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Outline

We supplement the main body of our paper with additional details, discussions,
and results in this document. In Section A, we present more details about our
dataset capture, which includes a brief analysis of the formation of degraded
screen images. In Section B, we provide more implementation details of our net-
work architecture as well as a simple empirical study of loss functions to assist
us in selecting a suitable training objective for moiré removal. In Section C, we
provide more implementation details of experiments and show more qualitative
results and comparisons with other state-of-the-art methods. Furthermore, as
shown in Section C.2, we investigate why FHDe2Net fails on this more chal-
lenging 4K dataset. We conduct a more detailed discussion of current methods’
strategies for handling scale-variation of moiré patterns in Section D.

A Dataset Capture and Analysis

In this section, we first present a brief introduction of the formation of the moiré
pattern, and then we provide more details about our capture settings.

A.1 Image Degradation Analysis

The formation of degraded screen images taken with mobile devices can be di-
vided into two processes: the generation of moiré patterns caused by frequency
aliasing; and the global color degradation of the image, caused by a series of
ISP operations (e.g., auto exposure control, white balance correction, gamma
correction, and global tone mapping).

We can model the formation of moiré patterns as a local color unbalanced
scaling in the camera’s color filter array (CFA). Without loss of generality, con-
sider how one of the green channels in the RGBG raw pattern is collected. As

B indicates the corresponding author.
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Fig. 1: Left: the formation of the moiré pattern. Notice that there are small gaps
between the light-emitting diodes. Right: the characteristics of moiré patterns

shown in Fig. 1, due to a slight misalignment between sensor pixels and LED
screen pixels, the energy may shift from one pixel to its neighbors. This flow
eventually aligns again after passing a few pixels. Hence, the value of each pixel
in this period could be modeled as being multiplied by different scaling factors:

R̂(i, j) = R(i, j) ∗ S(i, j), (1)

where R̂(i, j) =
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)
represents the degraded pixel at the loca-

tion (i, j) in the Bayer pattern and R(i, j) denotes the clean pixel. S(i, j) =(
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g1
ij , s

b
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)
is the scaling factor for four channels (RGBG) caused by fre-

quency aliasing; ∗ denotes the point-wise multiplication. However, since the LED
display and camera Bayer array both emit or receive each channel information
in an alternate form, the scaling rules for different channels are not consistent
within a cycle. Hence, the camera stores a wrong color distribution, causing the
moiré pattern we see.

Furthermore, there is an unavoidable gap when we re-capture an image on the
screen. For instance, ambient light can lead to incorrect exposure control, wrong
auto white balance, and unnatural tone mapping. Also, corrupted raw data can
affect the process of raw image demosaicing. All of these factors contribute to
the overall degradation of the color, which can be formulated as:

M = F (R ∗ S) , (2)

where M is the final degraded screen image and F is a nonlinear function that
globally affects the image quality.

Given the above analysis, we could explain the following characteristics (see
Fig. 1) of moiré patterns:
Structural distortions: Since the RGB color distributions change in an al-
ternate form, the local illuminance contrasts among the three channels are not
consistent. Thus, new structures are created and mixed with original contents.
Diverse degraded forms: In Fig. 1, we show the simplest case of misalignment
between two patterns, in which the camera plane and the screen plane are parallel
to each other. Obviously, the scaling rule would be quite different if the angle and
distance between these two planes were to change, resulting in moiré patterns in
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different shapes and scales. This explains why the moiré pattern characteristics
highly depend on the geometric relationship between the screen and the camera.
Large-scale patterns in low-frequency regions: Unlike the natural image
captured from real scenes, we capture discrete signals emitted from the LED
screen and store them in new discrete forms. Thus, the low-frequency image
areas actually become signals with the highest frequency and are more likely to
continuously alias with the camera sensor over a long period, resulting in larger
moiré patterns.

