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Abstract. Recent advances in deep networks have gained great atten-
tion in infrared and visible image fusion (IVIF). Nevertheless, most exist-
ing methods are incapable of dealing with slight misalignment on source
images and suffer from high computational and spatial expenses. This
paper tackles these two critical issues rarely touched in the community by
developing a recurrent correction network for robust and efficient fusion,
namely ReCoNet. Concretely, we design a deformation module to ex-
plicitly compensate geometrical distortions and an attention mechanism
to mitigate ghosting-like artifacts, respectively. Meanwhile, the network
consists of a parallel dilated convolutional layer and runs in a recurrent
fashion, significantly reducing both spatial and computational complex-
ities. ReCoNet can effectively and efficiently alleviates both structural
distortions and textural artifacts brought by slight misalignment. Ex-
tensive experiments on two public datasets demonstrate the superior
accuracy and efficacy of our ReCoNet against the state-of-the-art IVIF
methods. Consequently, we obtain a 16% relative improvement of CC on
datasets with misalignment and boost the efficiency by 86%. The source
code is available at https://github.com/dlut-dimt/reconet.
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1 Introduction

Infrared and Visible Image Fusion (IVIF) generates a fused image presenting
complementary characteristics and having richer information than either modal-
ity. The generated image is visually appealing and more importantly favorable
for practical applications such as video surveillance [31], remote sensing [29,30],
and autonomous driving [6,40].

Conventional IVIF methods strive to find optimal representation of com-
mon features across modals and then to design appropriate weights for merg-
ing [17,28]. Recently, the community has witnessed the great success of deep
learning in various artificial intelligent applications due to its strong ability in
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Fig. 1. Comparisons of computational complexity and robustness on the TNO and
RoadScene datasets Our method outperforms all its counterparts with higher evalua-
tion scores, lower average runtime, fewer training parameters, and is more robust to
misalignment.

nonlinear fitting and feature extraction. Researchers employ deep networks to
learn mutual features [23,21,27,41,26,44] or fusing strategies given training ex-
amples for IVIF [13,14,19,16]. These approaches can produce favorable fusion
especially for human inspection in controlled scenarios, e.g., fixed capturing de-
vices and/or well-aligned input images [13,19]. Unfortunately, two vital issues
still remain unresolved for existing IVIF methods in order to significantly foster
subsequent Computer Vision (CV) tasks including object detection [24,47,46],
tracking [12,43,2], and semantic segmentation [5,33,9].

First, existing IVIF approaches, either conventional [36,4] or deep-learning
based ones [42,22,38], are typically sensitive to misalignment on input images.
Slight shifts or deformations on one modality bring evident geometrical distor-
tions on image structures and ghosting-like artifacts in the regions of textural
details, as shown in Fig. 1, which substantially deteriorate downstream CV al-
gorithms. Only a tiny fraction of works attempt to mitigate these unpleasant
effects. Ma et al. [25] proposed total variation minimization that separately
strengthens geometric structures in infrared images and preserves textures in
visible inputs. However, these methods evidently smear details without exploit-
ing complementary information between these two modalities. Additionally, its
iterative optimizing process demands intensive gradient computations resulting
in time-consuming fusion. Other deep-learning based methods [19,15,18,20,10]
incorporate the attention/mask mechanism to bolster the misalignment’s ro-
bustness, avoiding artifacts by reducing the weight of mismatched patches. Yet
these attention/mask mechanisms have difficulty portraying correlations across
different modalities, resulting in small, tiny artifacts in their fused results.

Second, the state-of-the-art methods demand a large space to store numerous
network parameters and lag behind real time running, as illustrated in circles and
time values in Fig. 1, though deep methods accelerate fusion with a large margin
over conventional approaches. The major bottleneck lies in that these deep have
to stack multiple layers of convolutional blocks to learn common features shared
by infrared and visible images presenting significant differences on appearance.
Meanwhile, training these huge networks require a large number of image pairs
unavailable in practice.
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This study addresses these two critical issues by developing a recurrent light
network that effectively and efficiently corrects both structural distortions and
textural artifacts brought by misalignment. Specifically, we train a micro reg-
istration module (R) to predict deformation fields between input images. This
module explicitly corrects distortions on geometrical structures caused by pixel
shifts. We also learn attention maps from both modalities (σir and σvis) that
discover the salient regions in respective inputs. Hence, textures in the visible
input weigh more in the fusion process while differentiate repeated patterns of
high frequency caused by spatial offsets, thus implicitly attenuating ghosting
artifacts. Catering for high efficiency, we design a parallel dilated convolutional
layer (PDC) that learns contextual information with multiple scale receptive
fields. We train one set of parameters of this simple PDC layer and recurrently
run the network (F) cascading the attention and lightweight PDC modules in
the fusion workflow of Fig. 3. This recurrent process saves the space for network
parameters and iteratively improves fusion quality. Fig. 1 demonstrates that our
approach achieves higher numerical scores, lower computation costs, and fewer
parameters on two public available datasets compared with the state-of-the-art.
We summarize the our main contributions as follows:

