
Compiler-Aware NAS for On-Mobile Real-time SR 21

Appendix

A Misleading Weight Magnitude

Pruning is often decided by the assumption that small weight magnitudes are less
important. There are many pruning works [31,30] based on weight magnitude
and certain variants [57,27] using sophisticated regularized training techniques
to regularize the weight magnitude for pruning optimizations.

Measuring the weight importance based on their magnitude could be mis-
leading. We take the indicator approach introduced in [57] as baseline, where
channel importance is measured by the magnitude of � in batch normalization
layer, as it is a scaling multiplier along channel dimension. With the indicators,
we can prune the model with the following methods: (i) We can simply decide
pruning in one-shot by pruning channels with smaller magnitudes. (ii) We update
the policy iteratively during regularized training as a naive improvement of (i).
(iii) To reflect importance shifting during pruning and overcome the weakness
of (ii), some work [57,27] equally penalize all indicators to be close to zero.

We observe that (ii) su↵ers from significant accuracy loss since layers with
smaller magnitudes receive more penalty, and are not recoverable. As a result,
layers pruned more at the initial will be pruned more and more, leading to a
non-recoverable pruning with certain accuracy degradation. In (iii), equal pe-
nalization zeros out overmuch information and inevitably destroys the model
accuracy. Our method with a mask layer, which prunes weights based on sepa-
rate variables (as indicators) instead of weight magnitudes, can achieve a higher
accuracy than the above (i), (ii), and (iii).

Our mask layer does not depend on the weight magnitude since our pruning
indicators are decoupled from model parameters and can be directly trained in
binary format.

B Speed Model Performance

The trained speed model is accurate in predicting the speed of di↵erent layer
width configurations in the WDSR block with 2.95% error. To demonstrate the

predicted (ms) real (ms) � %

32.75 33.13 0.38 1.16%

44.64 44.08 -0.56 1.26%

59.28 62.28 2.99 4.81%

61.31 60.46 -0.85 1.41%

87.12 86.83 -0.29 0.34%

120.12 119.44 -0.68 0.57%

137.45 131.39 -6.05 4.61%

173.84 168.87 -4.97 2.94%

230.40 220.28 -10.12 4.59%

Table A1: Comparison between predicted inference time and real inference time
on Samsung Galaxy S21 GPU.



22 Y. Wu, Y. Gong et al.

N
um

. o
f C

ha
nn

el
s

0

35

70

105

140

Block Index

1 2 3

16149

125
117

107

888

first_layer second_layer third_layer

(a) vt = 40ms

N
um

. o
f C

ha
nn

el
s

0

40

80

120

160

Block Index

1 2 3 4

20202020

144139131132

12121212

first_layer second_layer third_layer

(b) vt = 70ms

N
um

. o
f C

ha
nn

el
s

0

40

80

120

160

Block Index

1 2 3 4 5

2019202018

141138134135133

1515151515

first_layer second_layer third_layer

(c) vt = 100ms

Fig.A1: Searched model architectures for a vt = 40ms, b vt = 70ms and c
vt = 100ms for performing 720p ⇥2 SR task

method
PSNR

FPS
Set5 Set14 B100 Urban100

⇥2
CARN-M [7] 37.53 33.26 31.92 31.23 0.4

FSRCNN [21] 37.00 32.63 31.53 29.88 3.9

Ours (100ms) 37.64 33.16 31.91 31.08 6.8

⇥4
CARN-M [7] 31.92 28.42 27.44 25.62 0.9

FSRCNN [21] 30.71 27.59 26.98 24.62 11.3

Ours (70ms) 31.88 28.43 27.46 25.69 12.4

Table A2: Comparison of di↵erent SR methods implemented with MNN on mo-
bile CPU.

performance of the trained speed model on general configurations, we further
evaluate the trained speed model with randomly generated configurations. We
show the prediction/real speed of 9 random configurations in Table A1. The
largest error is 4.81% among the 9 examples and 6 of the examples have an
error less than 3%. The accurate prediction of the speed model provides the
foundations for our search framework to derive real-time SR models with high
SR performance.

