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In this supplementary file, we provide: (1) the details of our training losses; (2)
the detailed settings of our degradation modeling; (3) more sample images in our
constructed dataset; (4) more qualitative comparisons and (5) more quantitative
ablation studies to further validate the effectiveness of the proposed DASR.

1 Details of Training Losses

As discussed in Section 3.1 of the main paper, the total training loss is defined
as

Ltotal = Lpixel + λ1Lregression + λ2Lperceptual + λ3Ladversarial,

where the regression loss Lregression has been provided in Eq. (1) of the main
paper. For the other three losses, the settings are the same as in Real-ESRGAN.
Specifically, the pixel loss is defined as the ℓ1 distance Lpixel = ∥ŷ − y∥1, where
ŷ and y denote the super-resolved image and the ground-truth HR image, re-
spectively. For the perceptual loss Lperceptual, we first extract the {conv1, conv2,
conv3, conv4, conv5} feature maps of ŷ and y by using the pre-trained VGG19
network [1], then calculate the weighted sum of the respective ℓ1 distances be-
tween the feature maps of ŷ and y as the perceptual loss, where the weights
are set to be [0.1, 0.1, 1, 1, 1]. For the adversarial loss Ladversarial, the U-Net
discriminator with spectral normalization is adopted.

2 Detailed Settings of Degradation Modeling

We report the detailed parameter settings of our degradation modeling in Ta-
ble 1. We partition the whole degradation space S into 3 levels [S1, S2, S3],
and randomly select one of them to generate the LR-HR image pairs during
training with a balanced probability of [0.3, 0.3, 0.4]. For the blur operation, we
use isotropic and anisotropic Gaussian kernels with a probability of [0.65, 0.35],
where we set σ1 = σ2 if isotropic blur kernel is specified. In the second degra-
dation stage of S3, following the practice in Real-ESRGAN, we skip the blur
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operation with a probability of 0.2, and perform sinc kernel filtering with a
probability of 0.8. We finally resize the image to the desired LR size, i.e., 1/4 of
the original size.

Table 1. Detailed parameter settings of the degradation sub-spaces [S1, S2, S3]. Here,
‘-’ indicates that the operation is not activated and the corresponding value in v is
padded with 0; [‘a’, ‘b’, ‘b’] denote the resize modes of [area, bilinear, bicubic]; [‘G’,
‘P’] denote the noise types of [Gaussian, Poisson]; ωc is the cutoff frequency of the
sinc kernel; R-J and J-R indicate the different operating orders of resizing and JPEG
compression; vi denotes the ith value of v.

Level Operation Parameter
Stage 1 Stage 2

Range vi Range vi

S1

Blur

kernel size [2m + 1] m ∈ [3, 10] v1 - -
standard deviation σ1 [0.2, 0.8] v2 - -
standard deviation σ2 [0.2, 0.8] v3 - -

rotation degree θ [−π, π] v4 - -

Resize
[up, down, keep] [0.1, 0.2, 0.7] - - -

scale factor [0.85, 1.2] v11 - -
resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 - -

Noise

type [‘G’, ‘P’] v21, v22 - -
sigma of Gaussian [1, 10] v19 - -
scale of Poisson [0.05, 0.5] v19 - -
gray probability 0.4 v20 - -

JPEG
quality factor [90, 95] v27 - -

mode of final resize [‘a’, ‘b’, ‘b’] v31 ∼ v33 - -

S2

Blur

kernel size [2m + 1] m ∈ [3, 10] v1 - -
standard deviation σ1 [0.2, 1.5] v2 - -
standard deviation σ2 [0.2, 1.5] v3 - -

rotation degree θ [−π, π] v4 - -

Resize
[up, down, keep] [0.3, 0.4, 0.3] - - -

scale factor [0.5, 1.2] v11 - -
resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 - -

Noise

type [‘G’, ‘P’] v21, v22 - -
sigma of Gaussian [1, 20] v19 - -
scale of Poisson [0.05, 1.5] v19 - -
gray probability 0.4 v20 - -

JPEG
quality factor [50, 95] v27 - -

mode of final resize [‘a’, ‘b’, ‘b’] v31 ∼ v33 - -

S3

Blur

kernel size [2m + 1] m ∈ [3, 10] v1 m ∈ [3, 10] v5
standard deviation σ1 [0.2, 3] v2 [0.2, 1.5] v6
standard deviation σ2 [0.2, 3] v3 [0.2, 1.5] v7

rotation degree θ [−π, π] v4 [−π, π] v8
sinc kernel size [2m + 1] - - m ∈ [3, 10] v9

ωc of sinc kernel - - [π/3, π] v10

Resize
[up, down, keep] [0.2, 0.7, 0.1] - [0.3, 0.4, 0.3] -

scale factor [0.15, 1.5] v11 [0.3, 1.2] v15

resize mode [‘a’, ‘b’, ‘b’] v12 ∼ v14 [‘a’, ‘b’, ‘b’] v16 ∼ v18

Noise

type [‘G’, ‘P’] v21, v22 [‘G’, ‘P’] v25, v26

sigma of Gaussian [1, 30] v19 [1, 25] v23

scale of Poisson [0.05, 3] v19 [0.05, 2.5] v23

gray probability 0.4 v20 0.4 v24

JPEG
quality factor [30, 95] v27 [30, 95] v28

operating order - - R-J or J-R v29, v30

mode of final resize - - [‘a’, ‘b’, ‘b’] v31 ∼ v33
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For those operations that have more than one mode, e.g ., the resize mode, we
use a one-hot vector to indicate the choice of mode in v. For other parameters,
we normalize each of them by v′ = (v − vmin)/(vmax − vmin), where v, v′, vmin

and vmax indicate the original value, the normalized value, the minimum and
maximum values of the parameter, respectively.

