“EICA”: event-image cross-modal attention, “SConv”: 4×4 strided convolution
with stride 2, “TConv”: 2×2 transposed convolution with stride 2, “SAM”: su-
pervision attention module [50]. (b): The Event Mask Gated Connection
module (EMGC) transfers features across stages guided by an event mask.

Event representation is an application-dependent problem and different tasks
admit different solutions. The event-by-event method is suitable for spiking neu-
ral networks owing to its asynchronous architecture [29,34,46]. A Time Surface,
which is a 2D map that stores the time value deriving from the timestamp of
the last event, has proved suitable for event-based classification [1,21,36]. Some
modern learning-based methods convert events to a 2D frame by counting events
or accumulating polarities [25,26,35]. This approach is compatible with conven-
tional computer vision tasks but loses temporal information. 3D space-time his-
tograms of events, also called voxel grids, preserve the temporal information of
events better by accumulating event polarity on a voxel [4,55]. For image deblur-
ring, most works utilized 2D event-image pairs [35] or borrowed 3D voxel grids
like Stacking Based on Time (SBT) from image reconstruction [43]. However,
there still is no event representation specifically designed for motion deblurring.

3 Method

We first introduce the mathematical model for the formation of blurry images
from sharp images that involves events in Sec. 3.1. Based on this model, we
pose the event-based deblurring problem as a deblurring-denoising problem and
base the high-level design of our network architecture on this formulation, as
explained in Sec. 3.2. We present our symmetric cumulative representation for
events, which constitutes a 3D voxel grid in which the temporal dimension is
discretized, in Sec. 3.3. This event representation is provided as input together
with the blurry image to our two-stage network. We then detail the two main
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novel components of our network: our novel event-image cross-modal attention
fusion mechanism (Sec. 3.4), which adaptively fuses feature channels associated
with events and images, and our event mask gated connection module between
the two stages of our network (Sec. 3.5), which helps selectively forward to the
second stage the features at sharp regions of the input from the encoder and the
features at blurry regions from the decoder of the first stage.

3.1 Problem Formulation

For an event camera, the i-th event ei is represented as a tuple ei = (xi, yi, ti, pi),
where xi, yi and ti represent the pixel coordinates and the timestamp of the
event respectively, and pi ∈ {−1,+1} is the polarity of the event [5,30]. An
event is triggered at time t only when the change in pixel intensity I surpasses
the threshold compared to the pixel intensity at the time of the last trigger. This
is formulated as

pi =

+1, if log
(

It(xi,yi)
It−∆t(xi,yi)

)
> c,

−1, if log
(

It(xi,yi)
It−∆t(xi,yi)

)
< −c,

(1)

where c is the contrast threshold of intensity change, which may differ across the
sensor plane.

Given the intensity of a latent sharp image L, according to [28], the corre-
sponding blurred image B can be derived by the Event-based Double Integral
(EDI) model:

B =
1

T

∫ f+T/2

f−T/2

L(t)dt

=
L(f)

T

∫ f+T/2

f−T/2

exp
(
c

∫ t

f

p(s)ds
)
dt,

(2)

where f is the middle point of the exposure time T , p(s) is the polarity compo-
nent of the event stream and L(f) is the latent sharp image corresponding to
the blurred image B. The discretized version of (2) can be expressed as

B =
L(N)

2N + 1

2N∑
i=0

exp

c sgn(i−N)
∑

j: m≤tj≤M

pjδxjyj

 , (3)

where sgn is the signum function, m = min{f+T/2(i/N−1), f}, M = max{f+
T/2(i/N − 1), f} and δ is the Kronecker delta, defined as

δkl(m,n) =

{
1, if k = m and l = n,

0, otherwise.
(4)

In (3), we partition the exposure time T into 2N equal intervals. Rearranging
(3) yields:

L(N) =
(2N + 1)B∑2N

i=0 exp
(
c sgn(i−N)

∑
j: m≤tj≤M pjδxjyj

) . (5)
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3.2 General Architecture of EFNet

The formulation in (5) indicates that the latent sharp image can be derived
from the blurred image combined with the set of events E = {ei = (xi, yi, ti, pi) :
f − T/2 ≤ ti ≤ f + T/2} (i.e., all the events which are triggered within the
exposure time), when events in this set are accumulated over time. We propose
to learn this relation with a deep neural network, named Event Fusion Network
(EFNet), which admits as inputs the blurred image and the events and maps
them to the sharp image. The generic form of the learned mapping is

