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Abstract. Image fusion is famous as an alternative solution to gener-
ate one high-quality image from multiple images in addition to image
restoration from a single degraded image. The essence of image fusion
is to integrate complementary information or best parts from source im-
ages. The current fusion methods usually need a large number of paired
samples or sophisticated loss functions and fusion rules to train the su-
pervised or unsupervised model. In this paper, we propose a powerful
image decomposition model for fusion task via the self-supervised rep-
resentation learning, dubbed Decomposition for Fusion (DeFusion).
Without any paired data or sophisticated loss, DeFusion can decompose
the source images into a feature embedding space, where the common
and unique features can be separated. Therefore, the image fusion can
be achieved within the embedding space through the jointly trained re-
construction (projection) head in the decomposition stage even without
any fine-tuning. Thanks to the development of self-supervised learning,
we can train the model to learn image decomposition ability with a brute
but simple pretext task. The pretrained model allows for learning very
effective features that generalize well: the DeFusion is a unified versatile
framework that is trained with an image fusion irrelevant dataset and can
be directly applied to various image fusion tasks. Extensive experiments
demonstrate that the proposed DeFusion can achieve comparable or even
better performance compared to state-of-the-art methods (whether su-
pervised or unsupervised) for different image fusion tasks.

Keywords: Image fusion, Self-supervised learning, Image decomposion

1 Introduction

The scene perception is a long-standing goal of machine vision, in which the scene
is digitized by multiple hardware sensors. Each sensor can capture only parts of
information from the scene at a time due to hardware limitations. In order to
represent the scene accurately and effectively, image fusion is pushed forward
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(a) Direct Fusion via Supervised Learning

(b) General Fusion via Unsupervised Learning

(c) Self-supervised Learning
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Fig. 1. Paradigms of different image fusion methods. Most existing image fusion meth-
ods based on deeplearning can be classified into (a) and (b). We draw the insights
from the essence of image fusion and propose a new image fusion framework based on
self-supervised learning.

to integrate the complementary features of multiple source views in the same
scene, thus generating a high-quality image for the downstream high-level tasks
or human perception [43]. For example, the multi-exposure fusion (MEF) utilizes
multiple low dynamic range (LDR) images to obtain a single high dynamic range
(HDR) image [52,23]; the multi-focus fusion (MFF) combines multiple images
with different focus areas into a single all-in-focus image [53]. An essential step in
image fusion methods is to effectively represent the source images. In the early
years, some classical feature representation and decomposition methods have
been introduced into image fusion, such as wavelet [26], pyramid [37], edge-
preserving filter [14], sparse coding and dictionary learning [42]. Driving from
the signal processing perspective, these manually designed feature representation
approaches poorly understand the semantic knowledge of images, which limits
the generalizability of those models.

Recently, deep learning has been introduced to address the limitations by
adaptively learning image representations from large-scale dataset, and push
forward the frontier of image fusion research. In the pioneer works, researchers
simply regard the network as an optimizer, which is used to model the rela-
tionship between the source images and the target fusion result, and we called
the framework ‘direct fusion via supervised learning’ as shown in Fig. 1a. Ob-
viously, these models exhibit a major flaw: obtaining the paired source images
and ground-truth fused image would be difficult [3], if not impossible, in some
scenario, e.g., infrared-visible image fusion [18]. An alternative solution is to
abandon the supervision information and carefully design some auxiliary losses
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to maintain the consistency between the fused image and source images [47]; or
leverage tailored fusion rules to perform fusion at the semantic bottleneck layer
of some pretrained networks (such as AutoEncoder [33,13]), as shown in Fig. 1b.
Although these advancements expand the applicable scenarios, they still suffer
from a serious flaw: their performance seriously depends on the human knowl-
edge about the auxiliary loss and fusion rule.

