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Abstract. In recent years, neural image compression (NIC) algorithms
have shown powerful coding performance. However, most of them are
not adaptive to the image content. Although several content adaptive
methods have been proposed by updating the encoder-side components,
the adaptability of both latents and the decoder is not well exploited. In
this work, we propose a new NIC framework that improves the content
adaptability on both latents and the decoder. Specifically, to remove re-
dundancy in the latents, our content adaptive channel dropping (CACD)
method automatically selects the optimal quality levels for the latents
spatially and drops the redundant channels. Additionally, we propose
the content adaptive feature transformation (CAFT) method to improve
decoder-side content adaptability by extracting the characteristic infor-
mation of the image content, which is then used to transform the features
in the decoder side. Experimental results demonstrate that our proposed
methods with the encoder-side updating algorithm achieve the state-of-
the-art performance.
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1 Introduction

Data compression has been studied for decades as an essential issue to alleviate
data storage and transmission burden. The traditional codecs, such as JPEG [39],
JPEG2000 [34], BPG [9] for image compression and H.264 [43], H.265 [36], H.266
[11] for video compression, still prevail nowadays. In recent years, neural image
compression (NIC) has shown promising coding performance due to its powerful
nonlinear transformation capability and end-to-end optimization strategy. The
recent state-of-the-art NIC methods like [46] outperform the latest traditional
compression standard Versatile Video Coding (VVC) [11] on various datasets
including the Kodak [1] and Tecnick [4] datasets. These approaches generally
reduce the redundancy of the images by using an autoencoder architecture, which
learns a mapping between the RGB color space and the learned latent space.
The latent representation of the image is then quantized into a discrete-valued
version, which is further compressed by the lossless entropy coding methods.
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Neural data compression methods learn a generalized model to ensure the
coding performance during performance evaluation. However, domain shift be-
tween the training and testing data and lack of adaptability to the visual con-
tent degrade the performance when compressing unseen data samples. Therefore,
some works [12,49,27,40] were proposed to improve the adaptability for neu-
ral image compression and neural video compression (NVC) by updating the
encoder-side components. Those methods aim at generating more compressible
latents and estimating more accurate entropy model parameters for each data
instance by fine-tuning the latents [12,49], the encoder [27] or the input image
[40]. However, such fine-tuning process is extremely time-consuming and the
adaptability is still limited due to the fixed decoder.

To exploit the adaptability at the decoder, some full-model over-fitting meth-
ods [33] entropy encode and transmit the updates of the decoder parameters
along with the quantized latents to the receiver side for better and consistent
reconstruction. However, the design of additional model compression is quite
complex and the updating approach is also time-consuming. Another limita-
tion in NIC is that the number of channels of the latents is not adapted to the
rate-distortion (RD) trade-offs and the image content. Most works train multi-
ple models with the same network architecture based on different RD trade-offs
for rate control, which generate the latents with the same channel number for
different RD trade-offs and spatial locations. However, this leads to redundant
elements in the latents.

In this work, we propose a content adaptive NIC framework to improve the
adaptability on both latents and the decoder. To improve the adaptability on la-
tent codes, we propose the content adaptive channel dropping (CACD) method,
which selects the optimal quality level at each spatial location for the latents
and drops redundant elements along the channel dimension. In order to improve
decoder-side content adaptability, we propose the content adaptive feature trans-
formation (CAFT) method for the decoder, which extracts characteristic infor-
mation of the image content in the decoder side and utilizes it to adapt each
upsampled feature to the image content by using the Spatial Feature Transform
(SFT) [41] strategy.

The experiments demonstrate that our proposed methods improve the per-
formance of the baseline framework [29] in terms of both latents and the de-
coder. Our proposed content adaptive methods are also complementary to those
encoder-side updating methods. Experimental results on the Kodak dataset
demonstrate that our framework equipped with the encoder-side updating method
Stochastic Gumbel Annealing (SGA) [49] achieves comparable overall results to
the recent state-of-the-art NIC methods [46,45] and outperforms them at high
bit-rates. Additionally, the experimental results also indicate that our methods
are general and can be readily applied to NVC for better coding performance.
The contributions of our work are summarized as follows:

— We propose the content adaptive channel dropping (CACD) method to im-
prove the adaptability of RD trade-offs and the image content for latent
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codes. Our CACD automatically selects the optimal quality level at each
spatial location, and then drops redundant elements for bit-rate saving.

