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Abstract. Learning a generalized prior for natural image restoration is
an important yet challenging task. Early methods mostly involved hand-
crafted priors including normalized sparsity, ¢o gradients, dark channel
priors, etc. Recently, deep neural networks have been used to learn var-
ious image priors but do not guarantee to generalize. In this paper,
we propose a novel approach that embeds a task-agnostic prior into
a transformer. Our approach, named Task-Agnostic Prior Embedding
(TAPE), consists of two stages, namely, task-agnostic pre-training and
task-specific fine-tuning, where the first stage embeds prior knowledge
about natural images into the transformer and the second stage extracts
the knowledge to assist downstream image restoration. Experiments on
various types of degradation validate the effectiveness of TAPE. The im-
age restoration performance in terms of PSNR is improved by as much
as 1.45dB and even outperforms task-specific algorithms. More impor-
tantly, TAPE shows the ability of disentangling generalized image priors
from degraded images, which enjoys favorable transfer ability to unknown
downstream tasks.

1 Introduction

A good image prior can help to distinguish many kinds of noises from origi-
nal image contents and improve the quality of images. Learning an image prior
is important and challenging for image restoration tasks. Early studies explore
specific degradation priors to achieve good performances on some low-level vi-
sion tasks, such as image dehazing [27, 78], image deblurring [46, 32], and image
deraining [39, 77]. However, most priors are hand-crafted and mainly based on
limited observations. With the popularity of deep learning, data-driven image
priors estimated by combining conventional degradation properties with deep
neural networks have been explored [34, 23,71, 31, 21, 45, 11]. But these networks
capturing task-specific priors, do not guarantee to generalize to unseen tasks.
Recently, there are also efforts in learning complicated priors for low-level
vision tasks [56,22,47,10,38,66]. These methods can be roughly grouped into
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Fig.1: The illustration of the differences of task specific learning and task-
agnostic learning. Our method aims to learn ‘what is normal image’ instead
of ‘what are rain, snow or other degradation’.

two types. The first type [10, 38] learns specific priors for each task, i.e., the priors
formulate ‘what is the distribution of specific noise’. Despite their effectiveness,
these methods are often difficult to transfer across different tasks. The second
type instead formulates generalized image priors, i.e., ‘what is the distribution
of normal images’. For this purpose, these methods [22, 47, 60] often make use of
scalable GANs [6] pre-trained on natural images, hence, the learned priors are
often hidden in a latent feature space, making it difficult to disentangle the noise
from image contents, especially in the scenarios of complex images.

In this paper, we propose Task-Agnostic Prior Embedding (TAPE), a novel
kind of priors that are easily generalized to different low-level vision tasks. An
intuitive comparison between TAPE and prior task-specific learning is illustrated
in Fig. 1. TAPE absorbs the benefits of the aforementioned approaches: on the
one hand, we learn the distribution of normal images from non-degraded natural
images, which does not rely on any true or synthesized degradation; on the other
hand, the priors are encoded in a simple prior learning module named PLM and
the main network can decode them by transformer decoders (query embeddings).
The training procedure of TAPE consists of two stages, namely, task-agnostic
pre-training and task-specific fine-tuning, where a pixel-wise contrastive loss is
designed in the first stage for unsupervised low-level representation learning.

In the experiment, we pre-train our model on four tasks (including deraining,
deraindrop, denoising, and demoireing), fine-tune and test it on these four known
tasks and four unknown tasks (desnowing, shadow removal, super-resolution, and
deblurring). After the one-time learning, the generalized image prior (through
pre-training) can be transferred to different tasks. Quantitative and qualitative
experimental comparisons show that the proposed TAPE improves the perfor-
mance for multiple tasks in both task-specific and task-agnostic settings. In par-
ticular, our method improves the PSNR by 1.45dB, 1.03dB, 0.84dB, 0.49dB, and
0.75dB on the Rain200L, Rain200H, Raindrop800, SIDD, and TTP2018 datasets,
respectively. The task-agnostic pre-training without touching the real noisy im-
age on SIDD increases PSNR by 0.31dB. For the unseen tasks in the pre-training,
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TAPE improves the PSNR by 0.91dB, 0.29dB, 0.41dB and 0.48dB on desnowing,
shadow removal, super-resolution, and deblurring, respectively.
In summary, the contributions of our work are:

— The possibility and importance of learning task-agnostic and generalized
image prior is addressed. As far as we know, TAPE is the first work to
(explicitly) represent the universal prior that can be used in multiple image
restoration tasks. We disentangle the generalized clean image prior of the
corrupted images from the degrading objects/noises.

— We propose a two-stage method named TAPE for image restoration to learn
the generalized degradation prior. The experiments demonstrate that our
method can be easily applied to pre-train image restoration algorithms with
other transformer backbones.

— We propose a pixel-wise contrastive loss in pre-training for learning better
generalized features for PLM, which increases the generalization ability.

2 Related Work

Image Restoration. Image restoration is a general term for a series of low-level
vision tasks, including denoising [70, 72, 24|, deraining [39, 77, 37], deblurring [34,
30], demoireing [55, 75, 25], etc. The aim of image restoration is to restore clean
x from corrupted y. The corrupted image y can be formulated as, y = Hx + v,
where H, x, and v are degradation matrix, underlying clean image, and noise,
respectively. Before the deep learning era, studies design hand-crafted features
of the degradation objects (e.g., rain, snow, etc.) for different image restoration
tasks. With the popularity of convolutional neural networks (CNNs), a handful
of deep-learning based methods are proposed to handle one or multiple types
of image restoration tasks. Most of these methods design task-specific models
or loss functions to achieve better performances. For image super-resolution [17,
28], Dong et al. propose SRCNN [17] to obtain high-resolution images from the
corresponding low-resolution images. For HDR imaging, solutions [74, 15, 35] are
proposed for using multiple exposed images to reconstruct an HDR image. Fu et
al. [20] introduce a ResNet-based CNN for image deraining. Li et al. and Yu et
al., propose FDRNet [38] and RL-Restore [66] to handle hybrid-distorted image
restoration tasks. Zheng et al. [76] propose a learnable bandpass filter network
for image demoireing. Different from these methods, we explore the power of
pre-training to handle several image processing tasks.

Image Degradation Prior and Natural Image Prior. Since image
restoration is ill-posed, the image prior can help to constrain the solution space.
From the Bayesian perspective, the solution & can be obtained by optimizing:

1
§<:au~gmin§||y—Hx||2 + \P(x), (1)

where the first term is the fidelity and the second term is the regularization.
Deep-learning based methods try to learn the prior parameters © and a compact
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inference through an optimization of a loss function on a training dataset with
corrupted-clean image pairs. Then Eqn. 1 can be refined as,

1
m@inﬁ(f{,x) s.t. X = argmin §||y — Hx|* + \d(x; 0). (2)

Image priors have been widely used in computer vision, including markov
random fields [53,79], dark channel prior [27,46], low rank prior [14], and total
variation [54, 3]. He et al. [27] propose dark channel prior for image dehazing. It
exploits the prior property that in an haze-free image there are pixels where at
least one color channel is of low value. Chen et al. [14] propose a low-rank model
to capture the spatial and temporal correlations between rain streaks. Different
from these task-specific priors, we use a pre-trained network to extract more
general priors from images. The prior queries are also being adjusted during
end-to-end training. Recently, deep image prior (DIP) [56] shows that image
statistics can be implicitly captured by the network’s structure, which is also a
kind of prior. Inspired by DIP, some attempts use a pre-trained GAN as a source
of image statistics [22,47,52,19,8,60]. MGAN prior [22] utilizes multiple latent
codes to increase the power of the pre-trained GAN model. DGP [47] fine-tunes
the weights generator together with the latent code and use the discriminator
to calculate the gap between the generated and real images.