To address the aforementioned issues, we propose a self-supervised learning
framework for image fusion, dubbed DeFusion, without needing sophisticated
loss functions or fusion rules shown in Fig. 1c. We can learn from the definition
of image fusion that the essence of image fusion is to integrate the complemen-
tary information of multiple source images. Therefore, if we can decompose the
source images into the unique component and the shared common component
of all images, the target fusion image can be generated by simply combining the
components. The remaining question is: how to decompose the source images to
obtain the unique and common components without any supervision?

Given the source images, it is very hard for us to obtain the supervision
information to guide the prediction of the unique and common components. In
this paper, we design a pretext task, called common and unique decomposition
(CUD), to perform image decomposition under a self-supervised learning frame-
work. We are dedicated to decomposing the multiple source images into unique
and common feature representations to accomplish the unsupervised image fu-
sion (i.e., fusion from decomposition). As shown in Fig. 2, we design a specific
image augmentation strategy that will replace some patches of the original scene
x with noise to generate two ‘source images’, x1 and x2. Afterwards, they are fed
into the decomposition network DeNet to get the common features fc, and the
unique features f1

u and f2
u corresponding to x1 and x2. Acquiring the embedding

features, we then apply two projection heads, the common projection head Pc

and the unique projection head Pu, to produce the common and unique images
(parts) of the source images x1 and x2. Under the specific image augmentation
strategy, we can easily generate the supervision of the projected common and
unique images. In addition, the combined features fc, f

1
u , f

2
u are also fed into

a reconstruction projection head Pr to reconstruct the original scene x. In the
inference phase, we can decompose the source images into common and unique
semantic representations and reconstruct the fused images from the combined
features, as shown in Fig. 3. In this way, the combination of decomposed com-
mon and unique features provides explainable information for fused images and
bypasses the difficulties of developing sophisticated loss functions or fusion rules.

In summary, we can summarize our contributions as follows: (i) We propose
a novel image fusion method called DeFusion by decomposing the source image
based on a self-supervised learning framework. (ii) We design a pretext task,
called CUD, for image fusion, which does not rely on the existing supervised
image fusion dataset, sophisticated loss functions and fusion rules. (iii) The pro-
posed DeFusion is trained only with the COCO dataset and can be used as
a unified and versatile framework for various image fusion tasks without any
further fine-tuning or introducing an additional fusion rule. It achieves compa-



4 P. Liang et al.

rable or even better performance compared to the most competitive image fusion
methods (including supervised ones) on various types of fusion tasks.

2 Related Work

2.1 Deep Learning-based Image Fusion

In the past decades, image fusion based on deep learning has gained much spot-
light in research community. Liu et al.[17] first trained a binary classification
convolutional neural network for the multi-focus image fusion task. Inspired by
this, many multi-focus image fusion methods via supervised-learning had been
proposed [54,9,40]. Specifically, Zhang et al.[54] proposed an end-to-end fusion
method called IFCNN that used RBG image and the corresponding depth image
to simulate training samples. However, these methods are hard to transfer into
the multi-modal image fusion task, e.g., infrared-visual image fusion, in which
ground truth does not naturally exist.

Rather than simulating training data from ground truths, unsupervised meth-
ods focus on designing fusion rules and loss functions [33,13,20,38,19]. Typically,
the DeepFuse [33], DenseFuse [13] employed the fusion rule (addition strategy)
into the extracted features on the bottleneck of autoencoder. The U2fusion [38],
MEFNet [21], PMGI [47] designed multiple losses with considerable variation
for the same fusion task. However, the design of sophisticated losses requires the
human knowledge, which limits its generalizability. In this work, we decompose
the multiple images into semantic embeddings via self-supervised learning, and
thus avoiding the design of fusion rules and sophisticated losses.