– To our best knowledge, this is the first work to jointly learn deep networks
for both registration and fusion on mid-wave infrared and visible images,
which enables generating images robust to misalignment of sources.

– We design a deformation module to explicitly compensate geometrical dis-
tortions and an attention mechanism to mitigate remaining ghosting-like ar-
tifacts. This design properly tackles two different types of undesired effects
occurring in structural and textural regions of a given scene, respectively.

– We develop a parallel dilated convolutional layer and a recurrent mechanism,
significantly reducing both spatial and computational complexities.

2 The Proposed Method

In this section, we will introduce our motivation and the network architecture of
our ReCoNet. In addition, the loss function is also illustrated in the following.

2.1 Motivation

In real-life scenarios, pixel-level registered infrared and visible images are un-
available caused by insuperable internal and external factors. As illustrated in
Fig. 2, we show three typical factors that frequently occur in genuine acquisi-
tions. (i) In most of the encapsulated devices, supposing the internal systems
have been working for an extended period or in a high-temperature internal en-
vironment, the Complementary Metal-Oxide-Semiconductor (CMOS) produces
noises into the image. (ii) For the server environments, e.g., desert and tropical
forest, the refraction of hot airflow may cause severe distortion on the source
images. (iii) The bumpy roads, fast-moving objects, or non-synchronous multi-
vision cameras may degenerate the source images [45], e.g., motion blur and



4 Z. Huang et al.

Fig. 2. Three representative misalignment situations that occur in actual scenarios.

transportation. Slight shifts or deformations on one modality bring evident ge-
ometrical distortions; few existing methods can overcome these issues because
they only perform fusion on pixel-level registered pairs. Based on this obser-
vation, we raise a recurrent correction network for realizing IVIF, which has
sufficient capacity to deal with sight misalignment source inputs.

Apart from that, most previous fusion approaches take every effort to strengthen
the network with a crease of depth and width, achieving state-of-the-art perfor-
mance. However, these catastrophic increases of network layer may lead to a
significant requirement of computation and memory, thus making them difficult
to apply them in the follow-up high-level computer vision tasks, e.g., object de-
tection, depth estimation, and object tracking. Consequently, a parallel dilated
convolutional layer and a recurrent learning mechanism are sophisticatedly de-
signed in our method to boost computational efficiency.

2.2 Micro Registration Module

The micro registration module R contributes to alleviate the slight misalignment
errors cased by geometric distortions or scaling. It consist of two components:
a deformation field prediction network Rϕ and a re-sampler layer RS . The de-
formation field ϕ is employ to represent the transformation, which allow our
method to map images non-uniformly accurately.

Supposing given an infrared image x and a distorted visible image ỹ, Rϕ

aims to predict a deformation field ϕỹ→y = Rϕ(x, ỹ), describing how to align ỹ
to y non-rigidly. The deformation field ϕ ∈ Rh×w×2, in which each pair ϕh,w =
(∆xh, ∆xw) ∈ R2 indicates the deformation offset for the (h,w) pixel vh,w in ỹ.
Our R mainly focuses on the fusion effect after registration, so that an U-Net like
micro module is designed. The detailed architecture is given in the bottom-left
conner of Fig. 3.