A.2 More Details about Capture Settings

Based on the above analysis, we thus shoot the screen images via different camera
views to produce different patterns and combine multiple devices to produce
diverse degradation styles (including pattern appearance and global color style).
Specifically, we apply three mobile phones and three digital screens, as shown
in Table 1 (3 × 3 = 9 combinations here totally). Notably, the “4K” challenge
means the obtained moiré image is at a resolution of ultra-high-definition (i.e.,
the shooting resolution is 4K). We also compare our dataset with other datasets
visually. As seen in Fig. 2, we crop patches from these four datasets at the same
resolution 256× 256 (the image in TIP2018 dataset [9] is already at a resolution
of 256×256). Obviously, compared with other datasets, the image UHDM suffers
from more severe moiré artifacts and has less clean image content to harvest in
a local window. As a result, it is more challenging for the network to identify
the moiré pattern or fill clean content into the degraded region, which has also
been demonstrated in [3].

Table 1: The capture devices we apply to get the moiré image

Mobile Phone Shooting Resolution Digital Screen Display Resolution

iPhone XR 4032× 3024 LG 27UL650-W 3840× 2160
iPhone 13 4032× 3024 AOC U2790PQU 3840× 2160

Redmi K30 Pro 4624× 3472 Philips 243S7EHMB 1920× 1080

B Method

In this section, we give details of our network architecture. The overview of our
network is shown in Fig. 3. We use skip-connections to connect each level of the
encoder and decoder, wherein the features are concatenated.

B.1 Semantic-Aligned Scale-Aware Module (SAM)

As seen in Fig. 3, there are three branches in the pyramid context extraction
module wherein the dilated dense block (L = 5) is utilized as the backbone
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(d) UHDM (Resolution: 𝟑𝟎𝟐𝟒 × 𝟒𝟎𝟑𝟐) 

(a) TIP2018 (b) LCDMoir ƴ𝐞 (c) FHDMi

Cropped region 

Resolution:𝟐𝟓𝟔 × 𝟐𝟓𝟔

Resolution:𝟐𝟓𝟔 × 𝟐𝟓𝟔

Fig. 2: Comparisons with other datasets; we crop patches from these four datasets
at the same resolution 256× 256 (the image in TIP2018 dataset [9] is already at
a resolution of 256× 256)
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aware module (SAM)
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block to extract the context information. Two bilinear upsampling layers with
upsampling ratios 2 and 4 are applied to the second and third branches to align
the spatial resolution of the first branch. There are three fully connected layers
for the MLP in the cross-scale dynamic fusion module to learn the adaptive
weights. We adopt ReLU for the first two layers and Sigmoid for the last layer as
our nonlinear activation functions. Specifically, for an input tensor v ∈ R1×1×3C ,
the channel number is squeezed by a dividing factor 4 in the first layer and then
expanded to the original number in the last layer.
Weight-sharing SAM: We apply a weight-sharing strategy for one of our
models, denoted as WS-ESDNet, which shares the learnable parameters among
the three branches. The WS-ESDNet has fewer parameters while keeping com-
parable quantitative and qualitative results compared to our standard model
ESDNet. The quantitative results have already been shown in Section.5.2 in the
main body of our paper, and qualitative results are illustrated in Section C. This
demonstrates that the performance gain primarily benefits from our architecture
design rather than increased model parameters.

Table 2: Detail of the encoder; DRDB denotes the dilated residual dense block
consisting of three convolution layers

Level Block Type Input Channels Output Channels Inter Channels Dilation Rates

1 Pixelshuffle downsampling 3 12 - -
5× 5 Conv + ReLU 12 48 - -

DRDB 48 48 32 (1, 2, 1)
SAM 48 48 32 (1, 2, 3, 2, 1)

2 Stride=2, 3× 3 Conv 48 96 - -
DRDB 96 96 32 (1, 2, 1)
SAM 96 96 32 (1, 2, 3, 2, 1)

3 Stride=2, 3× 3 Conv 96 192 - -
DRDB 192 192 32 (1, 2, 1)
SAM 192 192 32 (1, 2, 3, 2, 1)

B.2 Empirical Study of Loss Functions

The loss function plays an essential role in guiding model updates and encour-
aging the model to learn natural patterns from data. To this end, we carry out
an empirical study to investigate the impacts of different loss functions on image
demoiréing.

