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Abstract. Video deblurring aims to restore sharp frames from blurry
video sequences. Existing methods usually adopt optical flow to compen-
sate misalignment between reference frame and each neighboring frame.
However, inaccurate flow estimation caused by large displacements will
lead to artifacts in the warped frames. In this work, we propose an equiv-
alent receptive field deformable network (ERDN) to perform alignment
at the feature level without estimating optical flow. The ERDN intro-
duces a dual pyramid alignment module, in which a feature pyramid is
constructed to align frames using deformable convolution in a cascaded
manner. Specifically, we adopt dilated spatial pyramid blocks to predict
offsets for deformable convolutions, so that the theoretical receptive field
is equivalent for each feature pyramid layer. To restore the sharp frame,
we propose a gradient guided fusion module, which incorporates struc-
ture priors into the restoration process. Experimental results demon-
strate that the proposed method outperforms previous state-of-the-art
methods on multiple benchmark datasets. The code is made available at:
https://github.com/TencentCloud/ERDN.
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1 Introduction

The goal of video deblurring is to recover high quality consecutive frames from
their blurry counterparts. Camera shake and object motion, which are common
when capturing videos with hand-held devices, serve as the main causes of video
blur. Video deblurring is a fundamental problem in the community of computer
vision and can be beneficial to many high-level tasks including video segmen-
tation and video understanding. However, it is an ill-posed problem since each
blurry frame may have multiple sharp solutions.

Compared to image deblurring, video deblurring can use neighboring frames
for restoration. A vital issue in video deblurring is how to align the neighbor-
ing frames with the reference frame, since the neighboring frames may not be
naturally aligned due to motions of objects. Previous methods [21, 9, 29, 18, 12]
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usually exploit optical flow to predict motion fields, which can be used to warp
neighboring frames to the reference frame. However, these methods perform flow
estimation explicitly and wrap frames at the image level, which may introduce
artifacts in regions with large displacements. ARVo [12] further estimates pair-
wise image correspondence to compensate misalignment caused by inaccurate
flow estimation, while extra computational cost and storage space are required.

Besides flow-based alignment, deformable convolution [7] is widely adopted as
another alignment method and achieve remarkable performance in video restora-
tion [24, 13, 26]. When deformable convolution is applied in temporal alignment,
the displaced kernels on neighboring frames will be used to align intermediate
features from several locations, while optical flow only samples from one loca-
tion. Because of the diverse sampling, deformable convolution tends to perform
better than flow-based alignment [3]. However, existing works [24, 26] usually
predict offsets in a limited receptive field, which leads to relatively local offset
predictions and fail to achieve comparable performance.

To alleviate the problem, we propose an equivalent receptive field deformable
network (ERDN) that performs temporal alignment using deformable convolu-
tion. A dual pyramid alignment module is developed to construct a feature pyra-
mid for reference frame and each neighboring frame. In particular, the module
first aligns high level features with coarse offset estimations and then propagates
the offsets and the aligned features to lower levels, in which way the offsets can
be refined in a coarse-to-fine manner. However, different from [26], we propose
a novel dilated spatial pyramid block to predict offsets for each feature pyramid
layer. The block uses dilated convolution to guarantee each layer having equiva-
lent receptive field, with the principle that the offset refinement is more effective
to be performed in an equivalent region. To compensate information loss caused
by dilated convolution, the block further concatenates several convolution layers
with different dilation rates, which constitute a spatial receptive field pyramid.

In order to preserve structures for further enhancing the deblurring perfor-
mance, we introduce a gradient guided fusion module, in which a gradient branch
converts the gradient maps of blurry frames to the sharp ones. The recovered
gradients can be integrated into the deblurring branch with a series of Spatial
Feature Transform (SFT) layers [25], allowing our method to incorporate struc-
ture priors. To the best of our knowledge, we are the first to introduce gradient
branch in video deblurring and achieve success.

The main contributions can be summarized as follows:

1. We propose a novel equivalent receptive field deformable network (ERDN)
for video deblurring, which performs alignment using deformable convolution
without optical flow estimation.

2. To handle large displacement, we propose a dual pyramid alignment module,
which predicts offsets in a cascaded manner within equivalent receptive field.