To apply geometric transformations to the image, we use a re-sampler layer
RS which takes the deformation field ϕỹ→y generated by Rϕ and applies it to
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Fig. 3. Methodology framework: (a) pseudo-distortion data generation; (b) our Re-
CoNet workflow; (c) micro-registration (MR) module architecture; and (d) pipeline of
biphasic-recurrent fusion (BF) module.

the distorted visible image ỹ. The value of the transformed visible image ȳ at
pixel vh,w is calculated by the equation:

ȳ [vh,w] = ỹ
[
vh,w + ϕỹ→y

h,w

]
. (1)

2.3 Biphasic Recurrent Fusion Module

Contextual features (e.g., edges, targets, and contours) play a vital role in the
fusion process. However, with an increase of the network’s depth, the contextual
features degrade gradually, resulting in blurred targets and unclear details on
the fusion results. To deal with this issue, previous works attempt to design var-
ious attention mechanisms or bring in enlarge the width of network (e.g., adding
dense or residual blocks). Actually, such aforementioned attention mechanisms
have difficulty characterizing contextual features from the source images. The
increasingly model architecture may lead to a significant requirement of com-
putation and memory. Thus, we propose a biphasic recurrent fusion module to
acquire high computational efficiency for sufficient contextual features represen-
tation at multiple scales.

Baphasic Attention Layer: To obtain the salient features and keep contextual
consistency with the source images, a biphasic attention layer is proposed. It
is composed of a max-pooling operation, an average-pooling operation, and a
convolutional layer without bias. The maximum and average values of the pixels
at each point of the two images are taken and combined as the input of the
convolutional layer. Let A denote the biphasic attention layer, Ia and Ib as
two input images, respectively, this process can be expressed as the following
equation:

A(Ia, Ib) = θA ∗ [max(Ia, Ib), avg(Ia, Ib)] ,
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where ∗ denotes the convolution operation, θA denote the parameter of the con-
volutional layer in our attention layer, and we concat max(Ia, Ib) and avg(Ia, Ib)
as the input of attention layer. As shown in Fig. 3, the network computes atten-
tion map σx and σy from input images group {x, u, ȳ} according equation:

σir = Ax(x, ui) σȳ = Aȳ(ȳ, ui),

where Ax and Ay denote infrared and visible attention layer, respectively, while
the ui indicates the fused result of the last recurrence.

In addition, thanks to biphasic attention map, we can obtain more desired
emphasis on contextual features and also make our method implicitly compatible
with slight alignment errors by reducing the weight of the slightly distorted
region such as non-smooth edge and ghosts.
Parallel Dilated Convolutional Layer: We develop a parallel dilated con-
volutional layer to extract features from the source images efficiently. A group
of dilated convolutional layers with sawtooth wave-like dilated factors increases
receptive field without losing neighboring information. Convolutions with the
same kernel size 3× 3 on three dilated paths have their receptive field with dif-
ferent dilated factors. As shown PDC in Fig. 3, the dilation rates are set as 1, 2, 3
receptively. Thus, the three parallel convolutional paths have receptive fields of
3× 3, 5× 5, and 7× 7.

To provide a formal description, let f i
in denote the input for the dilated

convolutional layers at the i-th recurrence. The output feature map f i
out of the

recurrent parallel dilated convolutional layers is gradually updated as follows:

f i
out = {Ck(f i

in)}k∈{1,2,3}, C(f i
in) = θkC ∗ f i

in + bk
C ,

where θkC and bk
C denote the parameter and bias of the convolutional layer with

dilation rate equaling k.
Recurrent Learning:We raise a recurrent architecture to replace time-consuming
multi-layer convolution to extract contextual features from a coarse-to-fine man-
ner. We can reduce the computational complexity overhead of building the graph
by partially reusing the computational graph for dynamically graph network
frameworks such as PyTorch[32]. As shown in Fig. 4, compared to a series net-
work structure, we will spend a little more time in the first loop used to build
the graph than the no-loop structure, but for each subsequent loop, we will save
about 27% of the time. Overall, our recurrent architecture reduces about 15%
of the time, 33% parameters, and 42% GPU memory. Such recurrent learning
allows ReCoNet to extract image features from contextual information and meet
real-time standards(≥ 25fps) [11]. Due to the parameters and memory reduc-
tion, our ReCoNet can be deployed on mobile devices.