2.2 Image Decomposition Model

In traditional image fusion methods, the image decomposition model is one of
mainstream fusion strategy. A typical option of image decomposition is to use
a set of predefined basis functions, e.g., wavelets [26], conventional pyramids
[2,32], to represent the images. In addition, the average filter is employed to
decompose the images into base layer and detail layer [14]. Nevertheless, the de-
composed components still rely on manually tailored fusion rules to extract the
useful information, in which the distortion information may incorrectly be re-
tained into fused results [39]. Different with the traditional image decomposition
model, the CU-Net [6] used a coupled dictionary learning algorithm to jointly
decompose multiple source inputs into necessary features and avoid designing
the fusion rules. The DRF [39] decomposed the visible and infrared images into
scene and sensor modality representations to alleviate the disadvantage of fusion
with fusion rules. However, since the supervision of decomposed components is
insufficient during training, these methods may fall into a trivial solution that the
decomposed components may be meaningless. Instead of regarding the decom-
position components as intermediate procedures (byproducts) and only focusing
on the prediction results, we focus on decomposing the multiple source images
into unique and common feature representations to assist the image fusion task.
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2.3 Self-Supervised Learning

Self-supervised learning is a paradigm to obtain the useful representations from
large unlabeled data [16]. Practically, useful representations are extracted by
specific pretext task [8]. The pretext tasks are designed to solve the comple-
mentary prediction task where we remove part inherent attributes of the image
(e.g., the color) to recover it. Recently, a large body of novel pretext tasks had
been proposed and had made great progress. One class of pretext is to exploit
the geometric transformations of image, such as solving jigsaw puzzles [27,29],
recognizing image orientation [12], learning to count [28], image colorization [49].
The others is to leverage multi-modal information (e.g., predicting depth from
RGB [34,50], detecting misalignment between audio and visual streams [30]).

3 Method

In this section, we first introduce the self-supervised learning pipeline for image
fusion in Section 3.1. Next, we elaborate on a carefully designed pretext task
(i.e., CUD) for self-supervised image decomposition and fusion in Section 3.2.
Finally, the implementation details are presented in Section 3.3.

3.1 Self-supervised Learning for Image Fusion

Self-supervised learning pipeline. Suppose that we are given an unlabeled
image dataset D. For each image x ∈ RH×W×3 in D, we apply a random data
augmentation from a set of image transformations T into x to generate the
distorted views xi. The distorted view will be fed into a convolution network
to obtain corresponding embeddings. To generate a powerful embedding repre-
sentation, the convolution network needs to be trained in solving pretext tasks,
such as predicting image rotations [12], image colorization [49], and jigsaw puz-
zles [24]. After pre-training by the pretext task, the embedding representation
can be used for downstream tasks.
Image fusion by self-supervised learning. According to the type of sensor
that obtains the source images, we can further classify the image fusion into
single-modal fusion and multi-modal fusion. For single modality fusion, the ob-
served images are generated from the same type of sensor but with different
settings. For multi-modal fusion, the source images come from different types
of sensors with different imaging mechanisms, such as infrared-visible. Although
the source images exhibit obvious discrepancies, whether the single-modal or the
multi-modal cases, they all are transformed from the same scene and represent
different (complementary) parts of the scene. Moreover, the goal of image fusion
is to retain the vivid information of the multiple inputs to generate the fused
image. The procedure of original scene ↠ source images ⇒ fused image is
similar to the pipeline of embedding representation in self-supervised learning.
Therefore, similar to the self-supervised learning pipeline, we assign the source
images to represent the distorted views which will be fed into ϕθ(·) to extract the
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embeddings, and then apply the embeddings to produce the final fused image via
a projection head. In the following, we will present how to practice self-supervised
learning of the procedure original scene ↠ source images ⇒ fused image.

3.2 Details of CUD Pretext Task
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Fig. 2. An overview of our proposed self-supervised image decomposition and fusion
method.
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Fig. 3. The testing pipeline of the DeFusion method.