— To exploit the adaptability at the decoder side, our content adaptive feature
transformation (CAFT) method modulates the output features at multiple
levels by considering the characteristic information of the image content.

— Experimental results demonstrate that our methods improve the perfor-
mance by adapting both latents and the decoder without any additional
updating steps during performance evaluation, which are also complemen-
tary to the encoder-side updating methods.

2 Related Work

2.1 Neural Image Compression

In recent years, neural image compression (NIC) performance has been improved
significantly, which are mostly based on recurrent neural networks (RNNs) [22,
37,38], convolutional neural networks (CNNs) [6,7,29,15,45,13,50], or invert-
ible neural networks (INNs) [46]. In most works, CNN-based autoencoder is se-
lected as the basic framework. Ballé et al. [6] proposed an end-to-end optimized
image compression framework based on nonlinear transformation, the additive
noise quantization proxy and the fully factorized entropy model. Subsequently,
the researchers focus more on improving the accuracy of the estimated entropy
model using hyperprior [7], auto-regressive context model [29] and Gaussian Mix-
ture Model (GMM) [15]. Different transformations are also proposed to enhance
the expression capability of the latent space, such as residual blocks with atten-
tion module [15] and INN [46]. Some works [22, 24] applied the spatially variant
bit allocation strategy as a post-process [22] or by using importance map [24].
Our method is also based on the convolutional autoencoder approach, but we
improve the content adaptability of the baseline method [29].

2.2 Content Adaptive Data Compression

The effectiveness of neural data compression relies on the generalization capa-
bility to unseen data in the evaluation process. However, domain shift between
training and testing data and lack of adaptability may degrade the coding per-
formance when compressing various types of testing data. To solve this issue,
a straightforward idea is to over-fit the encoder-side components. In this way,
the model can adapt to test samples during performance evaluation, and does
not affect the reconstruction quality because the encoder is not involved in the
decoding process. To this end, Campos et al. [12] refined the latents by directly
back propagating them, and Yang et al. [49] further closed the discretization gap
by replacing the differentiable approximation for quantization with Stochastic
Gumbel Annealing (SGA) when refining the latents. Moreover, Lu et al. [27]
updated the encoder on each test frame for neural video compression (NVC),
which generates content adaptive latent codes by using the over-fitted encoder.
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Recently, some full-model adaption methods for NVC have been proposed to
adapt the decoder. The work in [33] updated both encoder and decoder when
compressing I frames, and then transmitted the updates of the decoder parame-
ters along with the compressed video sequences. These updating methods require
hundreds or thousands of back propagation steps for each sample, which is ex-
tremely time-consuming. In summary, the encoder-side approaches do not utilize
the adaptability of decoders and the full-model approach is often complex due
to the additional model compression process.

Our proposed content adaptive methods adapt the latents and the decoder to
the image content in a non-updating way. Our methods are also complementary
to those encoder-side updating methods, which leads to a fully-adapted solution
to address the issues of both domain shift and lack of adaptability.

2.3 Neural Video Compression

In recent years, significant progress has also been achieved for neural video com-
pression (NVC). Increasing number of learning based approaches [44, 28, 3,19,
25,16,17,21, 14, 20] have been proposed. Lu et al. [28] first proposed an end-
to-end video compression framework DVC that follows the traditional hybrid
coding framework and implements the key components with neural networks.
Some subsequent works improved the motion compensation [3] or motion com-
pression [19] for better optical flow based motion compensation. Recently, more
works [16,17,21] were proposed to perform the operations in the feature space.
Hu et al. [21] proposed the FVC framework where motion compensation and
residual coding are performed in the feature space rather than the pixel space.