We evaluate traditional L1 loss and its combination with perceptual losses [4]
where the features are respectively from the end of block 1, block 2, block 3,
block 4 and block 5 of a pre-trained VGG-16 network [8]. We develop a simple
task to study the effectiveness of these loss functions on removing undesirable
moiré patterns. Specifically, we choose a degraded screen image M with severe
structural distortions and its corresponding clean ground-truth I; our aim is
to restore M by optimizing θ⋆ = argminθ D(I, fθ(M)) through our designed
network fθ, where D denotes the loss function, and Î = fθ⋆(M) is the recov-
ered image. As shown in Fig. 4, the single L1 loss or its combination with the



6 X. Yu et al.

Table 3: Detail of the decoder; DRDB denotes the dilated residual dense block
consisting of three convolution layers

Level Block Type Input Channels Output Channels Inter Channels Dilation Rates

3 3× 3 Conv + ReLU 192 64 - -
DRDB 64 64 32 (1, 2, 1)
SAM 64 64 32 (1, 2, 3, 2, 1)

Output Layer 3× 3 Conv 64 12 - -
Pixelshuffle upsampling 12 3 - -

Transition Layer Bilinear-Up Layer 64 64 - -

2 3× 3 Conv + ReLU 160 64 - -
DRDB 64 64 32 (1, 2, 1)
SAM 64 64 32 (1, 2, 3, 2, 1)

Output Layer 3× 3 Conv 64 12 - -
Pixelshuffle upsampling 12 3 - -

Transition Layer Bilinear-Up Layer 64 64 - -

1 3× 3 Conv + ReLU 112 64 - -
DRDB 64 64 32 (1, 2, 1)
SAM 64 64 32 (1, 2, 3, 2, 1)

Output Layer 3× 3 Conv 64 12 - -
Pixelshuffle upsampling 12 3 - -

Transition Layer Bilinear-Up Layer 64 64 - -

shallow block 1 perceptual loss cannot guide the network to remove unneces-
sary structures; they are effective in restoring the pixel-level color due to their
low-level nature. Meanwhile, the loss functions derived from block 4 and block 5
features, containing too deep semantic-level information, will lead the predicted
image to lose its textures. In contrast, perceptual loss with features from block 2
and block 3 can encourage the network to remove undesirable structures while
preserving the original texture, a good signal for image demoiréing. In partic-
ular, the model trained with block 3 recovers more details with satisfying local
contrasts. Hence, the block 3 might be the most suitable layer to construct the
training objective.

Reference Input 𝐿1 𝐿1+ Block_1

𝐿1+ Block_2 𝐿1+ Block_3 𝐿1+ Block_4 𝐿1+ Block_5

Fig. 4: The optimal results by fitting different loss functions for a single moiré
image
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Although many previous works [2,3,6] have already adopted the perceptual
loss as a regularization term, they often overlook the importance of precisely
choosing a suitable layer for this specific task, which is crucial, as different fea-
tures will encourage the network to optimize the network in different directions.

C Experiments

C.1 Implementation Details

We implement all the experiments using PyTorch on an NVIDIA RTX 3090
GPU card. The learning rate is initially set to 0.0002 and scheduled by cyclic
cosine annealing [7], and models are optimized by Adam [5] with β1 = 0.9 and
β2 = 0.999. For UHDM dataset, we set the batch size as 2. Notably, we conduct
benchmark implementations of other methods [9,13,2,3,1,6] on our dataset suffi-
ciently. For DMCNN [9], MDDM [1], WDNet [6] and MBCNN [13], we randomly
crop a 768×768 patch from the ultra-high-definition images, and train the model
for 150 epochs, i.e., the totally same setting with ours. For FHDe2Net [3], due to
its different multi-stage nature and high computational cost, we can only follow
its default setting in the official released code for training (i.e., down-sampled-
resolution 384 × 384 for training its global stage and cropped 384 × 384 region
for training the following three cascaded networks). For MopNet[2], we freeze its
pre-trained classification sub-network and train its edge-prediction sub-network
and demoiréing sub-network for 150 epochs, wherein we also crop a 384 × 384
region for training. During inference, since MopNet cannot directly process the
4K image due to its heavy memory cost, we downsample the input image into
1080p (the highest resolution it can process on a single GPU) resolution and
then upsample the result back to 4K resolution.
Other datasets: For FHDMi [3] and LCDmoiré [10] dataset, we randomly
crop a 512 × 512 patch from the high-definition images, and train the model
for 150 epochs with the batch size as 2. For TIP2018 dataset [9], we follow the
benchmark setting, i.e., we first resize the image into a 286× 286 resolution and
then do center crop to produce a 256 × 256 resolution image for both training
and testing. We train our models for 70 epochs and set batch size to 4.