In the typical self-supervised learning paradigm, the learned embeddings have
strong representation ability by training with some pretext tasks and can be used
for downstream tasks by fine-tuning with limited supervision. However, as for
the image fusion task, in some cases there is not always supervisory information
available. Therefore, we hope that the fusion result can be obtained after the pre-
training, without the need for additional supervision information to fine-tune.

Motivated by these observations, we carefully design a specific pretext task,
common and unique decomposition (CUD), for image decomposition and image
fusion. The CUD task follows a generally acknowledged definition of data fusion
to simulate the fusion process, where the goal of image fusion is to combine
complementary information from different source images into a synthetic image.
For each source image, it shares parts of the scene information with other source
images while retaining some unique information. Therefore, the CUD pretext
task will force each source image to be decomposed into two parts: the unique
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features and the common features. After pre-training, the obtained common and
unique embeddings can be directly used for the image fusion task.

As discussed in Section 3.1, the unlabeled image x corresponds to the original
scene in image fusion. Note that we conjecture that the scene in the image fusion
involves the most comprehensive information while each observed degraded views
xi only can reflect part of original scene. In CUD, we use a random mask Mi

and Gaussian noise n to simulate the degraded transformation T :

xi = Mi(x) + M̄i(n), (1)

where M̄i is the logical negation operator of mask Mi. To simplify notations, we
only focus on the case where the number of source images is 2:

x1 = M1(x) + M̄1(n),x
2 = M2(x) + M̄2(n),

s.t. M1 +M2 ≻ 0.

The constraint is used to ensure that all information in the original scene is in-
cluded in the augmented images. Different from the traditional inpainting-based
pretext tasks [31,7], which remove the remaining regions, here we fill the remain-
ing with random noise, and this will guarantee that the unique information of
one image is independent with the counterpart of the other image.

We show a simple example of the transformed images in Fig. 2. The simulated
images x1,x2 are fed into the DeNet ϕθ(·) to generate the embedding:

fc, f
1
u , f

2
u = ϕθ(x

1,x2), (2)

where fc denotes the common embedding of source images, f1
u , and f2

u rep-
resent the unique embeddings of the x1 and x2, respectively. Similar to the
self-supervised learning pipeline [5], we also introduce some projection heads
to project the embeddings into the image space. For the common embedding
fc, the projection x̂c = Pc(fc) in the image space should be close to the in-
tersection regions of source images xc = M1(x) ∩ M2(x). In a similar vein,
x1
u = M1(x) ∩ M̄2(x) and x2

u = M̄1(x) ∩ M2(x) are the ground truths cor-
responding to the projection of embeddings, Pu(f

1
u) and Pu(f

2
u), respectively.

Since the embeddings have encoded the whole semantic information of scene,
the projection of embeddings Pr(fc, f

1
u , f

2
u) should be corresponding to the orig-

inal scene x. As a consequence, our loss function computes the mean absolute
error (MAE) between the four projected results and the corresponding original
images or masked regions in the pixel space.

3.3 Implementation Details

Details of the network. The overall network ϕθ(·) is similar to the bottleneck
structure, which can prevent a trivial identity mapping from being learned. The
ϕθ(·) can be split into three parts: the encoder Eθ(·), the ensembler Ec

θ(·), and
the decoder Dθ(·) = {Du

θ (·), Dc
θ(·)}. As shown in Fig. 2, the Eθ(·) includes three

maxpool layers and residual layers [45] to obtain the compressive representations
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whose feature maps size is H
8 ×

W
8 ×k. Subsequently, the representations Eθ(x

1)
and Eθ(x

2) are jointly fed into the Ec
θ(·) to extract abstract common repre-

sentation in which the Ec
θ(·) is composed of only a residual layer. Afterwards,

the Dθ(·) which is composed of several upsample layers and residual layers is
applied to generate the corresponding embeddings with the different outputs of
the Eθ(·) and Ec

θ(·). For instance, the embeddings f1
u are extracted by the Du

θ (·)
with the input

[
Eθ(x

1);Ec
θ [Eθ(x

1);Eθ(x
2)]