3 Proposed Method

3.1 Overall Architecture of Neural Image Compression

We use the state-of-the-art neural image compression (NIC) method [29] as our
baseline method and apply our methods on top of both context version and
the non-context version. The overview of the baseline framework is provided in
Fig. 1(a). We also describe the details of the baseline method as follows.

At the encoder side, the input image x is first transformed into the latent
representation y by using the encoder network, which consists of several convo-
lution layers and uses the generalized divisive normalization (GDN) [5] layer as
activation. The hyper-encoder captures the spatial dependencies of y and pro-
duces the hyperprior z. Then y and z are quantized into discrete-valued version
7 and Z respectively by using the round operation, which is replaced by adding
uniform noise [6] as an approximation during the training process. After that,
the quantized features ¢ and Z are entropy coded into bit-stream. Each element
in Z is modeled as a factorized model ps and each element in ¢ is modeled as a
Gaussian distribution pgz conditioned on 2.

At the decoder side, the quantized hyperprior Z is first entropy decoded
and used to estimate the distribution of the quantized latent representation .
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Fig. 1. Overview of our proposed framework based on [29] (a), the details in our content
adaptive channel dropping (CACD) method for the latents (b) and the network archi-
tecture of our content adaptive feature transformation (CAFT) method for the decoder
(c). For simplicity, the hyper-decoder and auto-regressive context model are denoted
as “Entropy Parameters” and AC denotes arithmetic coding in the pipeline (a). The
operation and modules with dashed container (i.e., the CACD and the decoder in (a))
along with the dashed data flow are our newly proposed modules. In CACD (b), the
features with different channel widths are firstly generated from the quantized latent
representation . Then the rate-distortion (RD) based selection technique is applied to
select the optimal channel number for each spatial location, which is stored in a binary
mask m®. Channel dropping is then completed by element-wise multiplication of the
latents ¢ and the mask m®, which is also used to generate 2% (please see section 3.2 for
more details). In CAFT (c), we modulate each upsampled feature by using the Spa-
tial Feature Transform (SFT) layer, which is conditioned on characteristic information
of the image content. The multi-level characteristic information is generated by using
the latents §* and the hyperprior 2% (see section 3.3 for more details). Conv(C, K, S)
denotes the convolution layer with the output channel C, the kernel size K x K and
the stride S. LReLU denotes the LeakyReLU activation for simplicity. The network
architecture of Conditioned SFT and Resblock is illustrated in Fig. 3.

~

In the non-context version of [29], 2 is fed into the hyper-decoder to estimate
the mean and standard deviation of §. While in the context version, an auto-
regressive context model is added to utilize the entropy-decoded parts of g for
more accurate entropy parameter estimation. Finally, the decoder takes ¢ as
the input to generate the reconstructed image & by using several deconvolution
layers and inverse generalized divisive normalization (IGDN) layers.
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During the training process of NIC, a rate-distortion optimization (RDO)
problem is formulated to minimize the bit-rate cost and the distortion between
the original image = and its reconstruction image . A Lagrange multiplier \ is
used to control the trade-off between the bit-rate cost and the distortion. The
loss function is formulated as follows:

R+AD = H(j) + H(2) + Md(z, #) (1)

where H(g) and H(Z) denote the bit costs to compress g and 2, d(z, &) denotes
the distortion between the reconstructed image and the input image, where mean
squared error (MSE) is usually used.

In our approach, we propose new operations and modules for the latents and
the decoder. The channel dropping algorithm selects the optimal quality level
at each spatial location for the latents ¢ by minimizing the rate-distortion (RD)
value. Then the latents ¢ and the hyperprior Z are replaced with their channel-
adapted version g and 2% before entropy coding for bit-rate saving, where the
exceeding channels are dropped (see section 3.2 for more details). In the decoder,
we modulate the upsampled features after each IGDN layer by using the Spatial
Feature Transform (SFT) [41] layer conditioned on characteristic information of
the image content, which is extracted from the latents §* and the hyperprior ¢
(see section 3.3 for more details).