3. We introduce a gradient branch to incorporate structure priors as a guidance
for the frame restoration.

4. Extensive experiments show that our method achieves superior performance
over previous state-of-the-art methods quantitatively and qualitatively.
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2 Related Works

2.1 Video Deblurring

Early video deblurring approaches [1, 28, 20] mostly estimate blur kernels and
restore sharp frames by applying deconvolution with the estimated kernels. Some
works [1, 28] utilize segmentation map for blur kernel estimation, and process
blur caused by moving objects. More recently, Ren et al. [20] propose a pixel-wise
non-linear kernel model, where the blur kernel is estimated from optical flow.
However, estimating spatially-varying blur kernels is a severely ill-posed problem.
These approaches may fail when applied to videos that include complex blur.

To overcome the above problems, several methods explicitly align frames
using optical flow. Su et al. [21] restore the deblurred frame using channel-
concatenated neighboring frames, which are aligned by an external optical flow
module. Pan et al. [18] plug an optical flow estimation module into an end-
to-end model while using temporal sharpness prior. Based on [18], Li et al. [12]
further incorporate a correlation volume pyramid to learn spatial correspondence
between pixel pairs in the feature space. The spatial correspondence can serve
as a complement to the optical flow alignment. Most of the optical flow-based
methods align frames at the image level, while incorrect flow estimation may
introduce image artifacts.

By contrast, a few methods adopt implicitly alignment using Recurrent Neu-
ral Network (RNN) for its excellent performance on time-series signal [5, 23].
Wieschollek et al. [27] introduce a novel recurrent encoder-decoder network and
transfer temporal feature between subsequent iterations. Hyun Kim et al. [10]
incorporate a dynamic temporal blending mechanism that enable adaptive in-
formation propagation. The recent method [31] uses a recurrent cell based on
residual dense blocks and a global spatio-temporal attention module. The above
works have achieved considerable success, but are still insufficient to deal with
fast motion and large displacement. In this work, we alternatively use deformable
convolution for implicitly temporal alignment.

2.2 Deformable Convolution

Dai et al. [7] first propose deformable convolution, which is originally applied to
high-level vision tasks, such as object detection [2] and crowd understanding [14].
By learning an additional offset, deformable convolution has spatial flexibility
to obtain information from several locations. Due to its sampling diversity, de-
formable convolution has been creatively utilized in low-level video restoration.
In video super-resolution, Tian et al. [24] first adopt deformable convolution to
align frames at the feature level. Yue et al. [30] successfully apply deformable
alignment to video denoising. Lin et al. [13] further integrate optical flow into
deformable convolution in order to add explicit motion constraints.

However, deformable convolution is rarely explored in video deblurring. Wang
et al. [26] propose a pyramid deformable architecture for video super-resolution,
and attempt to transfer it into video deblurring without specific designs. Since
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the offsets are predicted by typical convolution layers in [26], the theoretical
receptive field is limited, which may lead to performance drop in occurrence
of fast motion and large displacement. In contrast, our work develops a well-
designed deblurring framework based on deformable convolution, and proposes
a novel dual pyramid alignment module that introduces a larger receptive field.

3 Method

3.1 Overview

Let It ∈ RH×W×C be the t-th blurry video frame and Ist ∈ RH×W×C be the
ground-truth sharp frame, where H × W denotes the frame size, and C refers
to channel number. Our goal is to restore the sharp video frame Irt from the
consecutive 2N + 1 frames {Ii}t+N

i=t−N . Irt should be as similar to Ist as possible.
The overall framework is depicted as Fig. 1. It consists of two modules: 1)

Dual pyramid alignment module that aligns neighboring frames with reference
frame. 2) Gradient guided fusion module that reconstructs the sharp frame.

3.2 Dual Pyramid Alignment Module

Motivation: Cascading refinement has been well-established in optical flow es-
timation and achieves remarkable performance [11, 8, 22]. In PWC-Net [22], the
main principle for optical flow refinement can be summarized as three steps:
warping, cost volume computation and optical flow estimation. The PWC-Net
first warps features of the target image toward the reference image using the
coarse optical flow. Next, a cost volume, which stores the matching costs for
associating a pixel with its corresponding pixels, is constructed between features
of the reference image and warped features of the target image. Finally, a refined
optical flow is estimated based on the cost volume and the coarse optical flow.
The cost volume is explicitly computed to indicate errors of coarse estimation.

