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Abstract. Convolutional neural networks have been widely developed
for hyperspectral image (HSI) restoration. However, making full use
of the spatial-spectral information of HSIs still remains a challenge.
In this work, we disentangle the 3D convolution into lightweight 2D
spatial and spectral convolutions, and build a spectrum-aware search
space for HSI restoration. Subsequently, we utilize neural architecture
search strategy to automatically learn the most efficient architecture with
proper convolutions and connections in order to fully exploit the spatial-
spectral information. We also determine that the super-net with global
and local skip connections can further boost HSI restoration perfor-
mance. The proposed STAS is optimized in a noise independent mode to
increase transferability. The searched architecture on the CAVE dataset
has been adopted for various reconstruction tasks, and achieves remark-
able performance. On the basis of fruitful experiments, we conclude that
the transferability of searched architecture is dependent on the spectral
information and independent of the noise levels.

Keywords: hyperspectral restoration, spatial-spectral, convolutional neu-
ral networks, denoising

1 Introduction

As three-dimensional (3D) cubes, hyperspectral images (HSIs) have the ability
to distinguish precise details between similar materials [21], and therefore have
been widely utilized in various applications [15, 36, 19, 45, 32]. However, due to
the sensitive imaging process and complex external imaging environment, HSIs
tend to suffer from various degradations, i.e., noise [4, 13, 5, 16], missing [44, 20],
and undersampling [28, 39]. Thus, HSI restoration is an important preprocessing
step, essential to improving image quality and the subsequent applications.

Unlike RGB, the main challenge of HSI processing is the exploration of high
spectral information. To that end, low-rank regularization has been successfully

⋆ indicates equal contribution, § indicates corresponding author.
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utilized to explore the spectral correlation and achieves remarkable restoration
results [50, 33, 7, 53]. The further spatial-spectral regularizations [41, 11, 5, 28,
20] boost restoration performance to the state-of-the-art (SOTA). However, the
complexity of these methods is unacceptable for real-time processing [43, 28].

Recently, convolutional neural networks (CNNs) have been introduced for
HSI restoration [48]. The CNN-based methods utilize numerous simulated degra-
dation datasets to train the model, and then apply the trained model to denoise
the HSIs. Generally, the training stage is time consuming, but the test stage
is fast. Initially, separable 3DUnet [14] and recurrent architecture [42] were
proposed to denoise the HSI. Following, attention module [31, 35, 30] and multi-
scale architecture [48] were also embedded into the CNN architecture.

In contrast to traditional RGB restoration tasks where CNN models tend to
be promising, training CNN models for HSI restoration is difficult due to the
large number of spectral bands. First, it has been pointed out that simultaneously
processing the whole spectrum can improve restoration accuracy [20]. However,
because of the huge computation burden, previous networks [3, 14] fail to fully
exploit the spatial-spectral information of HSIs. Second, the hand-crafted CNN
models, such as 3DUnet [14] and TSA [30] are efficient for specific dataset, but
may be suboptimal for different HSI dataset with spectra/noise diversity. In sum-
mary, the main challenge of CNN model for HSI restoration is the exploration of
spatial-spectral information, including full-spectrum processing and the proper
choice of convolution operations with proper connections.

The past few years have witnessed the development of automatic architecture
design. Compared to hand-crafted architectures, the learned architectures have
achieved excellent performance in various applications, e.g., classification [56],
objection detection [37], and super-resolution [25, 22]. Inspired by these works,
we propose the Spectrum-aware and Transferable Architecture Search (STAS) to
build a lightweight and efficient network for HSI restoration tasks. The proposed
super-net STAS is composed of repeated super-cell modules with global and local
skip connections. Inspired by the previous works [14, 24], we design a spectrum-
aware search space that takes into consideration spatial convolution, spectral
convolution, and spatial-spectral separable convolution. Specifically, we utilize
STAS to automatically choose the efficient convolutions with proper connections
for the adaptive spatial-spectral information exploration of HSI.