]
where [; ] is the concatenation op-

erator; and similarly for the embeddings f2
u = Du

θ

[
Eθ(x

2);Ec
θ [Eθ(x

1);Eθ(x
2)]

]
;

For the embedding fc, it only takes the Ec
θ [Eθ(x

1);Eθ(x
2)] as input. In addition

to the convolution network ϕθ(·), the projection heads Pc(·), Pu(·), Pr(·) that
consist of upsample layers and ResNest layers with learned parameters. More
details are shown in the supplementary materials.

Training details. We train the convolution network ϕθ(·) and projection
heads for the CUD pretext task on scenes from large-scale dataset, i.e., COCO
dataset [15]. We select 50k images from it to build up the training dataset.
During the training phase, our model is trained with an Adam optimizer [11], 50
epochs, batch size 8, and the initial learning rate is set to 1e-3 that decreased by
half each 10 epochs. As for data augmentation, we randomly reshape and crop
the images to 256×256. To better simulate degraded process, the M in Eq. 1 is
designed as the combination of two random masks with different resolution.

4 Experiments

In this section, we evaluate the DeFusion on multiple tasks such as multi-
exposure image fusion, multi-focus image fusion, and visible infrared image fu-
sion. The qualitative and quantitative experiment results demonstrate that De-
Fusion achieves comparable or even better performance compared to the state-of-
the-art (SoTA) methods. In the next subsection, we only show a few examples
for each fusion task, the more quantitative fused results can be found in the
supplementary materials.

4.1 Comparisons on Different Fusion Tasks

Multi-Exposure Image Fusion. We compare the DeFusion with six SoTA
methods, including unified fusion methods, i.e., CU-Net [6], U2Fusion [38], IFCNN
[54], PMGI [47], specific-task fusion methods, i.e., DeepFuse [33], MEFNet [21].
For a fair and comprehensive comparison, we evaluate comparison methods on
the most comprehensive MEFB benchmark [52] and the largest SICE dataset
[3]. Note that the MEFB benchmark contains 100 image pairs collected from
multiple public datasets [44,33,22].

Qualitative results on the MEFB benchmark are reported in Fig. 4, where
we highlight two regions in each example. As can be seen, the CU-Net suffers
random shadowy artifacts, and the IFCNN shows color distortion across the
whole images in the first example. The MEFNet shows poor performance on
the fusion of semantic information, resulting in inconsistent background with
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(a)
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(b) (c) DeepFuse(d) IFCNN(e) MEFNet(f) PMGI(g) U2Fusion(h) DeFusion(i)

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Under expo- Over expo- CU Net-

Fig. 4. Qualitative comparison of the DeFusion with 7 SoTA methods on 2 multi-
exposure image pairs on the MEFB benchmark.

Near Far MFFGAN GT(a) (b) (c) IFCNN(d) PMGI(f) U2Fusion(g) DeFusion(h)(e) (i)CU Net-

Fig. 5. Qualitative comparisons of multi-focus images fusion results. We provide the
enhanced residual maps for each result of comparison and input images to highlight
the difference with GT.

IR(a) Vis(b) FusionGAN(c) IFCNN(d) PMGI(e) U2Fusion(f) DeFusion(g)

Fig. 6. Qualitative comparisons of visible and infrared image fusion results.
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Table 1. Quantitative results on MEFB [52] and SICE [3] datasets for multi-exposure
image fusion. The best, second best and the third best results are marked with red,
bold, and underlined.