C.2 Discussion about FHDe2Net

We find that in the new dataset UHDM, FHDe2Net suffers from a more signifi-
cant performance drop than other methods. To this end, we conduct a parameters
searching and analysis. Specifically, since we find the key challenge is to fuse the
high-frequency detail, we mainly analyze the training of the last stage, i.e., the
FDN and FRN (please refer to [3] for more details). Since the learning rate is
scheduled by cyclic cosine annealing, which warms up every 50 epochs, we evalu-
ate the performances after the FDN and FRN (the last stage of FHDe2Net) have
been trained for 50, 100, and 150 epochs, respectively. As shown in Table 4, with
the increase of training time, SSIM improves significantly, but LPIPS degrades
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simultaneously. For this phenomenon, we attribute the reasons to two aspects,
as elaborated upon below.

On the one hand, current low-level metrics have several limitations and can-
not fully measure the demoiréing performance (see Fig. 5). For example, PSNR
is a pixel-wise metric sensitive to pixel misalignment and slight color shift, which
has limited effect in measuring the structural distortion caused by the moiré pat-
tern. SSIM is more robust to evaluate structural distortion yet still sensitive to
the unstructured distortion (e.g., pixel shift, rotation.), which is unavoidable in
real-world data pairs. LPIPS has been proven to be more consistent with human
perception; however, it is sensitive to blur as demonstrated in [11].

(a) Input 

(PSNR/SSIM/LPIPS)

(b) MBCNN 

(23.423/0.7643/0.3199)

(c) FHDe2Net 

(22.347/0.7122/0.3206)

(d) GT 

(∞/∞/0)

Fig. 5: Current metrics have some limitations. In this case, FHDe2Net removes
the moiré pattern more cleanly yet is still behind the MBCNN if evaluated by
the three metrics

(a) Input 

(PSNR/SSIM/LPIPS)

(b) Global Demoir ƴe
(18.448/0.7391/0.4650)

(c) Detail Refine

(18.265/0.7737/0.2716)

(d) GT 

(∞/∞/0)

Fig. 6: Comparisons between the result produced by global demoiréing stage and
the final result (i.e., “Detail Refine”), in which the PSNR is almost unchanged
while LPIPS achieves significant improvement

On the other hand, this indicates FHDe2Net has reached its limit in mak-
ing the trade-off between large-scale moiré removal and high-frequency details
preservation. To explore whether this stage plays a role in high-frequency detail
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recovery, we compare it with the initial low-resolution result produced by the
global demoiréing stage. As shown in Table 4, compared with the initial result
(i.e., “Low-resolution”), the fine-tuned model (i.e., “150 epoch”) achieves a sig-
nificant improvement in LPIPS which indicates the detail has been recovered to
some degree (but not been fully recovered, see Fig. 6). However, the PSNR is al-
most unchanged, indicating that this stage may not work well for color recovery.
One possible reason is that the fusion stage only utilizes the Y-channel’s informa-
tion of the original high-resolution image but lacks UV-channels’ high-resolution
information. Besides, to avoid the effect of pixel misalignment, FHDe2Net does
not adopt pixel-wise loss terms (e.g., L1, L2), which may prevent it from recover-
ing the global color style. Under this circumstance, the accurate color information
loses significantly, negatively affecting all three metrics, especially for the PSNR.