Image Restoration Transformers. Transformer [57] is a new type of neu-
ral network framework of using mainly self-attention mechanism. It has achieved
many successes in computer vision tasks, including object classification [18], ob-
jection detection [80, 16, 7], etc. Recently, it’s also been used in image restoration
tasks [62, 10,69, 40,61, 36, 13,42]. Chen et al. [10] and Li et al. [36] develop pre-
trained transformers IPT and EDT respectively for some low-level vision tasks.
Wang et al. [61] and Zamir et al. [67] design novel transformer structures, named
Uformer and Restormer respectively, and obtain good performance on several im-
age restoration tasks. Most of these methods proposed new transformer-based
backbones for image restoration, whereas the goal of our work is a new pre-
training pipeline for image restoration. One can apply our method to pre-train
an image restoration algorithm with other backbones. We make use of the strong
fitting ability of transformers and the learning ability of the transformer decoder
to embed prior information.

3 Proposed Method

In this section, we first illustrate why we need to learn a task-agnostic prior
(Sec. 3.1). And then, the architecture (Sec. 3.2) and the pipeline (Sec. 3.3) of
our method are presented. At last, we briefly discuss the relationship to prior
work (Sec. 3.4).

3.1 Motivation

The motivation is shown in Fig. 1, where we assume that many image restora-
tion tasks (e.g., deraining, desnowing, etc.) are present. Most existing image
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Fig. 2: The network architecture of our TAPE-Net. It consist of two parts: Back-
bone and prior learning module. With the input of natural images, PLM learns
the features that natural images contain, not the features that noise contains.
This makes our approach task-agnostic.

restoration methods learn a specific model for each single task, trying to capture
task-specific priors (e.g., what patterns are likely to be rain and thus need to
be removed). While the learning procedure is straightforward, the trained mod-
els are difficult to be applied to new restoration tasks because the degradation
patterns may have changed significantly.

To alleviate the burden, we propose a different pipeline that is generalized
across different restoration tasks. The key is to learn task-agnostic priors (i.e.,
what patterns are likely to be from clean, non-degraded images) rather than
the aforementioned, task-specific counterparts. For this purpose, we embed an
explicit module, the prior learning module (PLM), into the network, and design a
two-stage learning procedure that (i) pre-trains the architecture on multi-source
clean images and then (ii) fine-tunes it on specific image restoration datasets.
The second stage often occupies a small portion of computation, showing the
advantage of our method.

3.2 Network Architecture

The TAPE-Net (see Fig. 2) consists of two components: backbone and prior
learning module. The backbone has a transformer architecture, containing a
CNN encoder for feature extraction, a transformer encoder, a transformer de-
coder, and a CNN decoder for mapping the deep features into restored images.
With the self-attention mechanism, the transformer can separate the generalized
prior from the corrupted images. Different from conventional transformer [18],
the decoder of our transformer takes additional prior queries, which comes from
the prior learning module.

CNN encoder and CNN decoder. The CNN encoder consists of two
3 x 3 convolutional layers. The RGB image, I € R3*H>*W ig the input of the
CNN encoder, which generates a feature map f. € R64*HXW with 64 channels
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and with the same resolution as I. The CNN decoder also consists of two 3 x 3
convolutional layers. It generates a reconstructed image O € R3*H>xW
Transformer encoder. The feature map f. is firstly flattened into small
patches {f1, f2,..., fN}, where fi € R¥4P* (i =1,2,.... N), N = Y is the total
patch number and P is the patch size. A learnable position encoding PF; with
the same size of f! is added to f! and the sum (denoted as ;) is sent into the
transformer encoder. The transformer encoder has n transformer blocks (n =1
in this work), each having a multi-head self-attention module and a feed forward

network. The process of the transformer encoder can be formulated as,

2/ = MSA (LN (z) ,LN (z) ,LN (z)) + « (3)
0. = FFN (LN (2')) + «/,

where MSA, FFN, and LN denote the multi-head self-attention module, feed
forward network, and linear layer in the conventional transformer [57], respec-
tively. ¢ = [x1,22,...,2N] and 0c = [0¢;, Ocys - - -, 0cy] are the input and the
output with the same size, respectively.