Linitial = f3 (f1(B;Θ1), f2(E ;Θ2);Θ3) , (6)

where the blurred image and the events are mapped individually to intermediate
representations via f1 and f2 respectively and these intermediate representations
are afterwards passed to a joint mapping f3. Θ1, Θ2 and Θ3 denote the respective
parameters of the three mappings. The main challenges we need to address given
this generic formulation of our model are (i) how to represent the set of events E
in a suitable way for inputting it to the network, and (ii) how and when to fuse
the intermediate representations that are generated for the blurred image by f1
and for the events by f2, i.e., how to design f3. We address the issue of how to
represent the events in Sec. 3.3 and how to perform fusion in Sec. 3.4.

(3) is the ideal formulation for event-based motion image deblurring. How-
ever, in real-world settings, three factors make it impossible to restore the image
simply based on this equation:
– Instead of being strictly equal to a fixed value, the values of threshold c for a

given event camera are neither constant in time nor across the image [38,45].
– Intensity changes that are lower than the threshold c do not trigger an event.
– Spurious events occur over the entire image.
Most of the restoration errors come from the first two factors, which cause

degradation of the restored image in regions with events. We denote these regions
as Re. Taking the above factors into account, we design our network so that it
includes a final mapping of the initial deblurred image Linitial to a denoised
version of it, which can correct potential errors in the values of pixels inside Re:

Lfinal = f4(Linitial;Θ4). (7)

Two-stage backbone. We design EFNet as a two-stage network to progres-
sively restore sharp images from blurred images and event streams, where the
first and second stage implement the generic mappings in (6) and (7) respectively.
The detailed architecture of EFNet is illustrated in Fig. 1. Both stages of EFNet
have an encoder-decoder structure, based on the UNet [33] architecture. Each
stage consists of two down-sampling and two up-sampling layers. Between the
encoder and decoder, we add a skip connection with 3×3 convolution. The resid-
ual convolution block in UNet consists of two 3× 3 convolution layers and leaky
ReLUs with a 1 × 1 convolution shortcut. Recently, the Supervised Attention
Module (SAM) in multi-stage methods proved successful in transferring features
between different sub-networks [8,50]. Thus, we use SAM to connect the two
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stages of EFNet. In the first stage, we fuse features from the event branch and
the image branch at multiple levels using a novel cross-modal attention-based
block. Between the two stages, we design an Event Mask Gated Connection mod-
ule to boost feature aggregation with blurring priors from events. The details of
the two aforementioned components of EFNet are given in Sec. 3.4 and 3.5.

3.3 Symmetric Cumulative Event Representation

0 1 2 3 5

x

y

t

(a)

(b)

4

Fig. 2: Symmetric Cumulative
Event Representation (SCER).
Red/blue dots denote events with
positive/negative polarity respectively.

To feed the asynchronous events to
our network, we design a represen-
tation specifically suited for deblur-
ring. In (3), the accumulation of po-
larities via the inner sum on the right-
hand side indicates the relative inten-
sity changes between the target la-
tent sharp image L(N) and each of
the rest of latent sharp images in the
exposure time. The accumulation via
the outer sum on the right-hand side
represents the sum of all latent sharp
images. Based on this relationship,
we propose the Symmetric Cumula-
tive Event Representation (SCER).
As Fig. 2 shows, the exposure time T
of the blurry image is divided equally
into 2N intervals. Assuming 2N + 1
latent sharp images in T , the polarity

accumulation from the central target latent image L(N) to a single latent image
turns into a 2D tensor with dimensions (H,W ):

SCERi = sgn(i−N)
∑

j: m≤tj≤M

pjδxjyj
. (8)

For i = N , SCERN = 0, so we discard this tensor. The remaining 2N
tensors are concatenated together, forming a tensor which indicates intensity
changes between the central latent sharp image L(N) and each of the 2N other
latent images. In this way, SCER ∈ RH×W×2N includes all the relative intensity
values corresponding to the center latent sharp frame and it becomes suitable
for feature extraction with our image deblurring model. As the accumulation
limits change, our SCER also contains both information about the area in which
blur occurs (channel 0 and channel 2N − 1) and information about sharp edges
(channel N − 1 and channel N).