For different HSI restoration tasks, the noise type is different, i.e., the Gaus-
sian/stripe noise in denoising [14], and model errors in HSI imaging [31]. With-
out unified noise analysis framework, existing CNN-based methods [14, 30] are
mostly designed for specific dataset and tasks. Therein, we introduce the noise-
independent analysis for the proposed STAS, to increase the transferability
of the searched architectures across different datasets and different tasks. The
contributions are summarized as follows:

– We disentangle the 3D convolution into lightweight 2D spatial and spectral
convolutions, and introduce a spectrum-aware search space. The proposed
STAS, which includes local and global skip connections, is utilized to automat-
ically learn an adaptive spatial-spectral network for efficient HSI restoration.
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The searched architectures can be successfully applied to various dataset
restoration tasks.

– We conclude that the transferability of searched architecture is dependent on
the spectral information and independent of the noise levels. Specifically, for
CAVE with fewer spectral bands, spatial convolution is effective. for Pavia
with larger spectral bands, separable convolution is effective.

2 Related Work

CNN-based HSI restoration. For HSI restoration, The main principles of
deep network are the spatial-spectral exploration and transferability across tasks.
Unfortunately, the pioneering methods HSI-DeNet [3] and HSID-CNN [48] ig-
nored the global spectral information. Following, Dong et al. proposed the sepa-
rable 3D convolution with Unet architecture [14] to efficiently capture the spatial-
spectral features of 3D HSI. Fu et al. introduced an efficient spectrum based
recurrent architecture [42]. For HSI imaging reconstruction, the spatial-spectral
attention [31, 30] and plug-and-play framework [54, 49] are also introduced to
enhance the spectral information, and improve the restoration performance.

In summary, 3D convolution [9, 24] is appearing to explore spatial-spectral
information, but the balance analysis between spatial and spectral modes is
missing. Furthermore, most of existed works simply focus on one specific task and
lose the transferability. The proposed STAS learns an adaptive spatial-spectral
3D convolution, and analyzes the transferability across different tasks.
One-shot neural architecture search (NAS). Since proposed in [56], NAS
techniques have achieved great progress, and have been utilized in various ap-
plications, such as classification [56, 26, 29], object detection [37], and restora-
tion [17, 51, 25, 22], among others.

At the outset, reinforcement learning [56], evolution [34], and sequential
model-based optimization [26] were utilized to optimize the NAS. However, these
algorithms are time-consuming and cost more than hundreds of GPU days for
training on a small dataset. Subsequently, one-shot NAS was proposed to share
weights during the training progress and significantly save search time [27, 46, 10,
40]. Specifically, one-shot NAS builds a super-net [27] to subsume all candidate
architectures for the whole search space. Each candidate architecture is regarded
as a discrete structure from the super-net and inherits the weight of the super-
net, which is trained only once. In this case, the training time is significantly
reduced.

We also utilize the one-shot NAS to design efficient architecture for HSI
restoration. To make NAS workable for this problem, we design a spectrum-
aware super-net that includes spatial, spectral and spatial-spectral convolutions.
The gradient-based algorithm [27] is utilized to optimize the proposed super-net.

3 Method

In this section, we introduce the proposed spectrum-aware and transferable
architecture search. We first discuss the limitation of existing methods for HSI
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Fig. 1. Overview of the proposed STAS. (a) Global architecture used in STAS. (b) The
architecture of super-cell. (c) MRB to connect the nodes in the super-cell.

restoration. Subsequently, we introduce the spectrum-aware search space design
for STAS, including global architecture (Fig. 1(a)), micro architecture (Fig. 1(b)),
and mixed residual block (Fig. 1(c)). Finally, we present the Noise level inde-
pendent one-shot search algorithm for the STAS.

Until now, many works have been proposed for HSI restoration [52, 2, 3,
31, 24]. Inspired by these works, we summarize a baseline global architecture
for the HSI restoration task, as presented in Fig. 1(a). The baseline global
architecture consists of a shallow feature extractor, a deep feature extractor, a
feature reconstruction module, and a global skip connection [52, 3]. The channel
number of the input x is c. The shallow feature extractor Conv1 outputs x0 with
8 × c channels. The extracted x0 will be distilled by the deep feature extractor
of n-layer repeated modules, with each module composed of the cell block and
Conv2. We fix the layer of repeated modules as 4. The procedure is formulated
as the following:

xi = Conv2
{
Concat(cell(xi−1), xi−1)

}
, (1)

where i = 1, · · · , 4. cell is the main block with 8 × c channels for the in-
put/output features. The input and output of the current cell block are stacked
together, followed by Conv2 to generate the input of the next cell. Subsequently,
the distilled features from the deep feature extractor are processed by feature
reconstruction Conv3 to output the residual image. Finally, the output residual
and the input images are combined by the global skip connection to formulate
the final reconstructed HSI y.