3.2 Content Adaptive Channel Dropping for the Latents

In neural image compression, rate control is implemented by training the mod-
els with different trade-offs (i.e., different A values) between bit-rate cost and
reconstruction distortion. It is well-known that the more bits we use, the better
reconstruction quality we can achieve. We also observe that the ability of con-
verting extra bits to reconstruction quality (i.e., the quality gain when assigning
similar additional bits) is different among image blocks. To this end, we quantify
this ability as “bit conversion ratio”, which is formulated as follows:

_ PSNR(x,\"); — PSNR(z, \!),
B R(kah)l - R(J?, Al)l

n(xvxa)‘h)i (2)
where PSNR(z, \) denotes the peak signal-to-noise ratio (PSNR) between
the input image = and its reconstructed image produced by the model trained
with A\, R(z,A) denotes the bit-rate cost of the latents and the hyperprior gen-
erated by the model trained with A\, A\ and A" denote the relatively lower and
higher A\ values respectively, and 7 denotes the ith spatial block of the image.
In Fig. 2, we provide a visualization example about bit conversion ratio on
an image from the Kodak dataset [1]. Fig. 2(a) visualizes two images decoded
by [29] trained with two different A values. It is observed that the grains of both
woodwork (i.e., the wooden door and windows) and the bricks are constructed
with more details in the bottom image with high bit-rate. In Fig. 2(b), we observe
that the bit conversion ratio of the wooden areas is much higher than that of the
brick areas. To achieve better rate-distortion (RD) performance, it is therefore
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(a) Decoded images from different A values. (b) Bit conversion ratio calculated from (a).

Fig. 2. An example of bit conversion ratio calculation on an image from the Kodak
dataset based on the existing method [29].

reasonable to assign more bits for the areas with higher bit conversion ratio. To
this end, we aim at compressing each image block with the suitable quality level,
at which the RD cost is minimal among all the alternative quality levels.

Before selecting the quality level at each spatial location for the latents g,
our content adaptive channel dropping (CACD) method need to enable multiple
quality levels in one single model. For each A\ value, we first decide the corre-
sponding maximum channel number g(A) (also called the optimal channel width
in this work), where the RD performance saturates at this channel width even
if more number of channels is allowed for this A value [48]. Then we train our
model with multiple rate-distortion optimization (MRDO) loss [48]. Note that
we only set the additional elements in the channel dimension as zero instead of
directly reducing the number of channel as in the slimmable implementation [48].
Specifically, for the original target A value, we have K A values (i.e., K qual-
ity levels) including its original A value and K — 1 smaller \ values (K is set
as 3 in this work). A mask m9N) is generated by setting the value to zero for
the channel locations exceeding the channel width g()), and one otherwise. The
latent representation with level A is generated by the element-wise multiplica-
tion operation between the latents § and the corresponding mask m9*) (i.e.,
79N — g o mgo‘))7 and the hyperprior is also mapped in the same way (i.e.,
290« 2 ©mIN). The MRDO loss is then formulated as follows,

>R, 2N) +AD (YY) (3)
AeA

where A denotes the set of K X values, R and D denote the rate cost and the
distortion in Eq.(1) respectively, and they are calculated by using the features
with different quality levels.
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Fig. 3. The network architecture of the conditioned SFT module (a) in our proposed
content adaptive feature transformation and Resblock module (b). In each conditioned
SFT, the extracted characteristic information ¢ at level [ is fed into the convolution
layers to predict the adaptive parameters 4’ and 8. In (b), Resblock(M, K) denotes
the convolution layers with the output channel M and the kernel size K x K.