MEFB [52] SICE [3]
Method CE QCV SSIM MEF-

SSIM
IS LPIPS CE QCV SSIM MEF-

SSIM
IS LPIPS

CU-Net 4.800 425.5 0.547 0.794 6.470 0.359 4.728 345.6 0.486 0.742 7.564 0.389
DeepFuse 4.993 363.0 0.544 0.796 6.346 0.380 5.262 189.3 0.523 0.797 8.391 0.322
IFCNN 4.943 247.7 0.573 0.818 6.776 0.335 4.551 290.2 0.492 0.697 8.453 0.372
MEFNet 4.257 593.4 0.593 0.796 6.432 0.321 5.102 505.7 0.526 0.711 8.068 0.358
PMGI 4.698 293.9 0.547 0.822 6.521 0.336 5.556 294.7 0.480 0.740 7.973 0.375
U2Fusion 4.526 253.8 0.526 0.815 3.438 6.745 0.332 209.5 0.488 0.796 8.314 0.346
DeFusion 2.881 262.3 0.608 0.827 6.587 0.332 2.830 207.7 0.571 0.788 7.869 0.353

Table 2. Quantitative results on the
dataset collected by [53] and the Real-
MFF [48] for multi-focus image fusion.

Method
Dataset[53]

Real-MFF
noref [48]

Real-MFF
[48]

SSIM PSNRSSIM PSNRSSIM PSNR

Super-
vised

IFCNN 0.90526.91 0.96432.93 0.983 36.92

Unsup-
ervised

CU-Net 0.874 24.88 0.900 26.66 0.938 29.17
MFFGAN0.879 24.30 0.811 22.81 0.850 24.14
PMGI 0.865 20.88 0.890 24.09 0.903 24.66
U2Fusion 0.815 21.94 0.849 23.99 0.880 25.26
DeFusion 0.928 28.13 0.969 33.61 0.97133.88

Table 3. Quantitative results on TNO [36] and
RoadScene [38] datasets for visible-infrared im-
age fusion.

Method
TNO [36] RoadScene [38]

CE QCV SSIM CC CE QCV SSIM CC

FusionGAN 2.489 954.7 0.631 0.461 1.723 1225.60.595 0.561
IFCNN 1.746 340.2 0.701 0.519 0.989 509.8 0.707 0.627
PMGI 1.751 481.0 0.696 0.534 1.277 1024.10.668 0.591
U2Fusion 1.549 586.1 0.727 0.552 0.786 908.2 0.723 0.635
DeFusion 1.487 425.3 0.715 0.539 0.767 647.5 0.727 0.652

heavy halo effects. In addition, the DeepFuse, PMGI and U2Fusion convert the
RGB into YCbCr color space and just focus on fusing the Y channel, which
may suffer the color shift issue. For example, in the highlighted region of the
second sample, the generated flowers of those methods are painted orange, while
the original color of the flowers is yellow. The results generated by DeFusion
perform are visually pleasant, whose fused objects show a consistent and uniform
appearance while avoiding artifacts and distortions. For instance, as shown in the
second sample, the DeFusion introduces the details of under-exposed image into
fused image while remaining the brightness of over-exposed image rather than
the under-exposed image. It demonstrates that the DeFusion can fuse the source
images at the semantic feature level by using the embedding representations.

Quantitative comparisons are performed on the MEFB and SICE dataset in
Tab 1. We introduce six commonly used metrics, i.e., cross entropy (CE), QCV
[4], SSIM, MEF-SSIM [22], IS [35], and LPIPS [51] to measure the quality of
fused images. Since the ground truths are unavailable, all metrics are computed
by comparing with the two source images as in many previous works. As can be
seen, DeFusion ranks first in terms of CE and SSIM on all datasets, and achieves
comparable results in terms of QCV, LPIPS and MEF-SSIM.

Multi-Focus Image Fusion. We compare the DeFusion with the following
five SoTA methods: CU-Net [6], IFCNN [17], MFFGAN [46], PMGI [47], and
U2Fusion [38]. All comparison methods are evaluated on the Real-MFF dataset
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[48] and dataset in [53]. To the best of our knowledge, the Real-MFF is the
biggest realistic public dataset which provides the realistic source images with
corresponding ground truth captured by a light field camera. In addition to
the Real-MFF dataset, we also use the collected dataset by Zhang [53], which
includes three MFIF datasets, i.e., the Lytro dataset [25], the MFI-WHU dataset
[46] and the MFFW dataset [41].