By replacing cell with different operations, the baseline can approach differ-
ent hard-crafted networks, such as HSI-DeNet [3] with spatial convolution and
SIP [24] with separable 3D convolution. Regarding the operation choice for cell,
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3D convolution has been proved efficient for the spatial-spectral exploration of
3D HSI data [14]. However, it is always associated with a huge computation
burden and prevents the large-scale processing of HSIs. SIP combines a 2D
depthwise convolution and a 2D pointwise convolution to formulate the sepa-
rable 3D convolution, but the simple combination of the two cannot learn the
spatial-spectral features well. To confirm this finding, we formulate 4 different
nets, i.e., spe net, spa net (in HSI-DeNet [3]), SS1 of separable convolution
(in SIP [24]), and finally SS2 net with another composition of depthwise and
pointwise convolutions. The 4 nets are illustrated in Fig. 7 of Supplementary
Materials. The experiments presented in Fig. 8 of Supplementary materials shows
that well composed spatial and spectral architecture of SS2 can achieve better
learning ability. That is to say, the composition strategy between spa and spe is
also important to efficiently learning the HSI features. Therefore, we are inspired
to decouple the spe and spa, and learn an adaptive 3D convolution through the
use of NAS.

HSIs are always corrupted by different noise due to sensors and imaging
condition; meanwhile different tasks always introduce different type of model
errors. Due the uncertain noise in different dataset/tasks, the essence features
exploration for HSIs are blocked by the limited hard-crafted architectures. On the
other hand, from [20], different HSI restoration tasks can be integrated in an uni-
fied paradigm with different types of noise. This motivates us to explore the in-
trinsic architectures across HSI datasets/tasks by injecting the noise-independent
analysis, with the intention of extending the applicability of proposed STAS.

3.1 Spectrum-aware search space

In this subsection, we present the search space design of the proposed STAS.
The search space can be represented by a super-net, which consists of global
architecture (Fig. 1(a)), micro architecture (Fig. 1(b)) and mixed residual block
(MRB) (Fig. 1(c)). Similar to [27], we consider a fixed global architecture as the
same of baseline but search for a better micro architecture and MRB, because
cheap of the search in computational resource requirements. To implement the
global architecture, we define the details of convolution in Fig. 1(a), i.e., Conv1
composed of 1 × 1 convolution, ReLU (rectified linear units), and BN (batch
normalization); Conv2 composed of spatial depthwise 3×3 convolution, spectral
pointwise 1 × 1 convolution, ReLU, and BN; and Conv3 composed of 1 × 1
convolution and 3× 3 convolution.

Micro level. The cell topology structure is based on [27] with appropriate
adjustment for HSI restoration. As presented in Fig. 1(b), we build a super-cell
to integrate all possible convolutions. The super-cell is composed of one Conv and
4 nodes. The Conv is a series of operations that include the 1 × 1 convolution,
ReLU, and BN. Specifically, the channel of input features is 8 × c, and Conv

reduces it to 2 × c. We denote the features after Conv as x0. The super-cell
adopts x0 as input, utilizes a directed acyclic graph to collect the sequence of 4
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nodes, and outputs a tensor xi by concatenating the outputs of 4 nodes with a
local skip connection.

Mixed residual block (MRB). As presented in Fig. 1(c), we introduce
the MRB to connect the possible two nodes, and fully exploit the spatial-
spectral information. Our designed operation search space consists of 4 spatial
convolutions, 2 spectral convolutions, and 2 spatial-spectral convolutions, as
presented in Table 1.

Table 1. Operations utilized in the MRB.
Conv
Type

Label Operation

Spatial

o1 3 × 3 convolution
o2 5 × 5 convolution
o3 3 × 3 dilated convolution
o4 3 × 3 dilated group convolution

Spectral
o5 1 × 1 convolution
o6 1 × 1 group convolution

Spatial o7 3×3 separable dilated convolution
-spectral o8 3×3 separable dilated group convolution

3.2 Noise level independent search algorithm

Based on the above introduction, the overall search complexity of our proposed
STAS is estimated as 910, which is challengeable for optimization. Inspired by [27,
40, 12], we are motivated to use one-shot NAS, which greatly reduce search time
by training a super-net that contains all candidate architectures.