However, the principle of cascading refinement has not been thoroughly stud-
ied in the deformable alignment, which serves as another important alignment
method in video restoration [26, 30]. The EDVR [26] predicts offsets at each
pyramid level using several convolution layers. Then, the offsets predicted at
higher level will be propagated to lower level, and fused with offsets from lower
level. During the whole procedure, refinements are conducted via the fusion of
offsets from different levels. However, the offsets of higher level are predicted in
relatively larger receptive fields compare to those of lower level, which may lead
to inconsistency of offset scales. Therefore, the refinement may fail since offsets
in larger scale can not facilitate offset estimation in smaller scale.

In this work, we guarantee equivalent receptive field in different levels so that
offset in deeper level can guide offset prediction in lower level. In other words,
our framework first detect region with similar structure, then detect area with
similar details among that region. More details are described in the following.

Alignment in Feature Pyramid: The alignment module aims to align
neighboring frames to reference frame, while pre-deblurring the reference frame.
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(a) Dual Pyramid Alignment Module

(b) Gradient Guided Fusion Module

Fig. 1: Overall framework of our ERDN method. The dual pyramid alignment
module aims to align neighboring frames using deformable convolution in a cas-
caded manner. The module adopts dilated spatial pyramid blocks (DB) to pre-
dict offsets within equivalent receptive fields. A gradient guided fusion module is
utilized to restore frame, taking reference frame and aligned neighboring frames
as input. For simplicity, we only present the feature pyramid with three layers.

The proposed module constructs a feature pyramid and aligns features in each
layer using deformable convolution. As for a deformable convolution kernel with
K sample positions, we note the learned offsets for location p as ∆Pt+i(p)k.
Then aligned feature F a

t+i can be obtained using deformable convolution:

F a
t+i(p) =

K∑
k=1

ωk · Ft+i(p+ pk +∆Pt+i(p)k) (1)

where Ft+i represents features extracted from neighboring frame It+i, while ωk

and pk represent weight and pre-specified offset respectively. The learned offsets
∆Pt+i can be predicted from the features of reference frame Ft and the features
of neighboring frame Ft+i.
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Inspired by [26, 30], we align frames in a cascaded manner. As shown in
Fig. 1, we use strided convolution with factor 2 to generate F l

t+i at the l-th
level, obtaining a four-level pyramid of feature representation. At the l-th level,
offsets and aligned features are predicted using the l-th features together with
the upsampled offsets and the aligned features from the (l + 1)-th level:

∆P l
t+i = DB([F l

t+i, F
l
t ], (∆P l+1

t+i )
↑2) (2)

(F a
t+i)

l = f(DCN(F l
t+i, ∆P l

t+i), ((F
a
t+i)

l+1)↑2) (3)

where DCN is deformable convolution described in Eqn. 1 and f represent several
convolution layers, while (·)↑2 refers to ×2 upsampling. Specially, we utilize a di-
lated spatial pyramid block (DB) to predict offsets for each layer. After cascaded
alignment, (F a

t+i)
1 is further applied into several residual blocks to reconstruct

aligned frame Īt+i, while a decoder is used to restore reference frame to obtain
pre-deblurring frame Īt.

Dilated Spatial Pyramid Block: A vital step in the cascaded alignment is
offset refinement. However, previous methods [26, 30] predict offsets using several
convolution layers at different levels, which leads to inconsistency of receptive
fields, as shown in Fig. 2 (a). Due to the inconsistency, offsets predicted at the
higher level may exceed receptive field at the lower level, so that the offsets will
not be refined at lower levels.

A simple solution is to replace typical convolution with dilation convolution
for offset prediction, making each level to have equivalent receptive field. How-
ever, for a pixel p in a dilated convolution layer, the information that contributes
to pixel p comes from a nearby kd×kd region centered at p. Since dilated convolu-
tion introduces zeros in the convolution kernel, the actual pixels that participate
in the computation from the kd × kd region are just k × k. As a result, pixel p
can only view information from limited location which can be irrelevant across
large distances, and lose a large portion of information.