Our method discretizes T into 2N parts, quantizing temporal information of
events within the time interval T

2N . However, SCER still holds temporal infor-
mation, as the endpoints of the time interval in which events are accumulated is
different across channels. The larger N is, the less temporal information is lost.
In our implementation, we fix N = 3.
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3.4 Event-Image Cross-modal Attention Fusion
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Fig. 3: The Event-Image Cross-
modal Attention fusion module.
The size of the attention map is c× c.

Jointly extracting and fusing informa-
tion from event streams and images
is the key to event-based deblurring.
Previous work [15,24] simply multi-
plies or concatenates low-resolution
feature maps from the two modal-
ities, but this fusion approach can-
not model the long-range relations be-
tween events and images. Other meth-
ods estimate optical flow with events
and use it for deblurring [35], but this
estimation introduces errors.

We instead include a novel cross-
modal attention block at multiple
levels of EFNet. Contrary to self-

attention blocks, in which the queries (Q), keys (K) and values (V) all come
from the same branch of the network, our Event-Image Cross-modal Attention
(EICA) block admits as inputs the queries Qimage from the image branch and
the keys Kevent and values Vevent from the event branch, as shown in Fig. 3. The
input features from the two branches are fed to normalization and 1×1 convolu-
tion layers, where the latter have c output channels. We then apply cross-modal
attention between vectorized features from the two modalities via

Attention(Qimage,Kevent,Vevent) = Vevent softmax

(
QT

imageKevent√
dk

)
. (9)

We introduce the 1× 1 convolution layer to reduce the spatial complexity of
the above attention operation. In particular, c is chosen to be much smaller than
hw, where h and w are the height and width of the input feature maps, and the
soft indexing of Kevent by Qimage is performed at the channel dimension instead
of the spatial dimensions. Thus, the resulting soft attention map from (9) is c×c
instead of hw×hw, reducing the spatial complexity from O(h2w2) to O(c2) and
making the operation feasible even for features with high spatial resolution, as
in our case. Finally, the output of the attention operation is added to the input
image features and this sum is passed to a multi-layer perceptron consisting of
two fully connected layers with a Gaussian Error Linear Unit (GELU) [14] in
between. We use the EICA module at multiple levels of EFNEt to fuse event
information aggregated across receptive fields of varying size.

3.5 Event Mask Gated Connection Module

Previous work [31] predicts a mask indicating which areas of an image are
severely distorted, but this mask is not completely accurate. Apart from in-
formation about intensity changes, event data also contain spatial information
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about the blurred regions of the input image. Typically, regions in which events
occur are more severely degraded in the blurry image. Motivated by this observa-
tion, we introduce an Event Mask Gated Connection (EMGC) between the two
stages of our network to exploit the spatial information about blurred regions.

In particular, we binarize the sum of the first and last channel of SCER to
obtain a binary event mask, in which pixels where an event has occurred are
set to 0 and the rest are set to 1. As illustrated in Fig. 1(b), EMGC masks out
the feature maps of the encoder at regions where the event mask is 0, which are
expected to be more blurry, and masks out the feature maps of the decoder at
regions where the event mask is 1 (using the complement of the event mask),
which are expected to be less blurry. A skip connection is added beside the mask
operation. Feature maps with less artifacts in the encoder and better restored
feature maps are combined through the event mask gate. Besides, EMGC eases
the flow of information through the network, as it creates a shortcut through
which features can be transferred directly from the first to the second stage.

4 REBlur Dataset

Most event-based motion deblurring methods [6,15,24,35,47] train models on
blurred image datasets, such as GoPro [27], with synthetic events from ESIM [32].
Although the contrast threshold c in the event simulator varies across pixels as
in reality, a domain gap between synthetic and real events still exists because of
the background activity noise, dark current noise, and false negatives in refrac-
tory period [3,38,45]. Recently, Jiang et al . [15] proposed BlurDVS by capturing
an image plus events with slow motion, and then synthesizing motion blur by
averaging multiple nearby frames. However, motion blur in the ground-truth
images is inevitable in this setting and fast motion causes different events from
slow motion because of the false negatives in the refractory period of event cam-
eras [3,47]. Thus, a large-scale real-world dataset with blurry images, reliable
corresponding events, and ground-truth sharp images is missing.