2.4 Loss Functions

The total loss function Ltotal of our network is accomplished to two loss term, the
fusion loss Lfuse and the registration loss Lreg. The fusion loss ensures the net-
work to generate the fused result with better effects and rich information, while
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Fig. 4. Efficiency comparison of our recurrent and series architectures with the same
floating point operations (FLOPs).

the registration loss contributes to constrain and refine image distortion caused
by misalignment. We train our network minimize the following loss function:

Ltotal = λLfuse + (1− λ)Lreg, (2)

where λ is a trade-off parameter.
The fusion loss consists of two loss terms. Structure similarity LSSIM is em-

ployed to maintain the over structure from light, contrast and structure informa-
tion aspect, while Lpixel is used to balance the pixel intensity of the two source
images. Therefore, Lfuse is expressed as:

Lfuse = γLSSIM + (1− γ)Lpixel, (3)

where γ is the weight of two loss items. Specifically, we constrain our fused result
to have the same fundamental architecture as the source images, and hence the
LSSIM loss is defined as:

LSSIM = (1− SSIM (u, x)) + (1− SSIM (u, y)) . (4)

Similarly, the fused results should balance the pixel intensity distribution
from both infrared and visible images, and the pixel loss can be formulated as:

Lpixel = ∥u− x∥1 + ∥u− y∥1 , (5)

where ∥·∥1 denotes the l1-norm.
Apart from that, the registration loss Lreg also plays a key role in correcting

the distortion, which can be expressed as:

Lreg = ηLsim + (1− η)Lsmooth, (6)

where Lsim denotes similarity loss, and Lsmooth is a smoothing loss that targets
ensure to generate a smooth deformation. η is trade-off parameter in balancing
the two terms.

More precisely, Lsim is calculated as:

Lsim = ∥ϕỹ→y − (−ϕy→ỹ)∥22 , (7)

where ϕỹ→y denotes deformation field and ϕy→ỹ expresses the generated random
deformation field, respectively. As our framework mainly focuses on the fusion
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effect after registration, the −ϕy→ỹ is roughly used as the ground truth of the
deformation field for our register to converge. These slight errors introduced in
this process will be eliminated in our recurrent fusion mechanism.

For each voxel p in 2D spatial domain Ω, the Lsmooth can be specifically
defined as:

Lsmooth =
∑
p∈Ω

∥∇ϕ (p)∥11 , (8)

where ∇ denotes the approximate spatial gradients using differences between
neighboring voxels.

3 Experiments and Results

We first introduce the datasets, evaluation metrics and training details. Then we
compare the proposed method against a broad range of the eight state-of-the-
arts methods (i.e., DenseFuse [13], FusionGAN [26], RFN [14], GANMcC [27],
MFEIF [19], PMGI [44], DIDFuse [16] and U2Fusion [41]) on aligned/misaligned
dataset, respectively. Besides, we also provide the complexity evaluation, the
mean opinion score analysis and the extensive ablation experiments. All experi-
ments are conducted with Pytorch on a computer with Nvidia V100 GPU.

3.1 Dataset and Preprocessing

Dataset: Both our aligned and misaligned fusion experiments are conducted
on the TNO [37] and RoadScene [41] datasets. We generate infrared images
with different degrees of distortion by randomly using deformation field. In each
aligned/misaligned IVIF experiment, we randomly selected 20/180 pairs of im-
ages their corresponding TNO/RoadScene datasets as training samples.
Evaluation Metrics: We employ three existing statistical metrics including
standard deviation (SD), entropy (EN) and correlation coefficient (CC), to com-
prehensively evaluates the quality of the fused images from different aspects.
Training Details: The λ, γ and η are set as 0.6, 0.28, and 0.78, respectively.
The Adam optimizer updates the parameters with the learning rate of 0.001
and a total epoch of 300. The micro registration Rϕ and the biphasic recurrent
fusion module F are jointly trained.

3.2 Results on Aligned Dataset

Qualitative Comparisons: Fig. 5 shows eight representative fused images gen-
erated by different models. Visual inspection shows that, our method has obvi-
ous advantages over the comparative models. Although other methods achieve
meaningful fused results, they still remain problems, such as unclear thermal
targets (see the green box in the Fig. 5 of DenseFuse, RFN and U2Fusion),
blurred details (see the red box in the Fig. 5 of GANMcC and DIDFuse). On
the contrary, our method can generate visual-friendly fused results with clear
target, distinct contrast and abundant details.
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Fig. 5. Visual comparisons of our ReCoNet with state-of-the-art methods on the
aligned TNO dataset.