To overcome the previous issue, we propose a dilated spatial pyramid block,
which concatenates several convolution layers with different dilation rates.

A dilated layer is defined as follows:

Ci(F ) = DConvd(Convk(F )) (4)

where DConvd represents dilated convolution with dilation rate d and kernel
size 3× 3, and Convk represents typical convolution with kernel size k × k.

In this work, we adopt 3×3 convolution layers with stride 2 for downsampling.
Therefore, a k × k theoretical receptive field at the l-th level correspond to
(2k + 2)× (2k + 2) theoretical receptive field at the (l− 1)-th level. In practice,
we use receptive field with size (2k + 3) × (2k + 3). Therefore, we set d and k
in Eqn. 4 as d = k = 2i − 1, where the theoretical receptive field is (2i+1 + 2i −
3)× (2i+1 + 2i − 3).

At l-th level of a N -layer feature pyramid, the dilated spatial pyramid block
is built as:

DBl(F,∆P ) = f([Conv1([C1(F ), · · · , CN−l+1(F )]), ∆P ]) (5)
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(a) EDVR (b) Ours

Fig. 2: EDVR predicts offsets using 3× 3 convolution at every scales, which will
lead to inconsistency of receptive fields due to downsample operation as shown
in (a). The proposed method introduces dilated spatial pyramid blocks, which
guarantees predicting offsets within equivalent receptive field. The dilated spatial
pyramid block constructs a receptive field spatial pyramid as shown in (b). The
receptive fields of DB3, DB2 and DB1 are 3× 3, 9× 9 and 21× 21 respectively.

where f represents several convolution layers and [·] represents concatenation.
Similar to ASPP [4] and RFB [15], the dilated spatial pyramid block makes

use of multi-branch pooling with varying kernels corresponding to receptive fields
of different sizes. Specially, the proposed dilated spatial pyramid block (DB)
compensates inconsistency of receptive field, as shown in Fig. 2 (b).

3.3 Gradient Guided Fusion Module

The target of the fusion network is to restore sharp frame from the aligned
neighboring frames and the pre-deblurred reference frame. Inspired by [16], we
introduce a simple but effective gradient branch, which is to translate gradient
maps from the blurry modality to the sharp one. The gradient map for an image
I is obtained by computing the difference between adjacent pixels:

Gx(x) = I(x+ 1, y)− I(x− 1, y)

Gy(x) = I(x, y + 1)− I(x, y − 1)

G(I) =
√
G2

x +G2
y (6)

Where G(·) stands for the operation to extract gradient map for pixels with
coordinates x = (x, y). As shown in Fig. 1, the proposed module first extracts
gradient map from reference frame, which is applied to gradient branch. The
gradient branch incorporates several intermediate features from the restoration
branch, because the restoration branch carries structure information which is
beneficial to the restoration of gradient maps. Then, several spatial feature
transform layers are utilized to effectively incorporate structure priors, which
can implicitly reflect whether a region should be sharp or smooth. Specially, the
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gradient information is integrated in different scales, taking into account both
structure information at high level and detailed texture information at low level.

In our task, both gradient branch and restoration branch adopt encoder-
decoder structures. In each scale, we integrate gradient features F grad using a
pair of affine transformation parameters (α, β), which is learned using several
convolutional layers. After that, the modulation is carried out by scaling and
shifting the frame feature F frame:

α, β = f1(F grad), f2(F grad)

F output = SFT (F frame|α, β) = α⊙ F frame + β (7)

Although gradient branch has been used in [16], the original gradient map in
video deblurring is more difficult to be reconstructed due to the blur structure.
The proposed gradient branch has a more effective structure, which performs
feature fusion at three scales, taking into account local texture information and
global structural information, and adopts SFT for feature fusion.

3.4 Training Strategy

Cascaded Training: Following [18] and [12], we train the proposed method
using a cascaded strategy. At stage n, we restore the frame Irt,n from three con-

secutive frames {Iri,n−1}
t+1
i=t−1, which are the outputs of stage n−1. In particular,

the proposed method takes {Ii}t+1
i=t−1 and outputs Irt,1 for the first stage. There-

fore, a N stage training strategy will take 2N + 1 blurry frames as input.

