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1 Implementation Details

Network Architecture. The whole network follows the U-net architecture as
shown in Fig.A 1. The basic module is the ResNeSt block [4]. Specifically, we first
employ a simple 3×3 convolutional layer followed by a ReLU layer to transform
the source images to obtain the shallow feature representations. And then, we
feed these features to the following encoder network E. There are two decoders in
the network, denoted as Du, Dc. The decoders are similar to the encoder, except
that the pooling layers are replaced with the bilinear upsample layers. As for the
additional encoder Ec, it only has one ResNeSt block. The block numbers and
output channel numbers are presented in the figure for better understanding.

C

C

C

k3
n1

6s1

k3
n1

6s1

ResNeSt Block Conv+ReLU MaxPool UpSample

 8×

3216
64
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Encoder:  E

Encoder:  E
Encoder:  Ec

Decoder:  Du

Decoder:  Du

Decoder:  Dc
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32
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4 12

8 64
16

25
6 64 16

16

Fig.A 1: The details of network architecture.

Experimental Settings. As briefly introduced in the manuscript, the mask
M has the same size as the training image and consists of two types of patches
with different sizes, i.e.10× 10 and 20× 20 pixels, respectively. In Tab.A 1, we
present more details about the experimental settings. In the training stage, the
generated masks perform great diversity due to the randomness introduced in the
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preprocessing step. Specifically, the mask ratio of each source image is randomly
drawn from a uniform distribution in U(0.55, 1.0), so that the common ratio (i.e.
the proportion of the area of common regions to the area of the whole image)
varies from 0.01 to 1.

In addition to parameter settings, some tricks are used to improve the training
stability. We found that it is hard for the network to converge for directly training
the model with four loss items. Therefore, at the early 3,000 iterations, we ask
that only the losses of projected images from common and unique components
are calculated while the reconstruction losses of Pr are excluded from the loss
computation.

Config Value

Common Ratio (0.01, 1.0)
Mask Ratio (0.55, 1.0)
Mask Resolution {10×10, 20×20}
RandomCrop (3/4, 4/3)
RandomResize (0.08, 1.0)

Tab.A 1: Training settings of the data preprocessing.

2 Ablation Studies

To explore the importance of the self-supervised learning with CUD pretext task,
we perform comprehensive ablation studies. In general, the ablation studies can
be classified into two categories: mask-related and loss-related.

Mask-related Ablation Studies. In the manuscript, the image augumatation
is defined as follows:

xi = Mi(x) + M̄i(n), (1)

where n denotes the Gaussian noise, x is original scene, and Mi is the mask.
Obviously, the noise patch M̄i(n) is independent to the counterpart (region)
of the other image. To verify the effectiveness of noise patches, we replace the
noise patches with zero patches in the ablation study. Recently, the masked
image modeling [2] demonstrates that the patch size of the mask is related to
the performance of the model to some extent. To verify this opinion, we also
conduct an another simple ablation study about the patch size of mask M .

We show qualitative results of mask-related ablation studies in the multi-
focus image fusion task in Fig.A 2. The fused result of Fig.A 2c is generated
by the model trained with zero patches. As can be seen, the model performs
worse than the DeFusion shown in Fig.A 2e. Considering that the performance
of multi-focus image fusion mainly depends on the quality of unique information,
we can infer that using the noise patches in image transformation may be more
conducive to learning unique semantic information. The results of the quantita-
tive evaluation are consistent with the qualitative results. Compared with the
performance of DeFuion, the ablation study using the zero patches shows lower
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0

35

70
(a) Source1 (b) Source2 (d) Patch Size(c) Zeros Filled (e) DeFusion

Fig.A 2: Qualitative comparisons of mask-related ablation studies. The (c) is gen-
erated by the model whose transformed source images replace the noise patches
with zero patches. The resolution of mask patch size is the combination of 16×16
and 32×32 pixels in (d), while the default resolution of DeFusion is the {10×10,
20×20} pixels.

metrics (PSNR:-2.24dB, SSIM:-0.017). The fused results of the model trained
with bigger patch sizes are shown in Fig.A 2d. It also produces the worse fused
result in this example. The model that uses data with the bigger noise patch
to train may generate inappropriately semantic information about the scene for
the leaf in Fig.A 2d is incorrectly colored into yellow rather than green. Fur-
thermore, the quantitative evaluation show similar results. Compared with the
performance of DeFuion, the ablation study using bigger noise patches shows
lower metrics (PSNR:-3.41dB, SSIM:-0.031).

