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A Quantitative results of BasicVSR [2] and
BasicVSR++ [3]

In addition to our implemented BiRNN, BasicVSR [2] and BasicVSR++ [3] are
two popular BIRNN methods for video restoration. BasicVSR [2] is introduced
as a strong baseline with essential components for video super-resolution. Ba-
sicVSR++ [3] further improves BasicVSR, [2] in propagation and alignment, and
generalizes to compressed video enhancement [14]. However, their performance
on video denoising is not well investigated. In this section, we conduct experi-
ments to validate these two methods on video denoising task.

Table A: Quantitative comparison (PSNR/SSIM) of BasicVSR [2] and Ba-
sicVSR++ [3] for video denoising task on Set8 dataset [11].

Set8 BasicVSR [2] BasicVSR++ [3]
downsample/upsample 4 X v X
o =10 35.88/.9453[37.78/.9635[36.66/.9548(37.92/.9643
o =20 32.80/.9046|34.92/.9386(33.85/.9256| 35.18/9408
o =30 31.02/.8694|33.24/.9159(32.24/.8996|33.56/.9195
o =40 29.78/.8379|32.03/.8945(31.10/.8759(32.40/.8996
o =50 28.83/.8091|31.07/.8738(30.20/.8539(31.48/.8808
avg 31.66/.8733|33.81/.9173(32.81/.9020(34.11/.9210
Time(s) 0.06 0.65 0.08 1.84

BasicVSR [2] and BasicVSR++ [3] are originally suggested for video super-
resolution task, so they use pixel-shuffle [10] upsample layers at the end of the
network to increase the spatial resolution. But for video denoising task, the up-
sample layers are no longer needed. There are two solutions to fit VSR networks
to video denoising task: introducing additional downsample layers at the be-
ginning of the network [1], or just removing the upsample layers. The former
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Table B: Quantitative comparison of PSNR with BasicVSR++ [3] on Set8
dataset [11]. We apply flow-guided deformable alignment and second order prop-

agation to FloRNN, named FIoORNN++.
BiRNN] (A) | (B) | (C) [BasicVSR++ [J]][FIoRNN|FIoRNN++
4 4 4

Flow-Guided Deform. Align

Second-Order Propagation v v v
Grid Propagation v v
PSNR 33.74 |33.86(33.79|33.84 34.11 33.55 33.72

solution allows the network computing on low resolution video features, which
seems as a more efficient choice. But we found the downsample and upsample
layers are very harmful to video denoising performance.

We use the official code ! to train the BasicVSR and BasicVSR++ on video
denoising task with two variants: one add downsample layers at the beginning of
the network [4], the other remove the upsample layers at the end of the network.
We set the training video length to 10 instead of 30 [4] due to GPU memory
limit, so the results of downsample/upsample version BasicVSR++ is slightly
lower (~0.2dB) than reported in [1]. From table A, we found that downsam-
ple/upsample layers affect the denoising performance. Although 4x downsample
the input video and restoring in the low resolution feature space can reduce the
computing complexity and speed up the inference, the performance drop can be
up to 1~2 dB. This indicates that getting rid of downsample/upsample layers is
essential for best performing video denoising networks.

B Extend FloRNN to BasicVSR++ [3]

In this subsection, we show FIoRNN can benefit from improvements of state-
of-the-art recurrent methods. We extend FIoRNN to a state-of-the-art BIRNN
method, i.e., BasicVSR++ [3]. BasicVSR++ [3] improves BasicVSR with three
modules, i.e., second-order propagation, grid propagation and flow-guided de-
formable alignment. Due to grid propagation performs bidirectional propaga-
tion twice, it can not be equipped to FIoORNN. So we only apply second-order
propagation and flow-guided deformable alignment to our FIoRNN, named as
FloRNN++. From table B, with the aid of two improvements, FIoRNN-++
outperforms 0.17dB over FlIoRNN, which is comparable with our implemented
BiRNN. This demonstrates FIoRNN can keep up with advances in BIRNN meth-
ods. Although BasicVSR++ [3] achieves better quantitative results, it suffers
the common issue of BiRNNs, i.e., large memory consumption, long latency
and can only be performed in an offline manner. In contrast, with the proposed
look-ahead module, our FIoRNN can address the offline issue and be applied to
various real-time applications.