Then, the overall loss function Loverall forN stage strategy can be formulated
as follows:

Loverall =

N∑
n=1

t+N−n∑
i=t−N+n

Lstage({Irj,n−1}i+1
j=i−1, I

s
i ) (8)

where Lstage represents loss function for recovering center frames from three
consecutive frames and the final restoration result is Irt,N .

In this work, we use five consecutive frames for restoration with two stages as
the trade-off between efficiency and performance. Then the overall loss function
can be specified as:

Loverall =

t+1∑
i=t−1

Lstage({Ij}i+1
j=i−1, I

s
i ) + Lstage({Irj,1}t+1

j=t−1, I
s
t ) (9)

Loss Functions: The training objective Lstage consists of reconstruction
loss Lrec, alignment loss Lalign and gradient loss Lgrad.

We adopt the widely-used L1 loss as our reconstruction loss, defined as fol-
lows:

Lrec = ∥Irt − Ist ∥1 (10)
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To stabilize the training of dual pyramid alignment module, we add an ad-
ditional alignment loss:

Lalign =
1

2N + 1

t+1∑
i=t−1

∥Īi − Isi ∥1 (11)

Specially, we argue that the alignment module is used to align neighboring
frames with sharp target frame rather than blurry reference counterpart.

We further design a gradient loss to penalize the difference between recon-
structed gradient map and gradient map of sharp frame:

Lgrad = ∥Gt −G(Ist )∥1 (12)

where Gt represents recovered gradient maps by gradient branch. The overall
objective is defined as follows:

Lstage = Lrec + Lgrad + λLalign (13)

where λ represents weight of alignment loss.

4 Experiments

4.1 Implementation Details

Datasets and Evaluation Metrics: Following previous deblurring method [32,
18, 12], we adopt Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
(SSIM) as the evaluation metrics. We evaluate the proposed method DVD [21],
GOPRO [17] and HFR-DVD [12]. We provide a brief introduction here.

• DVD contains 71 videos (6,708 pairs) captured at 240 fps, splitting into 61
training videos (5708 pairs) and 10 testing videos (1000 pairs).

• GOPRO is composed of 33 videos (3214 frame pairs) captured at 240 fps,
of which 22 videos (2103 pairs) are used for training and 11 videos (1111 pairs)
are used for testing.

• HFR contains 120 videos for training and 30 videos for testing, each with
90 frames. It is a newly released dataset that captures videos at 1000 fps.

Training Details: As for the trade-off between performance and efficiency,
we use a four-layer feature pyramid in the dual pyramid alignment module. We
apply patches of size 256 × 256 for training, while adopting flip and rotation
as data augmentation. Our method is implemented on Pytorch [19]. We set the
training rate as 1× 10−4 and reduce it to half every 200 epochs.

4.2 Comparisons with the State-of-the-art

Quantitative Comparison: We compare our method quantitatively with pre-
vious video deblurring methods including EDVR [26], STFAN [32], CDVD-TSP
[18] and ARVo [12]. Results of PSNR and SSIM values are presented in Table 1.
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Table 1: Quantitative comparison with state-of-the-art methods. The best per-
formance is denoted in red, while second best performance in blue.

Dataset Metric
EDVR [26]
(7 Frames)

STFAN [32]
(2 Frames)

TSP [18]
(5 Frames)

ARVo [12]
(5 Frames)

Ours
(3 Frames)

Ours
(5 Frames)

DVD
PSNR 28.51 31.15 32.13 32.80 32.91 33.31
SSIM 0.8637 0.9049 0.9268 0.9352 0.9334 0.9395

GOPRO
PSNR 26.83 28.59 31.67 - 32.20 32.48
SSIM 0.8426 0.8608 0.9279 - 0.9288 0.9329

HFR
PSNR 29.15 28.48 29.71 31.15 32.01 32.14
SSIM 0.8733 0.8560 0.8822 0.9063 0.9156 0.9173

(a) Blurry Input (b) EDVR [26] (c) TSP [18] (d) Ours (e) GT

Fig. 3: Qualitative comparisons on the DVD-HFR dataset [12]

(a) Blurry Input (b) EDVR [26] (c) TSP [18] (d) Ours (e) GT

Fig. 4: Qualitative comparisons on the GOPRO dataset [17].