As the model can compress the image with K quality levels, we adopt the
block-based RD selection strategy, which selects the optimal channel width
among alternatives for the smallest RD value at each spatial location. Specifi-
cally, at each spatial location, we calculate K RD values by using the features
with the channel widths g(\) among alternative quality levels and store the
channel width corresponding to the smallest RD value in the channel allocation
vector a. We further generate the adaptation mask m® by setting the value to
zero for the channel locations exceeding the allocated channel width, and one
otherwise. Then the adapted features are generated by the element-wise multi-
plication operation with the adaption mask m® (i.e., §* < §OmM*, 2% + 2Gm?).
Therefore, our CACD method for the latents can automatically drop redundant
elements at each spatial location and thus reduce the bit-rate cost.

3.3 Content Adaptive Feature Transformation for the Decoder

Domain shift between the training and testing data is a common problem for
learning-based algorithms. Different from most tasks, the ground truth in neural
image compression is exactly the same as the input image. Thus the model can
be fine-tuned with the whole target domain dataset or even a target sample.
Generally, only the encoder-side components are adapted because the change
in the decoder will result in inconsistent reconstruction at the receiver side,
which can not exploit the adaptability in the decoder. Although some works [33]
synchronize the decoder to the receiver by transmitting the parameter changes,
it is a non-trivial task to compress such parameter changes.

Recently, Spatial Feature Transform (SFT) [41] has shown efficient spatial
adaptability for various vision tasks including image super-resolution [41], se-
mantic image synthesis [32] and variable-rate image compression [35]. Inspired
by these works, we propose the content adaptive feature transformation (CAFT)
method for the decoder, which uses the SFT layers conditioned on the relatively
high-level characteristic information to adapt the decoder to the image content.
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As shown in Fig. 1(c), we first extract the characteristic information of the
image content from the latents ¢ and the hyperprior Z by using the image char-
acteristic extractor, which is denoted in the dashed cyan box (C is set as 192
in this work). To adapt the features with different resolutions, we then use the
SFT layer after each IGDN layer, which is conditioned on the multi-level char-
acteristic information ¢! produced in the module denoted in the dashed purple
box, where [ = 1...L (L is set as 3 in this work).

The detailed network structure of conditioned SFT is shown in Fig. 3(a). The
conditioned SFT layer generates the affine transformation parameters (7', 3')
by learning the mapping function ¥(c') +— (4!, ). The input feature f! is then
transformed by using the learned parameters (7!, 3!) to produce the content
adapted feature f!:

fi=roy+p (4)
where ® denotes the element-wise multiplication operation. Our CAFT mod-
ulates the features by using the conditioned SFT layer whose condition is the

relatively high-level characteristic information of the image content to improve
decoder-side content adaptability.

4 Experiments

4.1 Experimental Setup

Datasets. We adopt the Flicker 2W dataset from [26] as our training dataset,
which consists of 20,745 images. Each image is randomly cropped into 256 x 256
patches for data augmentation. The rate-distortion performance of our method
is evaluated on the Kodak [1] and Tecnick [4] datasets.

Implementation Details. We apply our proposed content adaptive methods
on both [29] and its non-context version. We train our models with seven A values
(i.e., A\ = 128, 256, 512, 1024, 2048, 4096 and 6144). We use N=M=192 for the
three lower A values and N=M =320 for the four higher values. We first train two
models with higher A values (A = 1024 for low bit-rates and A = 8192 for high
bit-rates). Other models are then fine-tuned from its corresponding pretrained
model with their A values.

To train our model with content adaptive channel dropping (CACD), we
first use the multi rate-distortion optimization (MRDO) technology (Eq.(3)) to
achieve its original performance with multiple quality levels. Then the CACD
module is activated to select the optimal channel width in the subsequent fine-
tuning iterations.