! https://github.com/open-mmlab/mmediting
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Table C: Ablation study of knowledge distillation on Set8 dataset [11], models
with and without knowledge distillation show comparable results, which indi-
cates our Fj is able to mimic the F}, of BIRNN and learn feature complementary
to F f-

Knowledge Distillation X v
PSNR/SSIM 33.55/0.9153 33.53/0.9061
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ht+k—>t ht+k—>t
(a) FloRNN (b) FloRNN+distillation (c) BIRNN

Fig. A: Visual comparision of hidden features. Look-ahead feature with knowl-
edge distillation (b) is more similar to backward feature of BIRNN (c), in com-
parison to the no distillation counterpart (a). The features are visualized with
their Lo, norm.

C Knowledge Distillation

Analogous to other video denoising networks, our FloRNN can be simply trained
from scratch using the reconstruction loss,

T
ACrec - Z()A(t - Xt)27 (1)
t=1
where T denotes the number of video frames.

Nonetheless, our FIoRNN shares many similarities with BIRNN. They both
adopt a forward recurrent module and a decoder. The look-ahead recurrent mod-
ule in FIoRNN is suggested to play a similar role as the backward recurrent mod-
ule in BiRNN for leveraging information from future frames. In order to show
the feasibility of look-ahead recurrent module in mimicking backward recur-
rent module, we further suggest an alternative training scheme by incorporating
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Table D: Quantitative comparison of PSNR/SSIM on the Derf dataset for
grayscale Gaussian video denoising, hearinafter, Red and Blue indicate the best
and the second best results, respectively.

Derf VBM4D [5] VNLB[I] VNLNet [6] FloRNN(Ours)

o=10 38.88/.9534 40.57/.9731 40.21/.9732 41.34/.9800
o=20 35.10/.9169 36.81/.9428 36.47/.9414 37.95/.9603
oc=40 31.40/.8432 32.95/.8856 32.51/.8752 34.31/.9184

Avg  35.13/.9045 36.66/.9338 36.40/.9299 37.87/.9529

Table E: Quantitative comparison of PSNR on the DAVIS dataset [9] for clipped
Gaussian video denoising.

DAVIS ViDeNN [5] FastDVDNet [12] PaCNet [13] FloRNN(Ours)

oc=10 37.13 38.65 40.13 40.13
o =30 32.24 33.59 34.92 35.81
o =250 29.77 31.28 32.15 33.54

Avg 33.05 34.51 35.73 36.49

pre-trained BiRNN and distillation loss. Specifically, we first train a BiRNN
with reconstruction loss. Then we substitute the backward recurrent module of
BiRNN with our look-ahead recurrent module. And distillation loss is deployed

to mimic the backward feature h? with aligned look-ahead feature h! kst

T
‘Cdistill = Z |hfg+k_>t - hﬂ . (2)
t=1

Knowledge distillation encourages the look-ahead recurrent module to learn fea-
ture similar to the backward recurrent module in BIRNN. And reconstruction
loss is also used to finetune the look-ahead recurrent module and decoder. From
Fig. A, the look-ahead feature hf5 41 of the knowledge distillation counter-
part is similar to the backward feature h? of BIRNN. As shown in Table C, we
empirically find such scheme achieves comparable performance in comparison
to training from scratch using L,... This indicates that look-ahead recurrent
module is able to mimic backward recurrent module and learn hidden feature
complementary to Fy for video denoising.

D More Experimental Results

We also evaluate FIoRNN on grayscale videos and on clipped Gaussian noise.
FloRNN shows compelling results in comparison to other methods. As shown
in Table D, FIoRNN outperforms VNLNet [6] by 1.47dB in average on Derf?

2 https://media.xiph.org/video/derf


https://media.xiph.org/video/derf

Unidirectional Video Denoising 5

dataset. For clipped Gaussian noise, as shown in Table E, we achieve average
PSNR of 0.76dB gain over PaCNet [13] on DAVIS dataset [9]. Figs. B, C, D, E, F
show more qualitative results on Set8 [11], DAVIS [9], CRVD [15] and IOCV [7],
respectively.

e

el
(c) DVDNet

£

(e) VNLNet h (f) PaCNet )

Fig. B: More visual comparison for Gaussian denoising (o = 40) on the Set8
dataset [11].



6 J. Li et al.

(e) VNNet (H) PaNet (2) FloN(Ours) (h) T

Fig. C: More visual comparison for Gaussian denoising (o = 40) on the DAVIS
dataset [9].

Noisy observation Noisy RViDeNet FastDVDNet EMVD EDVR FIoORNN(Ours)

Fig. D: More visual comparison of an outdoor scene on the CRVD dataset [15].
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(c¢) FastDVDNet

(e) VNLNet (f) FloRNN(Ours)

Fig. E: More visual comparison on the IOCV dataset [7].
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(e) VNLNet (f) FloRNN(Ours)

{

Fig.F: More visual comparison on the IOCV dataset [7].
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