In each row, the best result is highlighted in red while the second best is in blue.
In all datasets, our proposed method achieves the best performance using five
frames, while achieving the second best performance in most metrics using three
frames. In comparision with the CDVD-TSP and ARVo on the DVD dataset, the
ERDN yields significant improvements with 1.18 dB and 0.51 dB increases in
the PSNR, respectively. On the GOPRO dataset, our ERDN achieves a 1.17 dB
improvement in the PSNR and a tiny margin of improvement in the SSIM. No-
tably, compared with the ARVo on both the PSNR and SSIM metrics, the ERDN
achieves considerable improvements of 0.99 dB and 0.011 on the HFR dataset,
respectively. The results demonstrate that the ERDN has superior robustness.

Specifically, the EDVR is originally designed for video super-resolution and
transferred to video deblurring without specific design. The method first applies
downsampling to the input frames, which will lead to significant information
loss. The TSP aligns frames using optical flow at the image level, which is less
effective in occurrence of fast object motions. The ARVo learns spatial corre-
spondence between pixel pairs as a complement to optical flow-based alignment.
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(a) Blurry Input (b) TSP [18] (c) ARVo [12] (d) Ours (e) GT

Fig. 5: Qualitative comparisons on the DVD dataset [21].

(a) Blurry Input(b) Cho et al. [6] (c) EDVR [26] (d) TSP [18] (e) Ours

Fig. 6: Qualitative comparisons on the real blurry frames from [6].

(a) Frame 1 (b) Frame 2 (c) Frame 3 (d) Frame 3 (e) Frame 4

Fig. 7: Qualitative comparisons on consecutive frames from DVD dataset[21]

However, artifacts caused by inaccurate flow will affect the performance of the
whole model. In contrast, our model adopts deformable convolution for better
alignment at the feature level without estimating optical flow. With the well-
designed dual pyramid alignment module, the proposed model can predict offsets
in a larger receptive field, which is effective to handle large displacement.

Qualitative Comparison: We also conduct visual comparison on the three
datasets, as shown in Fig. 3, 4 and 5. We observe that previous methods generate
obvious artifacts and suffer from incomplete deblurring. In contrast, the proposed
method is capable to restore clearer frames. Specially, since the HFR dataset [12]
exhibits more fast motions, our method outperforms previous methods more
significantly, which exhibits the strength of handling fast motions.

To further evaluate the effectiveness of our proposed method, we conduct
experiment on the real video deblurring dataset released by [6]. As shown in
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Table 2: Network ablation analysis on DVD dataset [21]. DCN, ERF, DB and
GB represent deformable convolution, equivalent receptive field, dilated spatial
pyramid block and gradient branch respectively.

DCN ERF DB GB PSNR SSIM Param.

Baseline 32.13 0.9268 16.19M
Net-1 ✓ 32.82 0.9328 16.33M
Net-2 ✓ ✓ 33.02 0.9359 16.33M
Net-3 ✓ ✓ ✓ 33.17 0.9378 17.54M

Net-4 ✓ ✓ ✓ ✓ 33.31 0.9395 22.84M

Table 3: Effects of using different layers of feature pyramids on the video deblur-
ring result. The final setting is highlighted.

Layers 1 2 3 4 5

PSNR 31.89 32.41 33.05 33.31 33.20
SSIM 0.9168 0.9256 0.9359 0.9395 0.9382

Fig. 6, our method restores better detailed structure with sharper outlines, which
demonstrates promising generalization ability to handle real-world blurry videos.

As the temporal consistency property is very important for video deblurring,
we also present deblurring results on a series of consecutive frames as shown in
Fig. 7. It is obvious that inconsistent bands and artifacts appear near edges in
TSP [18], while our proposed method demonstrates better consistency.