Search objective. The connection between the paired nodes (j, k) (0 ≤ j ≤
3, 1 ≤ k ≤ 4, j < k) using MRB can be formulated as

MRB(xj) = xj +
∑8

l=1
ol(x

j), (2)

where xj is the output of node j, and l indicates the operation from Table 1.
To discriminate the importance of different operations in Table 1 and make the
search space continuous, a weight vector αjk with softmax is utilized to improve
MRB as the following:

MRBjk(xj) = xj +
∑8

l=1

exp(αjk
l )∑8

p=1 exp(α
jk
p )

ol(x
j). (3)

Taking into consideration all the node pairs presented in Fig. 1(c), the task of
STAS is to learn a set of continuous variables α = {αjk}. After the training

of the super-net STAS, for each MRB, the operator with the largest weight αjk
l

(1 ≤ l ≤ 8), denoted as ojk, is selected to replace the MRB, and finally a discrete
operation of MRB is obtained.
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Given a set of images D = {xi(σ), yi} where yi is the clean image and xi(σ)
is the noisy version of yi with noise level σ. Let netα be the STAS net with
architecture represented by α. The goal of STAS net is to recover the clean
image from x(σ). We use the square loss to measure the recovered image to the
clean one. Subsequently, the recovery performance of netα on D is

L(θ, α,D) = 1/2
∑

y∈D

∥∥∥netα(x(σ); θ)− y
∥∥∥2
2
. (4)

Thus, we have the following bi-level objective function for searching α:

min
α

Eσ[L(θ⋆(α, σ), α,Dval)], (5)

s.t. θ⋆(α, σ) = argmin
θ

L(θ, α,Dtra) (6)

where Dtra and Dval denote training set and validation set respectively.

Search algorithm. Unlike classical NAS, the network parameter θ in (6)
depends on noise level, but α in (5) does not. In this way, we hope architectures
can focus more on the statistics of the images not the noise. Thus, we do not
need to search architectures for different noise levels. However, this requires us to
propose new search algorithm to deal with Eσ. Thus, we generate the inputs via
adding random noise during the training and combine this process with DARTS,
which leads to Algorithm 1.

Algorithm 1 Spectrum-aware and Transferable Architecture Search (STAS).

Input: Training data, validation data, MRB via (3)

1: Initialize network parameter θ and architecture parameter α
2: while not converged do
3: Generate inputs via adding random noise on the training/validation data
4: Update α by descending L(θ(α, σ), α,Dval)
5: Update θ by descending ∇θLtrain(θ(α), α)

6: return architecture α

Output: Discrete architecture from α.

Following our idea, more recent NAS works can also be adopted. Examples
are DrNAS [6], SPOS [18], NASP [46], and DARTS- [10], which seek to improve
the classical one-shot NAS method, i.e., DARTS, from different directions. In
experiments, we will further replace DARTS update rules in Algorithm 1 with
SPOS as an usage of example..

3.3 Difference with existing works

Compared to representative hand-crafted architectures HSI-DeNet [3], SIP [24]
and QRNN3D [42], we also expect that the learned architecture STAS can be
utilized with different dataset and different noise cases. First, the proposed
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spectrum-aware search space of STAS explores the domain-specific information
of the HSI. Second, the learned architectures via STAS can be adapted to
different noise levels. However, we can simply train STAS once, and apply
the searched architecture to the restoration task on HSIs with similar spectral
information, regardless of the noise level.

Table 2. Dataset introduction and implementation.

Task
Training set Test set

patch size number size number
STAS on CAVE (STASC) 40×40×31 22K — —
STAS on Pavia (STASP ) 40×40×60 15K — —

CAVE denoising 40×40×31 120K 300×300×31 7
ICVL denoising 40×40×31 162K 300×300×31 7
Pavia denoising 40×40×60 15K 200×200×60 4
KAIST Imaging 256×256×28 5K 256×256×28 10

4 Experiments

In this section, we first introduce the datasets, including CAVE 6, ICVL [1],
Pavia center, Pavia University 7, and KAIST [8]. Subsequently, we utilize the
searched architecture for the different restoration tasks. Third, we analyze the
learned discrete architectures via STAS, including the efficient understanding
and transferability of the searched architecture.