Quantitative Comparisons: Subsequently, the quantitative results on 15/40
image pairs of the TNO/RoadScene dataset are shown in Fig. 6. Obviously, our
method reach the values for two metrics (SD and EN), followed by DIDFuse
and U2Fusion. For the CC metric, our method only follows behind FGAN by a
narrow margin on the TNO dataset.

Evaluation on TNO

SD EN CC

Evaluation on RoadScene

SD EN CC

DenseFuse FusionGAN RFN GANMcC PMGI MFEIF DIDFuse U2Fusion Ours

Fig. 6. Quantitative comparisons with eight IVIF methods on TNO and RoadScene
datasets, respectively. In the boxes, the orange lines and the green tangles denote
medium and mean values.

3.3 Results on Slightly Misaligned Dataset

Qualitative Comparisons: As our method has the ability to fuse image pairs
with slightly misalignment, we further test its fusion performance against other
state-of-the-art methods on sight misaligned TNO and RoadScene datasets, re-
spectively, which is shown in Fig. 7. Obviously, other methods suffer structural
distortion or undesirable halos on their fused results. By comparison, our method
overcomes the limitation of undesirable artifacts caused by misalignment in im-
age pairs to a certain degree. This mainly benefits from the structure refinement
and recurrent attention module in the training process.
Quantitative Comparisons: As shown in Fig. 8, we evaluated the CC metric
of these methods on selected 20 images from TNO/RoadScene dataset with four
different tranform: random noise, elastic transform, affine transform and mixed
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Fig. 7. Visual comparison of our method with eight state-of-the-art methods on the
slightly misaligned TNO and Roadscene datasets.

transform. It is easy to notice that as the transform applied to the input images,
the scores of DenseFuse, PMGI, DIDFuse and U2Fusion drop down dramatically.
As the MFEIF that uses the Attention mechanism, it exhibits some resistance to
random noise. Since FusionGAN is a gradient transfer-based method, the elastic
transform does not disturb it much. On the contrary, our method has a strong
ability to deal with all four transforms.

DenseFuse FusionGAN RFN GANMcC PMGI MFEIF DIDFuse U2Fusion Ours

CC on TNO / RoadScene

Fig. 8. CC matrix comparison with eight IVIF methods on the TNO and RoadScene
dataset. The five scores in each method group represent, from left to right: original,
datasets with random noise, with elastic transform, with affine transform dataset and
with mixed transform dataset, respectively.

3.4 Computational Complexity Analysis

As shown in Table. 1, a complexity evaluation is introduced to evaluate the
efficiency of our method from three aspects, i.e., training parameters, FLOPs
and runtime. It worth to pointing that our method have the fastest average
running speed and minimum size. This indicates the efficiency of our ReCoNet,
which can serve practical vision tasks well.
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Table 1. Computational efficiency comparison with a series of completive CNN-based
methods, the value is tested on GPU.

Methods DenseFuse FusionGAN RFN GANMcC PMGI MFEIF DIDFuse U2Fusion OursF OursR−F

SIZE(M) 0.074 0.925 10.93 1.864 0.042 0.158 0.261 0.659 0.007 0.209

FLOPs(G) 48.96 497.76 - 1002.56 745.21 25.32 18.71 366.34 1.162 12.54

TIME(s) 0.251 0.124 0.238 0.246 0.182 0.045 0.055 0.123 0.024 0.052

3.5 Mean Opinion Score Analysis

We selected 20 typical image pairs from each dataset (i.e., aligned/misaligned
TNO/RoadScene) for the subjective experiment. Ten computer vision researchers
rated the fused images’ overall visual perception, target clarity, and detail rich-
ness. Fig. 9 shows the sorted mean opinion score of all methods after normaliza-
tion. Note that our method gets the highest rate for both groups, indicating the
outstanding visual perception effects.

We conduct the additional subjective experiment on the aligned/misaligned
TNO/Roadscene dataset of these eight IVIF methods, in which we select 20
typical image pairs from each dataset. The misaligned datasets are generated
by transforming the infrared image with three kinds of transformation meth-
ods (i.e., affine, elastic and both of them). We have found ten computer vision
researchers, to provide a score from three aspects (i.e., overall visual perception,
target clarity and richness of details) for the fused image. Fig. 9 shows the sorted
mean opinion score (MOS) of all methods after normalization, in which the shade
of the color indicates the level of the score (yellow: the best, purple: the worst).
Note that our method acquires the highest score towards all the testing image
pairs, which indicates our method is more in line with the human visual system.