The qualitative results on the Real-MFF are shown in Fig. 5. The results
of quantitative comparison on the dataset [53] and Real-MFF [48] are shown in
Tab 2. From these reported results, we can learn that the performance of DeFu-
sion goes beyond the other unsupervised methods, and has achieved comparable
performance to the IFCNN that is trained via the supervised learning.

Infrared Visible Image Fusion. We compare DeFusion with four SoTA meth-
ods: IFCNN [54], FusionGAN [20], PMGI [47], and U2Fusion [38]. For infrared
visible image fusion, TNO [36] is a widely used dataset, and RoadScene [38]
is a challenging dataset whose infrared images show rich thermal textures. We
employ them to explore the performance of comparison methods.

Some qualitative results of the RoadScene dataset are shown in Fig. 6. Due to
the physical differences, the source images captured by two different cameras are
quite different, which may cause the fusion methods fail to distinguish the object
from the background. For example, FusionGAN mixes up the object of visible
image and background of infrared image, resulting in the object disappears in
the fused result, as shown in the highlighted region of first example. In the
second example of Fig. 6, IFCNN, FusionGAN, and PMGI just preserve the
edge of stripe and miss the key filled color information in their fused results. A
similar phenomenon shows in the third example where the textual information
is not well preserved by FusionGAN and IFCNN. In addition, it is of paramount
importance for the fusion task to preserve useful information into fused results.
However, U2fusion is inclined to preserve excessive infrared information, which
may remain some noise of infrared image into the fused image shown in the fourth
example. In contrast, our method can well balance these effects and preserve
much semantic information.

Quantitative comparisons are shown in Tab. 3 where we use four metrics, i.e.,
CE, QCV, SSIM, and CC to evaluate all comparison methods. On the RoadScene
dataset, the DeFusion ranks first on the CE, SSIM, and CC, indicating that the
generated fused results are higher similarity to the source images. For QCV,
DeFusion also achieves comparable results. In addition, the results of the TNO
dataset show similar performances to those of RoadScene.

4.2 Visualizing Feature Embeddings

In this section, we will demonstrate the unique and common representation abil-
ity of our method by some toy and read examples. We take some images from
Set5 [1] dataset as the original scenes and apply several image augmentation
strategies to them. In principle, the strategies can be classified into toy exam-
ples, i.e., the 1st-3rd rows, and real examples, i.e., 4th-5th rows.
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Fig. 7. Visualization of feature embeddings intermediate results for some toy and real
examples.

Toy experiments. As shown in Fig. 7, for the first example, the image
augmentation is similar to the one defined in Eq. 1. In this sample, the common
and unique components are accurately decomposed from the two source images
by the pretrained network. To further verify the generalization of the proposed
model, we also demonstrate the results with other image augmentation methods
that are different with the one in Eq. 1. In the second example, we change
the mask shape to an arbitrary shape with increasing difficulty and ignore the
constraint in Eq. 3.2 to allow the region of noise to be overlapped. Although more
difficult, the decomposition and fusion results do not lose too much information.
In addition, we replace the noise with zeros to generate the source images, as
shown in the third example. We can see that the pretrained network can also
extract appropriate semantic features and project them into image space. Note
that the final fused result shows edge information around the mask, and this
is due to the information diffusion caused by the convolution. From these toy
examples, we can learn that our network pretrained by the CUD pretext has
learned the ability to extract the semantic information to some extent.