4.1 Datasets and implementation details

The CAVE dataset contains 32 images of size 512 × 512 × 31. We split it into
training and test sets of 25 and 7 images, respectively. The images from ICVL
are of size 1392× 1300× 31. We select 120 images for the training, and 7 images
of size 300 × 300 × 31 for the test. Paiva datasets are from the remote sensing
database, and we select the Pavia center of 1096 × 715 × 60 for the training,
and crop 4 patches of size 200× 200× 60 from Pavia University for the test. In
accordance with [30], we also choose 10 images of size 256 × 256 × 28 from the
KAIST dataset for the test of the imaging reconstruction task.

For the architecture search of STAS, we execute on the training sets of
CAVE and Pavia Center. 2% of the training samples are chosen as the valid
dataset, which is used to update the STAS architecture parameters. We train
the STAS 100 epochs with a batch size of 8. The parameters of the network
and the architecture are optimized separately by Adam. For the update of
network parameters, we set the weight decay as 4e−4, and utilize the cosine
annealing strategy to decay the learning rate from 1e−3 to 1e−6. For the update
of architecture parameters, we set the weight decay as 1e−3, and the learning
rate as 3e−4. In the training of STAS, we generate inputs by randomly adding
noise of variations from 30, 50, and 70 on the training/valid images.

For the denoising task, we retrain the discrete model learned from STAS on
the training dataset, and apply the trained model to the related test dataset. We

6 http://www1.cs.columbia.edu/CAVE/databases/
7 http://www.ehu.eus/ccwintco/index.php/
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keep the optimizer, weight decay, and learning rate the same as that of STAS.
For the imaging reconstruction task, we train on the whole CAVE dataset, and
test on the KAIST dataset. The imaging mask and the coded image are utilized
to generate an initialization that is the same size as the output HSI. The input
settings of this network are the same as that of [30].

We generate small patches from the training dataset, and utilize crop and
rotation to augment the trained images. The patch size and related numbers
for different tasks are presented in Table 2. We refer to the network obtained
by STAS on CAVE as STASC , and on Pavia as STASP . The experiments are
performed on a single NVIDIA Tesla V100 GPU.

In the following, we apply the searched architecture from CAVE dataset for
denoising (Subsection 4.2) and imaging reconstruction (Subsection 4.3). Subsec-
tion 4.4 presents the understanding of the searched architecture, and Subsection
4.5 explains why the searched architecture STASC can be applied to different
datasets and different HSI restoration tasks.

(a) Original
(PSNR; SSIM)

(b) Noise
(11.23dB;0.065)

(c) FastHyDe
(33.25dB;0.868)

(d) NGmeet
(34.21dB;0.926)

(e) SIP
(34.16dB;0.925)

(f) QRNN3D
(34.93dB;0.923)

(g) STASC
(35.97dB;0.959)

(a) Original
(PSNR; SSIM)

(b) Noise
(11.21dB;0.016)

(c) FastHyDe
(39.25dB;0.965)

(d) NGmeet
(39.63dB;0.971)

(e) SIP
(40.17dB;0.967)

(f) QRNN3D
(39.81dB;0.969)

(g) STASC
(41.84dB;0.977)

Fig. 2. Denoised results of different methods with noise variance 70. Top: CAVE toy
image (R:28, G:11, B:6), bottom: ICVL image (R:30, G:11, B:6).

4.2 Denoising results

As elaborated in Section 4.4 and 4.5, STAS is spectrum-aware and independent
of noise level. We only train the STAS on the CAVE images once, and apply
the learned STASC to the denoising of different datasets (CAVE and ICVL from
Table 2) with different noise levels (30, 50, and 70).

We compare the proposed STASC to classical SOTA methods FastHyDe [55],
NGmeet [20], and learning-based methods, including SIP [24], and QRNN3D [42].
The peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) are
adopted to evaluate the performance. Higher PSNR and SSIM mean better
performance in spatial information.
Denoising on CAVE. Table 3 presents the average quantitative evaluation
results of different methods on the 7 CAVE test images. The noise variance
changes from 30, 50, to 70. In the low noise case, the NGmeet achieves the
best performance. As the noise level increases, the learning-based methods, i.e.,
QRNN3D and STASC , can beat NGmeet. In particular, in the noise case of
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70, the proposed STASC can improve 1.5dB on average compared to that of
NGmeet. On the other hand, compared to other learning-based methods SIP
and QRNN3D, our proposed STASC can always achieve the best performance
on average. Fig. 2 shows the visual results of different methods on the CAVE
toy image with noise variance 70. It can be observed that the proposed STASC
achieves the best visual result in the balance of noise removal and details restora-
tion.

