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Abstract. This document provides more information on three points:
To begin, we display more realistic instances of our proposed ReCoNet,
which completely demonstrates the improved visual effects as compared
to the state-of-the-art. Then, we demonstrate how our network could be
used to remove image noise and perform additional downstream tasks. Fi-
nally, we explore the model’s limits and present several failure instances.
The source code is included in this supplemental content.

1 DMore realistic instances of our ReCoNNet

We provide more visual comparisons to verify the superiority of our proposed
method against eight other state-of-the-art methods (DenseFuse|[2], FusionGAN/[6],
RFNI3], GANMcC][7], DDcGAN[5], MFEIF[4], U2Fusion[9]) on TNO and Road-
Scene Dataset, which are shown in Figure. 1 and Figure. 2, respectively.

2 Extension to high-level tasks

As our ReCoNet is designed for real scenarios, this section will exhibit the de-
noise effects (Figure 3), and show how our fusion method optimize the results of
the following applications. The visual comparisions of realizing object detection
with YoloV4[1], depth estimation with MiDaS[8] on fused images are present in
Figure 4 and Figure 5.

3 Limitations and failure cases

By predicting deformation fields ¢ = Ry(I;y, fm-s), the micro registration module
in our ReCoNet corrects visible images with slight misalignment. It will not
perform very well if the objects in the visible images do not correspond to ones
in the infrared images. As illustrated in Figure 6, the street light in the green
box is successfully adjusted, however the pillar in the red box is unable to correct
due to which in the infrared image being unmatched.
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Fig. 1. Visual results comparison between different methods on TNO Dataset Best
view on screen.
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Fig. 2. Visual results comparison between different methods on RoadScene Dataset
Best view on screen.

Infrared Image Visible Image DDcGAN DIDFuse ReCoNet

Fig. 3. Visual results comparison of de-noise between two representative methods and
our ReCoNet.
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Fig. 4. Visual results comparison of object detection between different methods on
Multi Spectral dataset, respectively.
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Fig. 5. Visual results comparison of depth estimation between different methods on
Multi Spectral dataset, respectively.
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Fig. 6. Visual results of our ReCoNet on asymmetric image pairs with misaligned.
From left to right: infrared image, visible image w/o misaligned, fusion result on visible
image w/o misaligned, visible image with misaligned, fusion result on visible image with
misaligned.
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