Loss-related Ablation Studies. To verify the effectiveness of decomposition
components, we conduct some ablation studies about the decomposed common
and unique components. Specifically, we design four groups of ablation studies to
analyze the disparity in fusion results of the same example when we remove parts
of reconstruction losses. In addition, during training the DeFusion, the ground
truth of the projected image x̂c = Pc(fc) is the xc = M1(x)∩M2(x), where the
projected images are asked not only to keep the useful information in the common
regions of source images, but also to predict the zero values in the semantically
irrelevant regions (i.e., unique regions). In a similar vein, the x̂c = Pc(fc) is also
required to predict the zero values in the common regions, except for keeping
the unique semantic information of source images. The reason why the network
needs to predict the zero values at the semantically irrelevant regions is because
we hope that the extracted common information can be more accurate. In order
to verify the effectiveness of the setting, we remove the constraint that predicting
zero values at the semantically irrelevant regions, and only focus on keeping the
information in the masked regions.

As shown in Fig.A 3, we employ the multi-exposure image fusion task to
verify the capability of each reconstruction loss item. The first row in Fig.A 3
is generated by the model trained without the common construction loss. We
can see that the whole visualized common feature map is activated. As for the
second row, since we remove the unique reconstruction loss item during training,
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(c) f1
u (d) f 2

u (e) fc (f) Fused Image

(a) Source1

(b) Source2 (g) Highlight

Fig.A 3: Qualitative comparisons of loss-related ablation studies. (First row:
training without common reconstruction loss; second row: training without
unique reconstruction losses; third row: training with only original scene re-
construction loss; fourth row: training with only predicting the masked regions;
fifth row: DeFusion in the manuscript.)

the two visualized unique feature maps look similar. It denotes that both the
over-exposed and under-exposed images all focus on the same region in the ex-
tracted unique features, which may be redundant for fusion. In the third row, we
only keep one loss to reconstruct the original scene during training and remove
the other reconstruction losses. In this case, the quality of feature representa-
tion obviously decreases, e.g.the visualized unique feature map f1

u exhibits some
artifacts that even present in the final fusion results. In addition, the above-
mentioned three ablation studies all show inconsistent edge. The worst edge
artifacts are generated by the model train without any common or unique re-
construction loss. As for the fourth row, the corresponding model is trained to
focus on keeping the information in the masked region. Compared to the De-
Fusion models, the visualized feature maps in this case cannot distinguish the
common and unique region, so that the corresponding fused result preserves in-
sufficient details of under-exposed image while remaining too much brightness
information of over-exposed image.

3 Fused Results

In this section, we present more qualitative fused results on both the MEFB
benchmark [6] and SICE dataset [1] for the multi-exposure task, as shown in
Fig.A 4. The Fig.A 5 presents more qualitative fused results on the Real-MFF
dataset [5] for the multi-focus image fusion task. The Fig.A 6 presents more
qualitative fused results on the RoadScene dataset [3] for the visible-infrared
image fusion task.
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(a) Under-expo (b) Over-expo (c) CU-Net (d) DeepFuse (e) IFCNN (f) MEFNet (g) PMGI (h) U2Fusion (i) DeFusion

Fig.A 4: Fused results on the multi-exposure image fusion task.
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(a) Near Far MFFGAN GT(b) (c) IFCNN(d) PMGI(f) U2Fusion(g) DeFusion(h)(e) (i)CU Net-

Fig.A 5: Fused results on the multi-focus image fusion task. We provide the en-
hanced residual maps for each result of comparison and input images to highlight
the difference with GT.
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IR(a) Vis(b) FusionGAN(c) IFCNN(d) PMGI(e) U2Fusion(f) DeFusion(g)

Fig.A 6: Fused results on the visible infrared image fusion task.
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