Prior learning module. The prior learning module (PLM) aims at provid-
ing additional prior queries to the transformer decoder. As shown in Fig. 2, PLM
encodes an image into a feature map, and it can be formulated as f, = Gn(Ig),
where f, is a 64 x H x W feature map representing the deep natural image fea-
tures and G, is a VGG19 network to extract image features. Then f;, is flattened

into a series of patches [f}, f2,..., f~] and combined with learnable parameters
[e1,€2,...,en]| as follows,
Q=lea+frea+ [l en+ ], (4)

where Q have the same length as o..

Transformer decoder. The transformer decoder has a similar architecture
as the transformer encoder except for an additional input of the prior queries )
(Similar with the object queries in [16]). In this paper, we use one transformer
decoder block that consists of two multi-head self-attention (MSA) layers and
one feed forward network (FFN). The transformer decoder is formulated as,

y = MSA (LN (0¢) + Q,LN (0.) + Q,LN (0.)) + 0c
y' = MSA (LN (y) + Q,LN (0c) ,LN (0¢)) +y (5)
o4 = FFN (LN (y')) + v/,

where o4 = [04,,0d,,---,0dy] denotes the outputs of the transformer decoder.
And then these patches are reshaped into fy with the size of 64 x H x W.

3.3 Optimization

3.3.1 The Training and Fine-tuning Pipeline

From Sec. 3.2, in our network design, PLM should extract statistics from the
non-degraded (Ground truth) image and use the statistics to assist the main
network for image restoration. However, ground truth is unavailable during the
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Fig.3: The optimization procedure of TAPE. TAPE contains two stages: task-
agnostic pre-training and task-specific fine-tuning. The dotted line means that
the network trained in the previous stage is used to initialize the network in the
next stage.

inference (test) stage. So PLM cannot extract statistics from it. To compensate,
we train an auxiliary module (backbone ¢ in Fig. 3) to generate a pseudo GT
from the degraded input. The pseudo GT, not being perfect, depicts the property
of a non-degraded image to some extent. The pseudo GT is then fed into PLM for
extracting general image priors, and the priors assist the main network (backbone
0) to generate the final output. As shown in Fig. 3, TAPE-Net has two stages:
task-agnostic pre-training and task-specific fine-tuning.

In the task-agnostic pre-training, multiple low-level vision tasks are trained
together, using corresponding datasets {Dj, ..., Dy, }, where D;, (i = 1,2,...,m)
represents the dataset for task i. In each iteration, a pair of images (a corrupted
image I.or and its ground truth I ) are selected from one dataset D;. The
ground truth Iy is sent into PLM to learn the prior queries, which are then sent
to the backbone for end-to-end training. The combination of the L, loss and the
proposed pixel-wise contrastive loss (see section 3.3.2) is used to optimize the
network (the weighting parameter is for the latter). Due to the task-agnostic
pre-training, both the backbone and PLM are well optimized.

As shown in the right part of Fig. 3, in the task-specific fine-tuning, because
we cannot take the ground truth as input as discussed above, we use an auxiliary
module (network ¢ in Fig. 3) to generate a pseudo GT from the degraded input
(Note that in our paper, the network ¢ can be any neural network or the back-
bone borrowed from the pre-training stage. For faster convergence, we use the
network pre-trained in the first stage). And then, the pseudo GT generated by
the network ¢ is served as the input of pre-trained PLM. The PLM outputs the
prior queries and help the pre-trained network 6 to predict better final result.
With the estimated pseudo ground truth, PLM can capture the natural image
priors better. There are two ways to optimize the parameters in the fine-tuning
stage, namely: 1) The network ¢ is fine-tuned by loss between pseudo GT and
GT firstly, and then fixed when fine-tuning other networks; 2) All components
are fine-tuned simultaneously. In the supplementary material, we will show that
these two optimization methods lead to similar performance.