We use the Adam [23] optimizer and set the batch size as 4. The initial
learning rate is set as 5e — 5. Each fine-tuning step requires 1,000,000 iterations,
which uses the initial learning rate for the first 500,000 iterations and 5e — 6 for
the remaining iterations. For MS-SSIM [42] based rate-distortion performance
evaluation, we further fine-tune our model with the learning rate of 5e — 6 for
500,000 iterations by using MS-SSIM as the distortion loss.
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4.2 Rate-Distortion Performance

In Fig. 4, we report the performance of traditional image codecs [9, 31], the state-
of-the-art image compression methods [29, 15,49, 30, 46, 50, 18,45] and our pro-
posed methods (denoted as “Ours”) on the Kodak dataset. VVC is evaluated by
VTM-12.1 [2] on the CompressAl [8] evaluation platform. We evaluate our meth-
ods on both [29] and its non-context version (denoted as a suffix of “w/o Con-
text”). We observe that our methods improve the rate-distortion performance
on both versions of the baseline method in terms of both PSNR and MS-SSIM
[42]. Tt is worth mentioning that our method is compatible with state-of-the-art
updating-based adaption method Stochastic Gumbel Annealing (SGA) [49]. We
also report the fully-adapted result by combining our methods and SGA, which is
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denoted as “Ours + SGA”. It is obvious that our fully-adapted method achieves
comparable results as the recent state-of-the-art methods [45, 18] and outper-
forms them at high bit-rates. For example, our fully-adapted method achieves
0.4dB improvement at 1.2bpp when compared with the current state-of-the-art
methods Xie (ACMMM21) [46] and Wu (TCSVT21) [45].

In Fig. 5, we also report the coding performance of different methods on
the Tecnick dataset. We have similar observations as on the Kodak dataset that
our fully-adapted method achieves the state-of-the-art performance at all bit-
rates and achieves 0.4dB improvement at 0.7bpp when compared with current
state-of-the-art methods Minnen (ICIP20) [30] and Xie (ACMMMZ21) [46]. The
experimental results clearly demonstrate the effectiveness of our proposed fully-
adapted method.

4.3 Ablation Study and Model Analysis

Effectiveness of the Proposed Methods. To demonstrate the effectiveness
of our proposed content adaptive methods for the latents and the decoder, we
conduct ablation study on the Tecnick dataset. To fairly compare our work with
the updating-based adaption method SGA [49], we take the non-context ver-
sion of [29] as the baseline method. We provide the BD rate saving result of
our proposed methods over the baseline method based on the piecewise BDBR
[10] results. As shown in Fig. 6, the alternative method equipped with our con-
tent adaptive feature transformation (i.e., Baseline + CAFT) outperforms the
baseline method with the BD rate saving from 4% to 8% at all bit-rates. Ad-
ditionally, the alternative method equipped with our content adaptive channel
dropping strategy (i.e., Baseline + CACD) generally achieves better perfor-
mance than the baseline method. Our method equipped with both CAFT and
CACD achieves the best performance and outperforms all other methods, which
saves about 10% bit-rate in low PSNR range. When compared with the baseline
method, we achieve the BDBR results of -1.51%, -5.90% and -7.78% for “Baseline
+ CACD”, “Baseline + CAFT” and “Ours” respectively, which clearly demon-
strates improvement of our proposed methods over the baseline method. The
ablation study results demonstrate that our overall framework is able to adapt
to the image content on both latents and the decoder for better compression
performance.

Compatibility with Updating-based Method in the Encoder Side. Our
methods adapt to the image content on both latents and the decoder, which is
also compatible with the updating-based adaption method SGA [49]. To demon-
strate the compatibility, we provide the BDBR [10] results on the Kodak and
the Tecnick datasets in Table 1. Although our method (i.e.,“Ours w/o Con-
text”) saves less bit-rates than “SGA”, our method in combination with SGA
(i.e.,“Ours w/o Context + SGA”) outperforms “SGA”, which indicates that our
content adaptive approach is complementary to SGA.
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Table 1. BDBR(%) results about the compatibility of our method and SGA [49] on
different datasets. Negative values indicate bit-rate saving. We use [29] without the
auto-regressive context model as the anchor method to calculate the BDBR results.

Methods Kodak Tecnick
SGA -15.17 -18.72
Ours w/o Context -6.64 -7.44

Ours w/o Context + SGA -21.44 -24.50

Ground Truth

SRUn

BPG

. »\a“U“‘

Minnen et al. [29]
-l

Minnen et al. [29] Ours Ours
0.1558bpp, 26.33dB, 0.9005 0.1518bpp, 26.77dB, 0.9045

Fig. 7. Qualitative comparison results of the traditional codes BPG [9], neural image
compression method Minnen et al. [29] and our method.