Table 4: Quantitative results of different implementations of FHDe2Net on
UHDM dataset. “Pre-train” denotes the inference result by directly applying
the official released pre-train model on FHDMi dataset [3], “Low-resolution” de-
notes the intermediate result produced by the first global demoiréing stage in
FHDe2Net

Metrics Input Pre-train Low-resolution 50 epoch 100 epoch 150 epoch

PSNR↑ 17.117 18.052 20.333 20.312 20.313 20.338
SSIM↑ 0.5089 0.5986 0.7408 0.7290 0.7365 0.7496
LPIPS↓ 0.5314 0.4929 0.4669 0.3397 0.3429 0.3519

In fact, we have conducted several parameters searching for the last stage’s
training (consists of two sub-networks FDN and FRN), trying to improve the
performance of FHDe2Net. To be precise, we adjust the loss weights to guide the
networks’ optimization. As illustrated in Eq.(3), the overall loss function of the
last stage consists of two parts: LFDN and LFRN, where LFDN aims to reconstruct
the high-resolution gray-scale image (i.e., the Y-channel of YUV color space) and
LFRN aims to further fuse the color information (more details can be referred to
[3]):

Llast(I, Î) = LFDN(IY , ÎY ) + λ× LFRN(I, Î) (3)

where I is the ground-truth and Î is the network’s output, IY and ÎY denote
their Y-channel components, respectively. Moreover, for LFRN, it is essentially
a CoBi [12] loss, which aims to measure the similarity between unaligned image
pairs, consisting of a term D to measure feature similarity and a term D′ to
compute the spatial distance between these two pixels (with a weight ws), i.e.,:

LFRN(Î , I) =
1

N

N∑
i

min
j=1,...,M

((1− ws)D (pi, qj) + wsD′ (pi, qj)) (4)
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where pi, qj stand for the feature vectors from the output image Î and clean
image I at the spatial position indexed by i and j, respectively. N , M denote
the amounts of features (i.e., the amounts in searching space).

We try several (λ,ws) combinations to train the model. For fast exploration,
we train every model for 50 epochs and compare their results, as shown in
Table 5. However, since the metrics’ changes of each model are not significant,
we use the default parameter settings to report the results in our main paper.

In summary, although FHDe2Net achieves the best (except for ours) result
on the FHDMi dataset [3], this framework is not robust under the higher resolu-
tion setting. Moreover, its complex module designs further render it hard to be
applied to the 4K scenario due to unacceptable increased computational costs.

Table 5: Quantitative comparisons of different weights for training FHDe2Net.
“A” denotes the default model where (λ,ws) = (1, 0.5); “B” denotes (λ,ws) =
(0.5, 0.5); “C” denotes (λ,ws) = (2, 0.5); “D” denotes (λ,ws) = (1, 0.7); “E”
denotes (λ,ws) = (1, 0.2)

Metrics Input Pre-train Model A Model B Model C Model D Model E

PSNR↑ 17.117 18.052 20.312 20.282 20.174 20.251 19.050
SSIM↑ 0.5089 0.5986 0.7290 0.7392 0.7350 0.7435 0.7240
LPIPS↓ 0.5314 0.4929 0.3397 0.3409 0.3359 0.3497 0.3566

C.3 SAM for Other Methods

We demonstrate that equipping with the proposed SAM can also help other
methods to achieve performance gain. Here we conduct experiments on MDDM [1],
DMCNN [9] and MBCNN [13], where we stack SAM in these networks. As shown
in Table 6, all metrics have improvements.

Table 6: Effects of the proposed SAM. We add our SAM to current methods
DMCNN [9], MDDM [1] and MBCNN [13] to improve their performances

Metrics Input DMCNN/(+SAM) MDDM/(+SAM) MBCNN/(+SAM)

PSNR↑ 17.117 19.914/20.769 20.088/20.883 21.414/21.532
SSIM↑ 0.5089 0.7575/0.7699 0.7441/0.7640 0.7932/0.7940
LPIPS↓ 0.5314 0.3764/0.3630 0.3409/0.3299 0.3318/0.3302