We present a new event-based dataset for deblurring, Real Event Blur
(REBlur), to provide ground truth for blurry images in a two-shot way. To
collect REBlur, we built an image collection system in a high-precision optical
laboratory with very stable illumination. We fixed an Insightness Seem 1 event
camera and a Dynamic and Active Pixel Vision Sensor (DAVIS) to the optical ta-
ble, outputting time-aligned event streams and 260×360 gray images. To obtain
blurry-sharp image pairs under high-speed motion, we also fixed a high-precision
electronic-controlled slide-rail system to the optical table. In the first shot, we
captured images with motion blur for the pattern on the slide-rail and corre-
sponding event streams. In the second shot, according to the timestamp ts of
the blurry images, we selected events within the time range [ts−125µs, ts+125µs]
and visualized these events in the preview of the sharp image capture program.
Referring to the edge information from high-temporal-resolution events, we could
relocate the slide-rail to the coordinate corresponding to the timestamp ts by an
electronic-controlled stepping motor and then capture the latent sharp image.
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Table 1: Comparison of motion deblurring methods on GoPro [27]. †: event-
based methods, SRN+ and HINet+: event-enhanced versions of SRN [41] and HINet [8]
using our SCER, percentages in brackets: relative reduction in error with EFNet.

Method PSNR ↑ SSIM ↑
DeblurGAN [19] 28.70 (54.1%) 0.858 (80.3%)

BHA† [28] 29.06 (52.1%) 0.940 (53.3%)
Nah et al . [27] 29.08 (52.0%) 0.914 (67.4%)
DeblurGAN-v2 [20] 29.55 (49.4%) 0.934 (57.6%)
SRN [41] 30.26 (45.1%) 0.934 (57.6%)

SRN+† [41] 31.02 (40.0%) 0.936 (56.3%)
DMPHN [51] 31.20 (38.8%) 0.940 (53.3%)

D2Nets† [35] 31.60 (35.9%) 0.940 (53.3%)

LEMD† [15] 31.79 (34.5%) 0.949 (45.1%)
Suin et al . [39] 31.85 (34.0%) 0.948 (46.2%)
SPAIR[31] 32.06 (32.4%) 0.953 (40.4%)
MPRNet [50] 32.66 (27.6%) 0.959 (31.7%)
HINet [8] 32.71 (27.1%) 0.959 (31.7%)
Restormer [49] 32.92 (25.4%) 0.961 (28.2%)

ERDNet† [6] 32.99 (24.8%) 0.935 (56.9%)

HINet+† [8] 33.69 (18.4%) 0.961 (28.2%)
NAFNet [7] 33.69 (18.4%) 0.967 (15.2%)

EFNet (Ours)† 35.46 0.972

REBlur includes 12 kinds of linear and nonlinear motions for 3 different moving
patterns and for the camera itself. It consists of 36 sequences and 1469 blurry-
sharp image pairs with associated events, where 486 pairs are used for training
and 983 for testing. The supplement includes more details on REBlur.

5 Experiments

5.1 Datasets and Settings

GoPro dataset. We use the GoPro dataset [27], which is widely used in motion
deblurring, for training and evaluation. It consists of 3214 pairs of blurry and
sharp images with a resolution of 1280×720 and the blurred images are produced
by averaging several high-speed sharp images. We use 2103 pairs for training and
1111 pairs for testing, following standard practice [27]. We use ESIM [32], an
open-source event camera simulator, to generate simulated event data for GoPro.
To make the results more realistic, we set the contrast threshold c randomly for
each pixel, following a Gaussian distribution N (µ = 0.2, σ = 0.03).
REBlur dataset. In order to close the gap between simulated events and real
events, before evaluating models that are trained on GoPro on REBlur, we fine-
tune them on the training set of REBlur. We then evaluate the fine-tuned models
on the test set of REBlur. More details on this fine-tuning follow.
Implementation details. Our network requires no pre-training. We train it
on 256 × 256 crops of full images from GoPro. Full details about our network
configuration (numbers of channels, kernel sizes etc.) are given in the supplement.
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Blurry Image

SRN [41] HINet [8] BHA [28] MPRNet [50]

SRN+ [41] HINet+ [8] EFNet (Ours) GT
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Fig. 4: Visual comparison on GoPro. SRN+ and HINet+: event-enhanced
versions of SRN and HINet using SCER. Compared to image- and event-based
state-of-the-art methods, our method restores fine texture and structures better.