Table 3. Denoising experiments on CAVE and ICVL datasets. The best result is in
bold, while the second best is underlined.

method FastHyDe NGmeet SIP QRNN3D STASC

noise PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
30 38.00 0.949 39.05 0.963 36.97 0.948 37.65 0.957 38.39 0.961

CAVE 50 35.53 0.911 36.38 0.941 35.81 0.937 35.84 0.935 36.80 0.949
70 33.70 0.871 34.34 0.916 34.64 0.929 34.96 0.927 35.83 0.940
30 42.96 0.971 43.42 0.973 41.58 0.960 42.08 0.967 43.92 0.978

ICVL 50 40.58 0.958 40.85 0.962 40.03 0.950 40.62 0.959 42.01 0.969
70 38.86 0.941 39.21 0.950 38.88 0.930 39.21 0.943 41.13 0.961

Denoising on ICVL. Table 3 shows the average evaluation results of different
methods on the 7 ICVL test images. Compared to NGmeet, QRNN3D can
achieve similar PSNR values, but lower MSA values (in Supplementary Ma-
terials). That is to say, QRNN3D can achieve similar spatial restoration perfor-
mance, but lower spectral performance. This is mainly because the advantage
of NGmeet in spectral regularization. However, the proposed STASC beats the
classical methods and learning-based methods in the three evaluation indices of
various noise levels. This indicates that our learned STASC on CAVE can be
successfully transferred to the ICVL denoising problem. Fig. 2 shows the visual
results of different methods on ICVL images with noise variance 70. From the
enlarged rectangle, we can see that our proposed method can clearly recover
window edge, while other compared methods produce blurry details. Detailed
evaluation results are presented in Supplementary Materials.

Table 4. Imaging reconstruction on the KAIST dataset. The best result is in bold,
while the second best is underlined.

method DeSCI HSSP λ-net TSA GSM-based STASC

index PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
1 27.15 0.787 31.07 0.851 30.82 0.874 31.26 0.882 32.17 0.915 32.52 0.918
2 22.26 0.687 26.31 0.799 26.30 0.845 26.88 0.856 27.20 0.897 28.55 0.898
3 26.56 0.873 29.00 0.879 29.42 0.915 30.03 0.921 30.02 0.925 29.57 0.915
4 39.00 0.964 38.24 0.926 37.37 0.961 39.90 0.963 39.20 0.963 38.83 0.955
5 24.66 0.774 27.98 0.831 27.84 0.865 28.89 0.878 28.19 0.882 29.62 0.921
6 24.80 0.742 29.16 0.819 30.69 0.892 31.30 0.891 32.84 0.937 33.47 0.933
7 20.03 0.763 24.11 0.854 24.20 0.874 25.16 0.886 25.29 0.886 25.81 0.890
8 23.98 0.725 27.94 0.804 28.86 0.873 29.69 0.880 31.38 0.923 31.65 0.936
9 25.94 0.809 29.14 0.829 29.33 0.898 30.03 0.898 29.67 0.911 31.23 0.917
10 24.28 0.647 26.44 0.731 27.66 0.836 28.32 0.841 30.52 0.925 30.13 0.911

Average 25.86 0.777 28.94 0.832 29.25 0.883 30.15 0.890 30.65 0.916 31.14 0.919

4.3 Imaging reconstruction results

In accordance with [30], we directly utilize the proposed STASC instead of TSA
net for the HSI imaging reconstruction task, with the CAVE dataset for training
and the KAIST dataset for testing. We slightly adjust the input and output
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channels of STASC to fit the KAIST images. We compare our proposed method
to DeSCI [28], HSSP [38], λ-net [31], TSA [30], and GSM-based [23]. Table 4
presents the evaluation results on 10 images from the KAIST dataset. From the
table, it can be observed that in most cases, our proposed STASC can achieve
the best accuracy compared to the previous methods. Specifically, our proposed
STASC can improve nearly 1dB in PSNR compared to TSA and 0.5dB compared
to GSM-based. The proposed STASC has 1.43M parameters, much less than the
44.3M of TSA and the 3.76M of GSM-based, further indicating the efficiency
of our STAS architecture. The visual results of different methods are presented
in Supplementary Materials.