Fig. 9. Heat maps of MOS towards all methods on 20 typical image pairs from aligned
and slightly misaligned datasets, respectively. Note that our method achieves more
significant advantages when fusing the misaligned pairs.
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3.6 Ablation Studies

Discuss The Iteration in Attention Module: Fig. 10 exhibits the effect of it-
erations in recurrent attention learning the on the fusion result. According to the
fused results, we discover that with the increase of the number of iteration in our
attention module, the fused results tend to achieve a better visual effects.Both
texture details and targets are become more clearly. This mainly benefits from
the progressive recurrent attention module, which allows each iteration to have
a positive effect on the fused result.

Fig. 10. A step-by-step visual result of our recurrent learning mechanism.

Ablation of Our Attention Mechanism To validate the benefit of our at-
tention module, we pick out the of attention and corresponding ablation study
in Fig. 11. We can discover that our attention module perceive the most dis-
criminative regions ( i.e., targets in the infrared image and details in the visible
images) form the source images, and hence the fused results keep more mean-
ingful information.
Ablation of Our Deformable Alignment Module: To investigate the effect
of deformable alignment module, we present the visual results of with/without
deformable alignment module in Fig. 12. Obvious that the unfavorable artifacts
appears on the fusion result without the attention module (see road sign in
the second row and flagpole in the bottom row). In contrast, our method can
overcome ghosting halos and structure distortion to a certain degree.

3.7 Applications in Related Tasks

This section experiments with our ReCoNet in conjunction with a series of re-
lated follow-up applications on the RoadScene dataset covering day and night
scenarios.
Salient Object Detection: Extracting critical information about a target
scene under a harsh environment is a challenging task. We carry out our ex-
periment based on U2-Net[34]. Taking an example from Fig. 13, the bright light
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Fig. 11. Qualitative results on discussing biphasic attention layer.

Fig. 12. Ablation study about the effect of our micro registration module.

from the opposite headlights causes the car to be invisible. Under poor lighting
conditions, we confirm that the infrared information can detect more desirable
areas, but some portion with low thermal radiation is easily ignored. Moreover,
current methods focus more on infrared information(e.g., PMGI), which cannot
estimate the main natural object and visible details (e.g., DIDFuse) that in-
troduce unwanted artifacts. In contrast, our method estimates the whole region
without artifacts.

Depth Estimation: Indeed, recent algorithms for depth estimation [39,8] are
trained on daytime road datasets (e.g., KITTI [7] and CityScapes [3]), resulting
in a disconnect between daytime and nighttime sceneries. The second row of
Fig. 13 illustrates the depth maps calculated by MiDaS [35] on the recent effi-
ciency fusion methods. Note that the depth maps from visible images and other
approaches render apparent deficiencies, in which the wayside trees are mis-
estimated. By comparison, our method can accurately estimate the depth map
for diverse tree shapes, thereby providing a new auxiliary option for real-world
depth estimation.

Object Detection: As a non-trivial byproduct, we also provide an improve-
ment in our approach for detecting targets using the well-known YoloV4 [1].
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In the last row of Fig. 13, our method accurately detects all three targets, and
only our fusion results correctly detect the pedestrian on the left. These results
demonstrate that our method significantly impacts the object detection task.

Fig. 13. Visual comparisons of multiple practical vision tasks.

4 Conclusion

In this paper, we propose an innovative network based on biphasic recurrent
attention learning, which robustly and efficiently realizes IVIF take in an end-
to-end manner. We first design a micro registration module to coarse estimate the
distortion caused by misalignment. Then, a biphasic recurrent learning network
successfully merges the source images and removes other remaining ghosting ha-
los or artifacts. Furthermore, we also employ the parallel dilated convolutional
and share calculation graph in our recurrent network to achieve high computa-
tional efficiency. Both subjective and objective experimental results reveal that
our ReCoNet has significant superiority against the state-of-the-art methods
with high efficiency. In addition, our ReCoNet also can deal with misalignment
image pairs to a certain degree.
Acknowledgments: This work is partially supported by the National Key R&D
Program of China (2020YF-B1313503), the National Natural Science Founda-
tion of China (Nos. 61922019, 61906029 and 62027826), and the Fundamental
Research Funds for the Central Universities.
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