C.4 More Qualitative Comparisons

As seen in Fig. 8-15, we provide more visual results and comparisons with cur-
rent state-of-the-art methods on three real-world demoiréing datasets: UHDM
(resolution: 3840× 2160), FHDMi [3] (resolution: 1920× 1080) and TIP2018 [9]
(resolution: 256× 256). Apparently, our model can remove moiré patterns more
cleanly and preserve high-frequency details better.
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D Revisit Current Multi-Scale Schemes in Image
Demoiréing

We have discussed in our main paper that a key challenge in image demoiréing
is the scale variation of the moiré pattern. In this section, we conduct a more
detailed analysis of multi-scale schemes in current demoiréing works. As shown
in Fig. 7, we summarize these schemes into two parts: single-stage training and
multi-stage training. We figure out their inefficiency and insufficiency, which
limit their performance when processing ultra-high-definition images.

D.1 Single-Stage Training

Most of the demoiréing works adopt a single-stage framework, i.e., given a moiré
image Imoiré ∈ Rh×w×3, an end-to-end network F is trained to produce the final
demoiréd image Idemoiré:

Idemoiré = F(Imoiré) (5)

Specifically, they embed different multi-scale schemes into their networks, which
can be simplified and summarized into two topological architectures: parallel
multi-scale and cascaded multi-scale.
Cascaded multi-scale: Adopted by MopNet[2], MBCNN[13] and WDNet[6]
(Note that although MopNet is a multi-stage framework, it harvests multi-scale
information in one sub-network), the insight in cascaded multi-scale strategy is
utilizing features from different-depth layers to get multi-scale representations.
As shown in the right upper part of Fig. 7, the moiré image first goes through
an encoder that contains three levels to extract features. Then the intermediate
results in each level are fused together and fed to the decoder for reconstruction.
Since features are produced in different-depth layers, their receptive fields are
different (the receptive field is larger for a deeper feature). However, another fact
is ignored: features at different depths have different semantic meanings. For ex-
ample, features extracted in the early layer usually contain low-level information
such as edge, while features in the deeper layers contain more abstract attributes
learned by the network. Recall that the scale-variation challenge means that the
observed object remains the same for all attributes (e.g., color, shape) except
for the scale that appeared in an image (i.e., pixels it counts). Thus, a more
reasonable design is the network can extract multi-scale information at the same
semantic level (i.e., depth level). Further, a robust network should harvest multi-
scale information at each semantic level to handle different attributes. Based on
this analysis, we find that this cascaded strategy lacks multi-scale ability at a
specific semantic level, limiting its scale-robust ability.
Parallel multi-scale: The parallel multi-scale indicates construction of paral-
lel high-resolution to low-resolution branches to process different-scale features,
as adopted in DMCNN[9] and MDDM[1]. At each scale, several convolutional
blocks are stacked to extract features and finally produce a three-channel out-
put. Without loss of generality, we suppose there are three scales and three
convolutional blocks in each scale to illustrate and analyze this strategy.
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As shown in the left upper part of Fig. 7, the moiré image first goes through
several downsampling convolutional heads with different strides to obtain shallow
representations with different resolutions:

Ji = Convi(Imoiré), i = 1, 2, 3 (6)

where Convi denotes convolutional block with stride s = 2i−1, Ji ∈ R
h

2i−1 × w

2i−1 ×c.
After that, each Ji is fed to several convolutional blocks in parallel:

Xi = F 3
i (F

2
i (F

1
i (Ji))), i = 1, 2, 3 (7)

where F j
i denotes the j-th blocks in i-th scale (branch), Xi ∈ R

h

2i−1 × w

2i−1 ×3.
Then an upsampling layer would be utilized to align the spatial size of each-
scale outputs, followed by a summation operation to get the final prediction
Idemoiré:

Idemoiré = X1 +X2↑ +X3↑↑ (8)

Unlike the cascaded multi-scale scheme, the insight here is to reduce the res-
olution at the input stage, so different branches have different receptive fields.
However, the problem is, this framework only fuses the results at the end of each
branch, ignoring the interaction of the intermediate features. As a result, each
extracted feature is only determined by its current branch (scale), dramatically
limiting the network’s representation ability. For example, to produce the fea-
ture F 2