3.3.2 Pixel-wise Contrastive Loss
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Fig. 4: The use of pixel-wise contrastive loss. z is selected from the prior queries
of the natural image as ‘query’. And 2T and z; are selected as the ‘positive’ and
‘negative’ elements in the contrastive loss, respectively.

PLM aims to estimate the distribution of natural patches. However, due
to the limited amount of training data, learning from the loss between predic-
tion and GT (unary term) is insufficient for accurate estimation. Inspired by
some self-supervised learning for high-level semantics (e.g. MoCo [26] and Sim-
CLR [12]) and image to image translation method [4, 48], we propose a pixel-wise
contrastive loss to offer another cue (binary terms) of estimation — the distance
between the features of I; and Iy (from the same location) shall be smaller than
that between features from different locations.

As shown in Fig. 4, in the task-agnostic pre-training stage, the degraded
image I4 and the natural image I, are put into PLM, then Q¢ and Q9 are
obtained as described in Sec. 3.2. We aim at minimizing the distance between
the features of Iy and Iy, from the same location while maximizing the distance
between features from different locations. For example, in Fig. 4, the roof without
rain should be more closely associated with the roof contaminated by the rain
than the other patches of the rainy input, such as other parts of the house or
the blue sky.

Suppose that ¢f is selected from Q¢ = {q¢¢, ¢4, ..., ¢4} as the ‘query’ el-

. . ¢ t gt t
ement in the contrastive loss. ¢/* and ¢J, q,,..., q]. are selected from Q9" =

J
{qlgt, qé’t, . qfvt} as the ‘positive’ and ‘negative’ elements in the contrastive loss,

respectively. Thus, the contrastive loss is formulated as,

T
ﬁzzgt (qgaqitvq]g‘t) ) (6)
t=1

G ) (7)
exp(af-af* /) + 55y exp(ag-af) /7) |
where T' = 256 is the feature number we randomly choose each time and the
temperature 7 is set to 0.07. The negative sample number m is set to 256 in our
work.

f(qf,q?t,qft)=—log[

3.4 Relationship to Prior Work

1) Compared with recent multiple degradation prior learning methods (e.g., IPT
and EDT), our TAPE formulates generalized image priors, which means that our
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Table 1: Datasets’ statistics (number of training and testing images) and quan-
titative comparison for two models (in terms of PSNR (dB)).

Dataset ‘R,ainZOOL Rain200H Raindrop800  SIDD TIP2018 ‘SnowlOOK ISTD DIV2K  REDS
#Train/test images‘ 1800/200 1800/200  800/60  96000/1280 10000/200‘ 10000/500 1330/540 800/100 24000/3000
Baseline 31.72 22.81 26.85 37.41 26.77 25.42 26.28  31.25 32.46
TAPE-Net (Ours) 33.17 23.84 27.69 37.90 27.52 26.33 26.57  31.66 32.94
PSNR Gain +1.45 +1.03 +0.84 +0.49 +0.75 +0.91 +0.29  +0.41 +0.48

method can generalize well to the pre-training-unknown tasks. Recently, Air-
Net [33] also has the ability to generalize to unknown tasks, but their learned
representation contains the degraded information instead of normal image in-
formation through contrastive learning. 2) Different from the methods [22, 47, 5,
60] where the learned image priors are hidden in the parameters of the genera-
tor, the learned prior of our model is explicit. It makes easy for our method to
disentangle the unwanted noise from the image contents in some complex image
restoration cases.

4 Experiments and Analysis

In this section, we evaluate the performance of TAPE on several low-level vision
tasks and conduct an ablation study.

4.1 Tasks and Datasets

For pre-training, we use five datasets, each for one type of degradation. We also
test on four more datasets for four tasks that are unknown in the pre-training
stage. For both training and testing, we resize images into the resolution of
256 x 256, and then crop them into 64 x 64 patches for balancing the train-
ing procedure with different data sizes. Note that same resizing and cropping
operations are also adopted for other models for a fair comparison. The eval-
uated tasks include denoising, deraining, deraindrop, demoireing, desnowing,
shadow removal, super resolution and deblurring. As shown in Table 1 for de-
tails, the used datasets are: SIDD [1] for denoising, Rain200H and Rain200L
[64] for deraining, Raindrop800 [49] for deraindrop, TIP2018 [55] for demoire-
ing!, Snow100K [43] for desnowing, ISTD [58] for shadow removal, DIV2K [2]
for super resolution and REDS [44] for deblurring.