Some real results. Instead of synthesizing with specific masks, we add the
additive white Gaussian noise into the original image twice, which can be seen as
the two augmented source images of the original scene, to see whether our model
can obtain the common (i.e., the denoised image) and unique components. In
the fourth example, we add two different noises (σ = 10) to the ‘butterfly’ image
to generate two source images. As can be seen, only the common component
is projected into the image while the unique components are deactivated. It is
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worth noting that both the fused image and common image are denoised images.
In the last example, we feed two identical noisy images with σ = 10 into our
network, and the noise of fused image and common image can be also removed.
It demonstrates that our network avoids the trivial mapping between the input
and output, and is able to adaptively preserve the scene semantic information.

We also visualize the intermediate embedding representation in real image
fusion tasks, as shown in Fig. 8. Taking the first multi-exposure sample as an
example, the over-exposed image shows abundant details in the room and mean-
ingless brightness on the windows, while the under-exposed image exhibits land-
scape outside the window and furnishings with lower sharpness energy in the
room. After the DeFusion embeds the multi-exposure image pair, we find that
the windows regions are not activated in the over-exposed unique embedding,
but are activated in the under-exposure unique embedding. It demonstrates that
unique embeddings can adaptively distinguish the effective unique information
from meaningless image contents. Moreover, in this case, the common embed-
ding is slightly activated at the edges of the window and lamp, indicating that
those edges are salient in both images.

Source1 Source2 Unique1 Unique2 Common(a) (b) (c) (d) (e)

Fig. 8. Feature embedding visualization on multi-exposure image fusion (first two rows)
and multi-focus image fusion (last two rows).

In particular, for the multi-focus fusion task, we intuitively infer that the
unique useful information should be related with the focus region of the images.
However, it is hard to determine which regions should be related to the common
information of source images. Interestingly, the statistics of feature representa-
tions is consistent with our guess. To vividly describe the statistics, we show a
representative example in the second row of Fig. 8. In this case, the unique repre-
sentations of source images have higher activation values than the corresponding
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common representations. Moreover, the focused regions are always correspond-
ing to the activated regions. Note that the common region of multi-focus example
shown in Fig. 8(e) is totally black, which may indicate that there are no regions
with same amount of defocus in both images.

5 Discussion and Broader Impact

Discussion and limitation. We design an image decomposition model follow-
ing the essence of image fusion, which is to integrate complementary information
from multiple source images and fuse them. Since there are no natural image
decomposition components in image fusion, we design a brute but simple pre-
text task using masks with Gaussian noise to generate the common or unique
supervised information. Note that we do not ask the training source images to
be strictly aligned with the multiple input images of image fusion task, as our
goal is to train the network to learn the ability of decomposing source images
into common and unique components. We believe that the obtained decomposed
feature embeddings can make the image fusion easier, so that the fused images
are generated by a simple convolutional layer called projector, which just likes
the last linear layer for classification in general self-supervised learning [10].
Compared to the various pretext tasks for classification in the self-supervised
learning, the proposed pretext task for image fusion is simple and far from
a perfect pretext task. However, the present idea provides a new paradigm
for learning multi-source image features jointly, which may provide new direc-
tions and considerations for multi-source pre-training. We hope that the new
paradigm will inspire more work in the image fusion community.
Broader impact. Recently, the image inpainting-like pretext, masked autoen-
coding, based network pretraining has achieved great success [31,7] in NLP and
computer vision. Our DeFusion takes inspirations from these previous works. It
can be seen as an extension of these previous single-view masked autoencoding
to the multi-view masked autoencoding. Therefore, it provides a paradigm for
learning multi-view image features jointly, which may provide new directions
and considerations for multi-view pre-training.

6 Conclusion

We present a unified and versatile image fusion framework, fusion from decompo-
sition, for multiple image fusion tasks. To obtain an effective representations of
the source images, we design pretext task based on the common and unique de-
composition (CUD), which can be trained in a self-supervised way and is friendly
with our image fusion task. The proposed method achieves comparable or even
better performance than previous unsupervised as well as supervised methods.
The feature embedding and generalizability of the model have also been verified.
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