2 , the network only utilizes the information from F 1
2 . However, a more

representative feature needs to harvest multi-scale information from last seman-
tic level. Only fusing information in the last layer results in coarse moiré pattern
removal, as shown in Fig. 8-15.
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Fig. 7: A summary of current works for solving the multi-scale challenge in image
demoiréing
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D.2 Multi-Stage Training

FHDe2Net [3] is the only current work which proposes to tackle real-world high-
definition moiré images. Due to the increased resolution, the scale of the moiré
pattern would expand extremely larger, which has been the main challenge in the
high-definition demoiréing. The central insight in this work is adopting a multi-
stage framework to handle this problem, the networks of which are trained step
by step. As shown in the lower part of Fig. 7, the overall framework can be
divided into two stages: the global stage and the local refine stage (In fact, it
consists of four sub-networks, but we summarize it into two stages here for anal-
ysis). The input of the global stage is a downsampled low-resolution (384× 384)
moiré image, so the network in this stage can obtain a full-image-size receptive
field. Although the large-scale moiré pattern can be removed, the images’ high-
frequency details are severely lost due to the downsampling operation. Hence, in
the local refinement stage, the original high-resolution image would be utilized to
guide the low-resolution demoiréd image to recover the details. However, our ex-
periments find it hard for the network to differentiate the moiré pattern from the
image textures, leading to the reintroduction of the moiré pattern and unsatis-
factory texture recovery. Furthermore, its internal complex module design shows
a heavy computational burden, which is unacceptable for ultra-high-definition
image demoiréing.



14 X. Yu et al.

(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

Fig. 8: Qualitative comparisons of our models with other state-of-the-art methods
on the UHDM dataset, ESDNet is our standard model and ESDNet-L is our
larger model
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(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

Fig. 9: Qualitative comparisons of our models with other state-of-the-art methods
on the UHDM dataset, ESDNet is our standard model and ESDNet-L is our
larger model
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(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

Fig. 10: Qualitative comparisons of our models with other state-of-the-art meth-
ods on the UHDM dataset, ESDNet is our standard model and ESDNet-L is our
larger model
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(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

(a) Input (b) DMCNN (c) MDDM (d) WDNet (e) MopNet

(f) MBCNN (g) FHDe2Net (h) ESDNet (i) ESDNet-L (j) Reference

Fig. 11: Qualitative comparisons of our models with other state-of-the-art meth-
ods on the UHDM dataset, ESDNet is our standard model and ESDNet-L is our
larger model
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(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

Fig. 12: Qualitative comparisons of our models with three representative state-of-
the-art methods on the FHDMi dataset [3], including DMCNN [9], MBCNN [13]
and FHDe2Net [3]. ESDNet is our standard model and ESDNet-L is our larger
model. WS-ESDNet is our more lightweight model, the parameters of which are
shared in three branches of pyramid context extraction module
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(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

Fig. 13: Qualitative comparisons of our models with three representative state-of-
the-art methods on the FHDMi dataset [3], including DMCNN [3], MBCNN [13]
and FHDe2Net [3]. ESDNet is our standard model and ESDNet-L is our larger
model. WS-ESDNet is our more lightweight model, the parameters of which are
shared in three branches of pyramid context extraction module
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(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

(a) Input (b) DMCNN (c) MBCNN (d) FHDe2Net

(e) ESDNet (f) WS-ESDNet (g) ESDNet-L (h) Reference

Fig. 14: Qualitative comparisons of our models with three representative state-of-
the-art methods on the FHDMi dataset [3], including DMCNN [9], MBCNN [13]
and FHDe2Net [3]. ESDNet is our standard model and ESDNet-L is our larger
model. WS-ESDNet is our more lightweight model, the parameters of which are
shared in three branches of pyramid context extraction module
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(a) Input (b) MopNet (c) MBCNN (d) ESDNet (e) ESDNet-L (f) Reference

Fig. 15: Qualitative comparisons of our models with two representative state-
of-the-art methods on the TIP2018 dataset [9], including MopNet [2] and
MBCNN [13]. ESDNet is our standard model and ESDNet-L is our larger model
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