4.4 Understanding of STAS for HSIs

Effectiveness of the search space. Table 5 presents the ablation study of
proposed STAS with different attributes. Firstly, compared to baseline HSI-
DeNet [3] and search space DARTS [27], our proposed search space of STAS
can achieve better accuracy. Secondly, from architecture design, the local skip
connections used in Figs. 1(b-c), and the global skip connection are proved to
be efficient.

Table 6 shows the results of STAS replaced with different operations and
improved algorithms. Regarding operation, we replace the learned operations
of STAS with other operations, including spe, spa, SS1 (in subsection 3) and
random selection (in [27]). It is obvious that the learned adaptive spatial-spectral
convolution via STAS is more suitable for the restoration of HSIs. Regarding
algorithm, although we replace different improved algorithms [10, 18] to optimize
STAS, the improvement is limited. It indicates that the designed search space
of STAS is good enough for HSI processing. Since the skip connections has been
adjusted in STAS, The DARTS- [10] decreases the result on our designed search
space.

Table 5. Ablation study of the proposed STAS on the CAVE with noise 50. In baseline,
”DARTS” means search space used in [27].

attribute baseline architecture design
HSI-DeNet DARTS STAS STAS STAS STAS STAS

skip in Fig. 1(b)
√ √

skip in Fig. 1(c)
√ √ √ √

global skip
√ √ √

PSNR(dB) 33.85 32.18 33.87 34.52 35.73 35.22 36.80

Table 6. Ablation study of the proposed STAS with different operations and algorithms
on the CAVE with noise 50.

attribute operation algorithm
random spe spa SS1 DARTS- SPOS STAS

PSNR(dB) 35.25 32.81 34.72 35.67 36.42 36.89 36.80

Fig. 3 presents the PSNR values with the GPU hours of the proposed search
space STAS and the well-known search space DARTS on the CAVE dataset.
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STAS(SPOS) means the proposed search space optimized by SPOS [18]. We
slightly adjust the last layer of DARTS for the HSI restoration task. In fact,
STAS(SPOS) achieves the best accuracy faster, but the final accuracy is similar
to STAS. Overall, the performance of proposed search space is much better than
that of DARTS. Therein, it motivates us to pay more attention to the search
space design for HSIs, but not the optimization algorithms.

15 30 45 60
GPU hours

20

25

30

35

PS
N

R

STAS
STAS(SPOS)
DARTS

Fig. 3. PSNR values with the GPU
hours on different search spaces
STAS/DARTS.
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Fig. 4. Comparison of super-nets and
stand-alone model accuracies from a
statistical sample of architectures.

Quality of the trained super-net. We attempt to access the quality of the
trained super-net STAS. Based on [47], we randomly select the operations and
connections from the super-cell (Fig. 1(b)) to formulate the discrete architecture
(such as Fig. 5), and remove the rest from the super-cell. With this randomly
selected architecture, we can obtain a super-net test accuracy by using the
weight of the super-net STAS trained on CAVE. From another perspective, we
retrain this random architecture on a small training set, and obtain the test
accuracy, which we call the stand-alone model accuracy. We randomly select 40
architectures; the obtained accuracy pairs of the super-net STAS and the stand-
alone model are presented in Fig. 4. It can be seen that higher super-net test
accuracy means higher stand-alone model accuracy, indicating that the searched
architectures from super-net STAS can predict the importance of the weight and
operations in the final discrete architecture. We also utilize SPOS to optimize
the proposed designed architecture, and achieve similar results compared to that
STAS.

Table 7. Quantitative evaluation with noise variance 50 on CAVE/Pavia denoising.
Method Index FastHyDe NGmeet STASC STASP

CAVE

PSNR 33.53 36.38 36.80 35.92
SSIM 0.911 0.941 0.949 0.936
MSA 9.33 6.12 5.34 6.04

Pavia

PSNR 33.93 34.80 33.10 34.96
SSIM 0.913 0.926 0.917 0.933
MSA 4.86 3.98 4.20 3.64
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Table 8. Training (hour) and testing (second) cost of different methods on CAVE
denoising and KAIST imaging tasks.