4.2 Implementation Details

Pre-training. We use one Nvidia Tesla V100 GPU to train our model using
the Adam optimizer for 60 x 24000 iterations on the mixture of the five dataset

1 'We select a subset of TIP2018 and Snow100K with 10000 training image pairs and
200 test pairs; 10000 training image pairs and 500 test pairs, respectively.
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Fig.5: Visual deraining comparison among our methods and SOTA deraining
methods on Rain200L. The differences between the output and the ground truth
are shown followed the predicted results.

(SIDD, Rain200L, Rain200H, Raindrop800, and TIP2018). The initial learning
rate is set as 0.0002 and decayed to 0.0001 in the 20 x 24000th iteration with
batch size 4. In each iteration, we first randomly choose a dataset, from which
one clean-corrupted image pair is randomly selected. Fine-tuning. After pre-
training on all the datasets, we fine-tune the model on each desired task (e.g.,
denoising). TAPE-Net is fine-tuned with 200 epochs and a learning rate of 2e-4
for task-specific fine-tuning.

4.3 Pre-training & Generalization Ability

In this subsection, we illustrate that our method has good generalization perfor-
mance on both pre-training-known tasks and pre-training-unknown tasks.

Pre-training-known tasks, corresponding data. To illustrate the effec-
tiveness of our task-agnostic pre-training, we compare our pre-trained model
with the model without pre-training (denoted as ‘Baseline’ in Table 1). The
TAPE-Net improve the PSNR by 1.45dB, 1.03dB, 0.84dB, 0.49dB and 0.75dB
on the Rain200L, Rain200H, Raindrop800, SIDD, and TTP2018 dataset, respec-
tively. Please note that in image restoration, an 0.5dB improvement is usually
considered significant. It demonstrates the effectiveness of the pre-training and
the superiority of our model.

Pre-training-known tasks, different data. And we also do experiments
to explore the good generalization performance of our pre-trained model when
transferred to different distributions of data in the pre-training-known task. Our
experiments show that pre-training with synthetic Gaussian noises helps to re-
store the images corrupted by real noises (see Table 3). In practice, in the task-
agnostic pre-training, we use ground truth in SIDD with added synthetic Gaus-
sian noises as input, without touching the real noise images on the SIDD dataset.
Then the pre-trained model is fine-tuned on SIDD (using real-noise/non-noise
image pairs). The PSNRs increase by 0.19dB, and 0.31dB respectively when
the o of the added Gaussian noise (Sampled from N'(0,0)) are in [5,20], and
[1,50], respectively. When the range of the added Gaussian noise is larger, the
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Fig.6: Visual desnowing and shadow removal comparison among our methods
and SOTA general image restoration methods on Snow100K and ISTD.

Table 2: Quantitative comparison with 4 SOTA general image restoration meth-
ods with similar model sizes (in terms of PSNR (dB)).
Model size Snow100K ISTD Rain200L SIDD Raindrop800

IPT 2.51M 26.26  26.34 32.67 38.80 27.86
Restormer 0.93M 26.80 26.42 33.61 3891 27.98
UFormer 0.97M 26.50  26.27 32.66 38.84 27.70
MPRNet 1.11M 26.30  26.23 33.30 38.89 28.13
TAPE-Swin (Ours) 0.97TM 26.93 26.61 34.46 38.98 29.15

TAPE-Restormer (Ours) 1.07M 26.91 26.65 34.28 39.01 29.18

generalization ability of the model in the pre-training stage is stronger, and the
performance in the fine-tuning stage is better.