Qualitative Results. As shown in Fig. 7, we provide the visualization results
of the reconstructed image kodim14 from the Kodak dataset for qualitative com-
parison. It is observed that our method clearly improves the reconstruction qual-
ity over the baseline method [29] and achieves better performance than BPG.
Our method preserves more details of the image content. For example, the arti-
facts can be clearly observed in both Minnen et al. [29] and BPG on the red life
jacket, which are less obvious in our method. Additionally, the letters in front
of the boat reconstructed by our proposed method are more clear than those
reconstructed by other baseline algorithms with similar bit-rates.

Visualization of Content Adaptive Channel Dropping. In Fig. 8 we
visualize the allocated channel number selected by our method CACD. Fig. 8(a)
is the reconstructed image of kodim21 from the Kodak dataset and Fig. 8(b)
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(a) Reconstructed image kodim21 from (b) Visualization of the channel allocation
the Kodak dataset. results. Lighter color indicates more chan-
nels.

Fig. 8. Visualization of the channel width selection results by using our method CACD
for the latents. In (b), the white, red, black colors represent the quality levels from the
highest level (i.e., the most channel number) to the lowest level (i.e., the least channel
number).

visualizes the quality level selection results for the latents. The white, red, black
colors represent three quality levels from high to low. It is observed that less
channels are allocated in the sky area because the sky area is smooth and needs
less bits for reconstruction, while full channels are allocated to preserve more
details in the sharp areas like the rocks, houses and the lighthouse.

4.4 Experiments for Neural Video Compression

Datasets. We train our methods on the Vimeo-90k [47] dataset, which is used
as the training dataset in DVC [28]. For performance evaluation, we use the
video sequences from the HEVC Class B and Class C [36] datasets.

Implementation Details. We use an enhanced version of DVC [28] called
“DVC™ as our baseline method, where the entropy models of both motion vector
(MV) feature and residual feature are modeled by the mean-scale hyperprior.
We train the models in a similar way as in neural image compression. We first
pretrain a model with the A value of 2048. The learning rate is set as le-4 for the
first 1,800,000 steps and le-5 for the following 200,000 steps. Then we fine-tune
the pretrained model with other A values (i.e., 256, 512 and 1024) for 500,000
steps. For the adapted decoder with content adaptive feature transformation,
we fine-tune the baseline model for another 600,000 steps to adjust the decoder
parameter with the learning rate as le-4 for the first 400,000 steps and le-5 for
the remaining steps. We use the Adam [23] optimizer and set the batch size as
4 for all the training procedures.
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Fig. 9. Rate-distortion performance evaluation results on the HEVC Class B and Class
C test sequences.

Rate-Distortion Performance. Fig. 9 compares the rate-distortion perfor-
mance between our method CAFT and the baseline method DVC™. It is observed
that our method improves the PSNR by about 0.4 dB at three low bit-rates and
by about 0.3 dB at the highest bit-rate on the HEVC Class C test sequence.
Similar results can also be observed on the HEVC Class B test sequence, which
has larger resolution than the HEVC Class C test sequence. The experimental
results demonstrate that our CAFT is general and can be readily used for neural
video compression.

5 Conclusions

In this work, we have proposed the content adaptive methods for both latents
and the decoder to improve the content adaptability for neural image compres-
sion. Our newly proposed content adaptive channel dropping (CACD) method
is able to adaptively compress different locations with different quality levels
by dropping redundant channels for better bit-rate saving. Our newly proposed
content adaptive feature transformation (CAFT) method in the decoder side
can extract the characteristic information of the image content, which can be
further regraded as the condition to transform the features in the decoder. Ex-
perimental results demonstrate that our content adaptive methods are general to
different compression pipelines and are also complementary to the encoder-side
updating-based content adaptive methods.
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