Time (s) FastHyDe NGmeet
SIP QRNN3D STAS

train (h)/test train (h)/test train (h)/test
CAVE denoising 21 68 35h/1.5s 23h/1.2s 12h/0.8s

Time (s) GAP-TV DeSCI

lambda net TSA STAS
train (h)/test train (h)/test train (h)/test

KAIST imaging 120 7,928 31h/1.2s 25h/1.6s 11h/0.6s

Fig. 5. The cell learned on CAVE dataset. Fig. 6. The cell learned on Pavia dataset.

Computational efficiency. Table 8 presents the time cost of learned STASC
and the compared methods on CAVE denoising and KAIST imaging recon-
struction tasks. From the table, it can be observed that the deep-learning-
based methods can be very fast in the test stage compared to the classical
methods. Compared to other deep-learning-based methods, the proposed STASC
can achieve better performance with many fewer parameters and less training
time, demonstrating the efficiency of the searched architecture.
Visualization of searched architectures. The searched cell structure of
STAS on CAVE denoising is presented in Fig. 5, while on Paiva denoising is
illustrated in Fig. 6. From the comparison of these two cell structures on two
HSI datasets, we make the following observations.

– For the CAVE dataset with fewer spectral bands, the discrete operators are
dominated by the spatial group dilated convolution. This indicates that the
spatial convolution is enough to explore the prior knowledge of CAVE images.

– For the Paiva with larger spectral bands, the separable convolution dominates
the cell block, indicating the necessity of joint spatial/spectral exploration.

– The proposed STAS is dependent on the spectral information, and indepen-
dent of the noise level. We will further illustrate this in Subsection 4.5.

4.5 Transferability

Dependency of spectral information. The experimental results of STASC on
CAVE denoising, ICVL denoising, and KAIST imaging reconstruction demon-
strate the transferability of the spectrum-aware searched architecture. We also
extend our learned STASC and STASP to cross-validate the performance on
CAVE and Pavia image denoising tasks. We adjust the input/output channels
of STASC to denoise Pavia images with different spectral information. From
Table 7, it can be observed that the STASC performs worse to the baseline
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NGmeet on the Pavia denoising task, whereas STASP can achieve much better
performance. For the CAVE image denoising task, the STASC can obtain much
better performance compared to STASP . We can see that the transferability
of STASC from CAVE to Pavia datasets gets stuck. This is mainly because
the spectral information of the two datasets is different. By comparing the
architectures of STASC (Fig. 5) and STASP (Fig. 6), we can conclude that
the transferability is dependent on spectral information. For HSIs with fewer
spectral bands, the spatial convolution is important, while, the spatial-spectral
convolution is efficient for HSIs with higher spectral bands.

Table 9. Denoising results on CAVE test images with different noise levels. STASadap

means the network learned by STAS on the corresponding noise level.
Noise 30 50 70
STASC 38.39 36.80 35.83

STASadap 38.52 36.67 35.99

Independency of the noise level. We train STAS only once with the mixed
noise, and apply the learned STASC to different noise level denoising of the
CAVE and ICVL datasets. The experiments presented in subsection 4.2 prove the
efficiency of STASC on different noise levels. Furthermore, we retrain STAS on
the CAVE dataset with the fixed noise level, e.g. train the STAS on CAVE with
noise variance 30 and apply the searched architecture (marked as STASadap) for
the CAVE denoising with 30 of noise variance. Table 9 presents the comparison of
STASC and STASadap. We can see that the differences between the two searched
architectures are not that significant, further demonstrating the independency
of the noise level.

5 Conclusions

In this work, we propose a spectrum-aware and transferable architecture search
for HSI restoration across different datasets. To make the proposed STAS work-
able for HSI restoration, we design a spectrum-aware search space that includes
spatial, spectral, and spatial-spectral convolutions. Furthermore, the proposed
super-net STAS is equipped with local and global skip connections to boost per-
formance. The fruitful experiments also demonstrate that the proposed STASC
can be successfully transferred to different dataset (ICVL) denoising and dif-
ferent tasks (KAIST imaging reconstruction), and achieve SOTA performance.
The transferability of searched architecture is dependent on the spectral infor-
mation, and independent of the noise levels. Specifically, the spatial convolution
is efficient for fewer spectral band HSI processing, whereas the spatial-spectral
convolution is meaningful for higher spectral band HSI.
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