Pre-training-unknown tasks. To illustrate the generalization ability of
our model, we conduct several experiments on the tasks that are unknown to
the pre-training stage. In practice, we fine-tune the pre-trained model on four
new low-level vision tasks: desnowing, shadow removal, super resolution and
deblurring. As shown in Table 1, compared with the none-pre-trained model,
TAPE-Net improves the PSNR by 0.91dB, 0.29dB, 0.41dB and 0.48dB, which
demonstrates that the pre-trained model can capture more useful information
and features from natural images. Learning task-agnostic priors and pixel-wise
contrastive loss on pre-training stage can help the performance of fine-tuning on
the unknown tasks.

4.4 Comparisons with State-of-the-Arts

In this subsection, the comparison between our methods and the very recent
SOTA image restoration methods are shown in Table 2. we compare our meth-
ods (TAPE-swin and TAPE-restormer) with the 4 SOTA methods (IPT [10],
Restormer [67], UFormer [61], MPRNet [68]) with the similar model parameters
in 3 pre-training-known tasks and 2 pre-training-unknown tasks. The visual re-
sults on two pre-training-unknown tasks (desnowing and shadow removal) are
shown in Fig. 6. Our method removes the artifacts more thoroughly and retains
more details. In the supplementary material, we compare our TAPE-Net with 12
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Fig. 7: Visual deraining comparison (a) and visual demoireing comparison (b)
among our methods and task-specific methods.

Table 3: Quantitative comparison on SIDD. It shows the good generalization
performance of TAPE-Net when transferred to different distributions of data in
the pre-training-known task.
TAPE-Net W /o pre-train Pre-train (o € [5,20]) Pre-train (o € [1,50])
PSNR 37.41 37.60 37.72

Table 4: Ablation study of the impact of the multi-task pre-training, which
illustrates that adding more tasks will not harm the performance.
Raindrop800 Rain200L TIP2018‘Sn0w100K

RD+RL+RH 27.71 33.20 27.56 26.17
RD+TIP+RL+RH 27.70 33.18 27.54 26.26
RD+TIP+RL+RH+-S 27.69 33.17 27.52 26.33

state-of-the-art task-specific methods, including deraining methods (DDN [20],
SPANet [59], RESCAN [37], PreNet [51], BRN [50],SPDNet [65] and PCNet [29]);
demoireing methods ( DMCNN [55], MopNet [25], FHDe2Net [25], HRDN [63],
WDNet [41] and MBCNN [76]); and denoising methods (DnCNN [70], FFD-
Net [72], RDN [73], and SADNet [9]) on PSNR. Qualitative results on deraining
are shown in Figs. 5 and 7(a), showing that our methods get cleaner images and
recover more details. The visual demoireing results are shown in Fig. 7(b). Ours
can remove moire patterns successfully and restore the underlying clean image.
In order to show the performance of our method on pre-training-unknown
tasks, we compare ours with the existing SOTA multi-task pre-training method,
IPT [10]. We fine-tuned and tested the official pre-trained model of IPT on three
unseen tasks, namely, desnowing, shadow removal and deblurring. We compared
the gain of PSNR with and without pre-training, because the training patches
and model size of IPT and ours are different. The pre-training stage of IPT boosts
PSNR by 0.07dB, 0.19dB and 0.08dB, respectively, while the improvements of
TAPE (our method) are 0.91dB, 0.29dB and 0.48dB, larger than that of IPT.
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Table 5: The ablation study of the importance of each pre-trained part on the
Rain200H and the Raindrop-TestB dataset. ‘-’ and ‘v’ in the first three columns
mean that the model parameters are randomized and pre-trained respectively
before the finetuning. ‘X’ means the corresponding part does not exist.