3 More Sample Images

In Fig. 1, we provide more sample images with different degradation levels in
our datasets, as well as the ground-truth HR images. As can be seen from the
figure, those images can cover a wide range of real-world degradations. The bal-
anced sampling from the three levels during training improves the generalization
capacity of our DASR to real-world images with different degradations.

4 More Qualitative Comparisons

In Fig. 2, we provide more qualitative comparisons of competing methods on
real-world images, while in Figs. 3, 4, 5 and 6, we provide more qualitative
comparisons of competing methods on datasets with bicubic, Level-I, Level-II
and Level-III degradations, respectively. Our models are trained by using the
images in DIV2K, Flickr2K, and OutdoorScene-Training datasets. To further
validate the generalization capability of DASR to different image contents, the
visual comparisons in Figs. 3, 4, 5 and 6 also include images from the Urban100
dataset by using the same degrading strategy as in our main paper. From those
figures, consistent observations to our main paper can be made. Our DASR can
generate more realistic structures and details on different degradations, benefit-
ing from its degradation-adaptive strategy and the joint training and adaptive
mixture of multiple experts.

5 More Ablation Studies

We provide more quantitative ablation study results in this section.
In Table 2, we directly merge 5 SRResNet models into one large model, and

compare its results against our DASR on Level-I and II datasets. As shown in the
table, the merged model achieves comparable performance yet consumes much
more cost (e.g ., about 3 times the latency and 6 times the #FLOPs), which
validates the efficiency of the proposed method.

In Table 3, we plug DASR into the EDSR backbone and report the results
on Level-I and II datasets. One can see the clear improvements of DASR over
EDSR baseline in both PSNR and LPIPS, demonstrating the effectiveness of the
proposed method.

In Table 4, we report more quantitative ablation results of DASR. The ob-
servations are consistent with Fig. 4 in the main paper. In specific, we first
evaluate the selection of N , i.e., the number of expert models. As shown in the
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Table 2. Quantitative comparison between DASR (N = 5) and the large model di-
rectly merged from 5 models on datasets of Level-I and II. The merged model achieves
comparable performance yet consumes much more cost, which validates the effective-
ness of the proposed method.

Metrics PSNR LPIPS Latency #FLOPs #Params #Memory
Merged-I 27.79 0.1713 451ms 1258G 7.60M 2377M
DASR-I 27.84 0.1707 142ms 184G 8.07M 2452M

Merged-II 27.52 0.2111 451ms 1258G 7.60M 2377M
DASR-II 27.58 0.2126 142ms 184G 8.07M 2452M

Table 3. Quantitative comparison of Level-I and II datasets by plugging DASR into
the EDSR backbone. The improvements of DASR over EDSR baseline in both PSNR
and LPIPS demonstrate the effectiveness of the proposed method.

Metrics PSNR LPIPS Latency #FLOPs #Params #Memory
EDSR-I 27.79 0.1834 105ms 130G 1.52M 2169M
DASR-I 27.94 0.1736 134ms 148G 8.07M 2262M
EDSR-II 27.53 0.2284 105ms 130G 1.52M 2169M
DASR-II 27.71 0.2162 134ms 148G 8.07M 2262M

table, N = 3 may be insufficient to achieve good fidelity and perceptual quality,
while N = 9 shows similar performance to N = 5 in Table 1 and 2 in the main
paper. The columns ’w/sig’ and ’f-fuse’ evaluate the effectiveness of our model
design, ’w/sig’ denotes adding a sigmoid layer to the weighting module A and
’f-fuse’ indicates the feature fusion strategy in traditional MoE. Neither of them
shows good perceptual quality according to the LPIPS. The column ’multiply’
performs dynamic convolution with a single expert by learning a mapping ma-
trix and multiplying it to the parameters, while the column ’DCD’ is another
dynamic strategy as in [2]. Both strategies can hardly induce satisfactory results.

Table 4. Quantitative ablation results on the dataset of Level-I, which show consistent
observations with Fig. 4 in the main paper.

Methods N=3 N=9 w/ sig f-fuse multiply DCD EDSR
PSNR 27.76 27.82 27.91 27.88 27.71 27.02 27.94
LPIPS 0.1723 0.1698 0.1854 0.1843 0.1715 0.2135 0.1736
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(b) Bicubic (c) Level-I (d) Level-II (e) Level-III(a) HR

Fig. 1. More sample images with different levels of degradations in our constructed
datasets, as well as the ground-truth HR images. Level-I, -II, and -III represent the
samples whose degradations belong to S1, S2, and S3, respectively.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 2. More qualitative comparison of competing methods on real-world images. The
results of (b-f) are generated by using the officially released models, while the output of
(g) is obtained by re-training the SRResNet backbone with our proposed degradation
model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 3. More qualitative comparison of competing methods on images with bicubic
downsampling. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 4. More qualitative comparison of competing methods on images with degradation
of Level-I. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

Fig. 5. More qualitative comparison of competing methods on images with degradation
of Level-II. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.
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(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASR

(a) Bicubic (b) RRDB (c) ESRGAN (d) IKC

(e) BSRGAN (f) Real-ESRGAN (g) Real-SRGAN (h) DASRimg_052.png

Fig. 6. More qualitative comparison of competing methods on images with degradation
of Level-III. The results of (b-f) are generated by using the officially released models,
while the output of (g) is obtained by re-training the SRResNet backbone with our
proposed degradation model. Better zoom in for details.