4.3 Ablation Studies

We conduct more experiments on different models to validate the necessity of
each part in our proposed framework. Since we adopt the architecture of CDVD-
TSP [18], we use it as the baseline model. The Net-1 replaces the optical flow
estimation module with deformable convolution architecture similar to EDVR
[26]. Compared to the Net-1, the Net-2 replaces typical convolution with dilated
convolution without increasing parameters. The Net-3 adopts dilated spatial
pyramid block instead of a single dilation convolution layer. The Net-4 further
incorporates gradient branch. Quantitative comparison is presented in Table 2.

Effects of the Dual Pyramid Alignment Module: As shown in Table 2,
the replacement of flow-based alignment with deformable alignment significantly
improves deblurring performance, which reveals the effectiveness of deformable
convolution for alignment in video deblurring. Furthermore, we enlarge receptive
field with dilated convolution at low level, achieving an improvement of 0.2
dB without any extra parameters. The improvement of performance straightly
demonstrates that refinement of offsets can be conducted more effectively within
equivalent receptive field. With our proposed dilated spatial pyramid block, the
Net-3 is nearly 0.2 dB better than the Net-2, since features in the receptive field
is better explored compared to a single dilated convolution layer.
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(a) EDVR (b) Ours

Fig. 8: Quantitative comparison of the offset distribution on video with fast mo-
tion. L1, L2, L3 and L4 represent offsets predicted at different feature pyramid
levels, denoted the same as Fig. 1. Both the proposed method and EDVR predict
offsets in a cascaded manner. Due to the inconsistency of receptive field, EDVR
fails to refine offsets as shown in (a), while offsets in lower level are significantly
smaller than those at higher level. Our method otherwise holds comparable off-
sets for each level.

(a) Blurry Gradient (b) Sharp Gradient (c) Restored Gradient

Fig. 9: Visualization of gradient maps. The sharp gradient map has larger in-
tensity than the blurry counterparts. Our gradient branch is capable to recover
gradient map with pleasant structures.

We further analyse the offsets using different methods quantitatively in Fig.
8. In EDVR, offsets predicted at different layers have different scales obviously,
which reveals the failure of offset refinement when processing video with fast
motion. In contrast, our method holds comparable offset scale and samples in a
significant larger region at L1 layer. The major difference is that previous method
predicts offsets with several convolution layers, while our method adopts dilated
spatial pyramid block with larger receptive field at lower level.

We propose to construct a feature pyramid for alignment at different scales.
To analyze the effect, we conduct experiments with different numbers of pyramid
layers. As shown in Table 3, we observe that the restoration quality achieves
improvement by adding pyramid layers. This is because enlarging receptive field
helps to capture large displacement. However, we notice a little performance drop
when using pyramid with five layers. This probably implies that the receptive
field is too large to capture useful information.
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(a) w/o GB (b) GB

Fig. 10: Qualitative comparison of the models with and without the gradient
branch. Frame restored by the model with gradient branch is clearer with de-
tailed structures.

Effects of the gradient branch: As shown in Table 2, the model with
gradient branch achieves better results. This is because the gradient branch
incorporates structure priors into restoration process as an implicitly guidance.

In order to further reveal the effectiveness of the gradient branch, we visu-
alize the gradient maps in Fig. 9. The gradient map extracted from the blurry
frame commonly have thick outlines, while the gradient map from the sharp
counterpart have clear outlines and larger intensity. From the output gradient
map in Fig. 9, we can see that the proposed gradient branch successfully recover
gradient map similar to the sharp gradient map.

Moreover, the restoration results are shown in Fig. 10. The boundaries re-
stored by the complete model are more sharper than those recovered by the
model without gradient branch. The change of detailed textures reveals that the
gradient branch can help preserve structure.

5 Conclusion

In this paper, we propose an effective model for video deblurring using de-
formable alignment. The model develops a novel dual pyramid alignment module,
which constructs a feature pyramid to align frames using deformable convolution
in a coarse-to-fine manner. Based on the feature pyramid, we further incorpo-
rate dilated spatial pyramid blocks to predict offsets within equivalent receptive
fields for every feature pyramid layers, which guarantee temporal compensatory
information can be sampled in a large region from the neighboring frames. To
restore sharp frame, we introduce a gradient guided fusion module providing im-
plicit structure guidance to alleviate geometric distortion. The proposed model
has shown its effectiveness and outperforms previous state-of-the-art methods
on several benchmarks.
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