Name ‘ Depth network ¢ network # PLM Rain200H Raindrop-TestB Model size (M)
Baseline X - X 25.57 26.13 0.76
With no-pre-trained all parts 2 - - - 25.46 25.96 1.12
With no-pre-trained ¢ 2 - v v 26.15 26.39 1.12
‘With no-pre-trained 6 2 v - v 25.96 26.35 1.12
With no-pre-trained 6§ and PLM 2 v - - 25.73 26.17 1.12
Full model | 2 v v v 2618 26.41 112

4.5 Ablation Study

Impact of the multi-task pre-training. We do ablation study to analyze the
effect of the number of datasets in the pre-training. We pre-train our models
on fewer datasets and compare with our original models. As shown in Table 4,
RD, TIP, RL, RH, and S mean Raindrop800, TIP2018, Rain200L, Rain200H,
and SIDD datasets respectively. ‘+’ means we use these datasets in the pre-
training stage. We do the experiments on three pre-trained-known datasets and
the maximum PSNR difference is 0.04 dB. This PSNR difference is within a
controllable error range. Increasing the dataset in the pre-training is meaning-
ful. Compared with pre-training with 3 datasets, pre-training with 5 datasets
increases the PSNR by 0.16dB on Snow100K.

Importance of pre-training of each component. In order to verify which
component is more important with pre-training (network ¢, network 6 or PLM),
we randomize the weights of corresponding parts of TAPE-Net before the fine-
tuning stage. As shown in Table 5, we do ablation study on Rain200H and
Raindrop-TestB. All the modified models in this table have the same backbone,
TAPE-Swin. Compared ‘With no-pre-trained ¢’ and the ‘Full model’, we can see
that the PSNRs drop slightly (0.03dB and 0.02dB). With no-pre-trained 6 effects
more than the network ¢ (the PSNRs drop by 0.22dB and 0.06dB). ‘Without
pre-training the network # and PLM’ also makes the PSNRs drop a lot. Thus,
the last four lines in Table 5 demonstrate that the effectiveness of pre-training
of # and PLM. The first two lines in Table 5 show that even if the model size is
larger than Baseline, the performance is not good without pre-training.

The ablation studies about the pixel-wise contrastive loss, optimization meth-
ods in task-specific fine-tuning can be see in the supplementary material.

4.6 Visualization Results

To validate that PLM learns useful and meaningful features with our proposed
pipeline, we visualize the features learned by PLM on the deraining task. We
put the input, pseudo GT and GT into PLM to get their respective output Q.
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Input

Fig. 8: The visualization of the PLM’s output, @. (a) The features of the pseudo
GT and GT are very similar, but most of the features of input have the features
of degraded objects. It means that the features of the pseudo GT is useful and
can help the image restoration of the backbone. (b) The last lines are one of the
predicted results of PLM.

As shown in Fig. 8(a), in the output features, some channels tend to preserve
the information of shapes (the first three feature maps) and edges (the last three
feature maps). The features of the pseudo GT and GT are very similar, but most
of the features of input have the features of degraded objects. It means that the
features of the pseudo GT is useful and can help the image restoration of the
backbone. From Fig. 8(b), we can see that with the help of pre-training, the
PLM module can correlate the information of similar textures or patches from a
long distance. Thus, the transformer decoder of the backbone can utilize these
long-distance similar areas/patches to restore the image.

5 Conclusions and Limitations

Conclusions. In this paper, we address the possibility and importance of learn-
ing task-agnostic and generalized image prior. We propose a pipeline named
TAPE to learn task-agnostic prior embedding for image restoration. TAPE has
two stages: task-agnostic pre-training and task-specific fine-tuning. Our task-
agnostic training strategy is able to learn generalized natural image prior. It has
good generalization performance when faced with pre-training-unknown tasks.

Limitations. Although our method shows generalized ability on a few image
restoration tasks, the learned statistics in PLM are still difficult to explain, either
in theory or by visualization results. Without these proofs, the PSNR and SSIM
numbers are only side evidences of the effectiveness of the task-agnostic priors.
In the future, we will continue exploring the possibility of disentangling the task-
agnostic priors as well as finding more essential ways to evaluate cross-task image
restoration. The pipeline may make the training time longer than the baseline.
And the performance of TAPE on mixed degradation tasks needs to be explored.
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