For data augmentation, horizontal and vertical flipping, random noise and hot
pixels in event voxels [38] are applied. We use Adam [16] with an initial learning
rate of 2× 10−4, and the cosine learning rate strategy with a minimum learning
rate of 10−7. The model is trained with a batch size of 8 for 300k iterations on 4
NVIDIA Titan RTX GPUs, which take 41 hours. Fine-tuning on REBlur involves
600 iterations and a single Titan RTX, the initial learning rate is 2× 10−5 and
other configurations are kept the same as for GoPro. We use the same training
and fine-tuning settings for our method and other methods for a fair comparison.
Evaluation protocol. All quantitative comparisons are performed using PSNR
and SSIM [44]. Apart from these, we also report the relative reduction in error
with the best-performing model compared to each method. This is done by
first converting PSNR to RMSE (RMSE ∝

√
10−PSNR/10) and SSIM to DSSIM

(DSSIM = (1− SSIM)/2) and then computing the relative reduction in error.

5.2 Comparisons with State-of-the-Art Methods

We compare our method with state-of-the-art image-only and event-based de-
blurring methods on GoPro and REBlur. Since most learning-based methods
using events do not have publicly available implementations, in the qualitative
comparison part, apart from BHA [28], we compare our method with SRN [41]
and HINet [8], the latter being the current best model on the GoPro benchmark.
To have a fair comparison, we also include event-enhanced versions of these two
models by concatenating event voxel grids and images in the input.
GoPro. We report deblurring results in Table 1. Compared to the best exist-
ing image-based [8] and event-based [6] methods, EFNet achieves 2.75 dB and
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Table 2: Comparison of motion deblurring methods on REBlur. Read
as Table 1.

Method PSNR ↑ SSIM ↑ Params (M) ↓
SRN [41] 35.10 (29.4%) 0.961 (35.9%) 10.25
NAFNet [7] 35.48 (26.2%) 0.962 (34.2%) 67.89
Restormer [49] 35.50 (26.0%) 0.959 (39.0%) 26.13
HINet [8] 35.58 (25.4%) 0.965 (28.6%) 88.67

BHA† [28] 36.52 (16.8%) 0.964 (30.6%) 0.51

SRN+† [41] 36.87 (13.4%) 0.970 (16.7%) 10.43

HINet+† [8] 37.68 (4.9%) 0.973 (7.4%) 88.85

EFNet (Ours)† 38.12 0.975 8.47

2.47dB improvement in PSNR and 0.013 and 0.037 improvement in SSIM resp.,
with a low parameter count of 8.47M. Despite utilizing an extra modality, other
learning-based methods using events such as D2Nets, LEMD, and ERDNet do
not improve significantly upon image-only methods. EFNet sets the new state of
the art in image deblurring, showing that our principled architecture with atten-
tive fusion leverages event information more effectively for this task. By simply
including our SCER to HINet [8], the resulting enhanced version of it also sur-
passes the best previous event-based method [6]. We show qualitative results on
GoPro in Fig. 4. Results of image-based methods are more blurry, losing sharp
edge information. BHA [28] restores edges better but suffers from noise around
them because of the factors described in Sec. 3.1. Learning-based methods using
events cannot fully exploit the motion information from events. By inputting
the concatenation of SCER with the image to SRN+ and HINet+, they both
achieve large improvements. However, results from SRN+ include artifacts and
noise due to the absence of a second stage in the network that would refine the
result. HINet+ introduces more artifacts, indicating that concatenating events
and images in the input is not sufficient. Based on the physical model for event
deblurring, EFNet achieves sharp and faithful results. Both dominant structures
and details are restored well thanks to our attentive fusion at multiple levels.

REBlur. We report quantitative results on REBlur in Table 2. Our model out-
performs all other methods in this challenging real-world setting. Fig. 5 depicts
qualitative results from the test set and the additional set. Even the best image-
based method, HINet, does not perform well on these cases of severe real-world
motion blur. Event-based methods are more robust to such adverse conditions
and less prone to overfitting on synthetic training data. Results from BHA are
sharper, but accumulation noise still exists. Simply adding events with our SCER
representation to the state-of-the-art image-based method [8] improves perfor-
mance significantly because of the physical basis of SCER, but still leads to arti-
facts and ghost structures. EFNet restores both smooth texture and sharp edges,
demonstrating the utility of our two-stage architecture and our cross-modal at-
tention for fusion. Thanks to the selective feature connection via EMGC, EFNet
restores blurry regions well while also maintaining the content of sharp regions.
More results, including failure cases, are provided in the supplement.
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Table 3: Ablation study of various components of our method on Go-
Pro [27]. “Early”: fusion by concatenation of event voxel grid and image, “Multi-
level”: fusion with our proposed architecture. SCER is used to represent events.