C Compiler Optimizations

Compiler optimization can support various block width configurations, with the
following components.
Fusion. There are multiple kinds of layer operators with various computation
patterns in the DNN models. Based on di↵erent combinations of computation
patterns, we can adopt layer fusion to fuse the computation operators in com-
putation graph. For example, a combination of CONV layer/Depthwise CONV
layer and its following BatchNorm layer can be fused into one single layer to
reduce the data movement and access. With layer fusion, we can reduce the
layer number, and save the parameters and the intermediate computations of
fused layers. We classify the existing operations in the SR model into several
groups based on the mapping between the input and output, and develop rules
for di↵erent combinations of the groups in a more aggressive fusion manner.



Compiler-Aware NAS for On-Mobile Real-time SR 23

scale
target Params MACs speed PSNR SSIM

(ms) (K) (G) (ms) Set5 Set14 bsds100 urban100 Set5 Set14 bsds100 urban100

⇥2
100 91 21.0 96.34 37.68 33.21 31.91 31.24 0.9586 0.9138 0.8963 0.9189

70 69 16.0 69.01 37.59 33.12 31.84 31.05 0.9583 0.9129 0.8954 0.9169

40 37 8.5 32.51 37.34 32.91 31.67 30.54 0.9574 0.9111 0.8933 0.911

Table A3: Searched SR model performances on DSP for implementing 720p
resolution

Parameter Auto-Tuning. During the compiler optimization, there are many
parameters related to the computation, such as data placement on GPU memory,
loop unrolling factors, matrix tiling sizes, etc. To find the best configuration of
the parameters, an auto-tuning process is adopted. Specifically, we use a genetic
algorithm to explore the parameter space. Besides, the explore e�ciency can be
improved by increasing the population number in each generation to improve
the exploration parallelism.

D Searched Architecture

In Figure A1, we show the searched model architectures of ⇥2 SR task for 720p
resolution on Samsung Galaxy S21 GPU. The horizontal axis indicates the SR
block index in the model, and the vertical axis indicates the number of channels
in each layer within the block. Di↵erent colors denote di↵erent layers inside the
corresponding SR block. We can observe that deeper blocks usually need more
channels.

E Comparison with Other Frameworks

To demonstrate the e↵ectiveness of our compiler optimizations, we implement
CARN-M [7], FSRCNN [21], and our searched model with the open-source MNN
framework on mobile CPU. As shown in Table A2, our model can achieve higher
FPS and PSNR than the baseline models.

F Comparison with Other Compiler

The compilation of [37] released 5 years ago is out-of-date, not matching current
competitors, and does not support the PIXEL-SHUFFLE operator in WDSR.
Our compiler method is more advanced. To make a fair comparison, we test
the speed of VGG-16 based on [37] and our compilation method. VGG-16 with
[37] needs 644ms on Galaxy S7, while our compiler on VGG-16 only has 27ms
latency on Galaxy S21. Our method performs better since the GPU di↵erence
can not lead to 24⇥ speedup.



24 Y. Wu, Y. Gong et al.

G Performance on DSP

The proposed framework is general and can achieve real-time inference of imple-
menting 720p resolution not only on the GPU of mobile platforms. To demon-
strate this, we further provide the implementation on the digital signal processor
(DSP) of a mobile devices (Samsung Galaxy S21). To obtain the models target-
ing for the mobile DSP, a new speed model needs to be trained with latency data
collected on the mobile DSP. The performance of the searched models is shown
in Table A3. The latency threshold vT is set to di↵erent values including 100ms,
70ms, and 40ms, for a comprehensive study. From the results we can see that
we could achieve fast inference or even real-time SR inference with high image
quality on the mobile DSP. We highlight that can be easily extended to other
platforms and devices with the corresponding the latency dataset.