Architecture Events Fusion type EMGC Fusion module PSNR ↑ SSIM ↑
1 1-Stage ✗ n/a n/a n/a 29.06 0.936

2 1-Stage ✓ Multi-level n/a EICA 34.90 0.968

3 2-Stage ✗ n/a n/a n/a 32.15 0.954

4 2-Stage ✓ Early ✗ n/a 33.68 0.960

5 2-Stage ✓ Early ✓ n/a 33.79 0.961

6 2-Stage ✓ Multi-level ✓ Concat. 34.80 0.968

7 2-Stage ✓ Multi-level ✓ Multiply 34.86 0.968

8 2-Stage ✓ Multi-level ✓ Add 34.78 0.968

9 2-Stage ✓ Multi-level ✗ EICA 35.31 0.971

10 2-Stage ✓ Multi-level ✓ EICA 35.46 0.972

5.3 Ablation Study

Table 4: Comparison between
different event representations
on GoPro. “Stack”: temporal event
accumulation in a single channel.

Event representation PSNR ↑ SSIM ↑

None (image-only) 32.15 0.954

Stack 31.90 0.950

SBT [43] 35.12 0.970

SCER (Ours) 35.46 0.972

We conduct two ablation studies on Go-
Pro to analyze the contribution of differ-
ent components of our network (Table 3)
and our event representation (Table 4).
First, our EICA fusion block fuses event
and image features effectively, improving
PSNR by 0.6 dB or more and SSIM by
0.4% compared to simple strategies for
fusion such as multiplication or addition
(rows 6–8 and 10 of Table 3). Second, in-
troducing middle fusion at multiple lev-
els and using simple strategies for fusion
yields an improvement of ∼1 dB in PSNR
and 0.7% in SSIM over early fusion (rows

5–8), evidencing the benefit of using multi-level fusion in our EFNet. Third,
adding events as input to the network via early fusion of our SCER voxel grids
with the images improves PSNR by 1.53 dB and SSIM by 0.6% (rows 3–4),
showcasing the informativeness of the event modality regarding motion, which
leads to better deblurring. Fourth, adding a second stage in our network for pro-
gressive restoration benefits deblurring significantly, both in the image-only case
(rows 1 and 3) and in the case where our fully-fledged EFNet is used (rows 2 and
10). Fifth, connecting the two stages of EFNet with our EMGC improves the
selective flow of information between the two stages, yielding an improvement of
0.15 dB (rows 9–10). Finally, all our contributions together yield a substantial
improvement of 6.4 dB in PSNR and 3.6% in SSIM over the image-only one-stage
baseline, setting the new state of the art in motion deblurring.
Event representation. Introducing events can improve performance due to
the high temporal resolution of the event stream, which provides a vital sig-
nal for deblurring. Table 4 shows a comparison between SCER and other event
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Fig. 5:Visual comparison on the REBlur dataset. The first two columns are
from the test set of the REBlur dataset, and the rest are from the additional set,
for which ground truth is not available. Our method shows superior performance
in cases with severe blur both due to object motion and due to camera motion.
Best viewed on a screen and zoomed in.

representations, including SBT [43], which accumulates polarities in fixed time
intervals. We use the same number of intervals (6) for SBT and SCER for a
fair comparison. Based explicitly on physics, SCER utilizes event information
for image deblurring more effectively than SBT. Note that simply accumulat-
ing all events across the exposure time (“Stack”) deteriorates the performance
compared to not using events at all, which demonstrates that finding a suitable
event representation for deblurring, such as SCER, is non-trivial.

6 Conclusion

In this work, we have looked into single-image motion deblurring from the per-
spective of event-based fusion. Based on the physical model which describes
blurry image formation and event generation, we have introduced EFNet, an
end-to-end motion deblurring network with attention-based event-image fusion
applied at multiple levels of the network. In addition, we have proposed a novel
event voxel representation for deblurring. We have captured a new real-world
dataset, REBlur, including several cases of severe motion blur, which provides
a challenging evaluation setting. EFNet significantly surpasses the prior state of
the art in image deblurring, both on the GoPro dataset and on our new dataset.
Acknowledgments. This work was supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 12174341, Sunny Optical Technol-
ogy (group) co., Ltd, and the China Scholarship Council.
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