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1 Overview

In this Supplementary Material, we present additional results and analyses about
the proposed method as follows.

– Reconstruction Backbone SRN: A detailed introduction to the recon-
struction backbone network used in the manuscript (Section 2).

– Alternating Reconstruction Backbones: More analyses on alternating
reconstruction backbones employed in the proposed method (Section 3).

– Spectral Fidelity Analysis: Evaluation on the spectral fidelity of the re-
construction results by the proposed method (Section 4).

– Epistemic Uncertainty Analysis: More visualization and discussion on
epistemic uncertainty of the proposed method (Section 5).

– Complementary Ablation Studies: Ablation studies under one-to-many
miscalibration and the same mask setting (one-to-one) (Section 6).

– Self-tuning variance Analysis: More discussions about the proposed self-
tuning variance. Specifically, more results for fixed variance are provided.
Also, we demonstrate the convergence of gϕ(m), variational noise distribu-
tions given distinct noise priors (Section 7).

– Datasets: More illustrations on the dataset, includes training data, valida-
tion data, testing data, and mask set (Section 8).

– Reconstruction Results: More reconstruction results under many-to-many
setting (Section 9), one-to-many setting (Section 10) and the traditional set-
ting (Section 11).

2 Reconstruction Backbone: SRN

In the manuscript, we adopt a recent deep reconstruction network, SSI-ResU-Net
(SRN) [11] as the backbone fθ(·). Specifically, the network input xin ∈ RH×W×Λ

is initialized by the measurement y ∈ RH×(W+Λ−1)×Λ and the mask m ∈ RH×W

xin[:, :, λ] = shift(y)λ ⊙m, (1)
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Table 1. Averaged PSNR(dB)/SSIM of the different models. We consider the miscal-
ibration many-to-many scenario for a fair comparison. For three types of backbones,
this is implemented by training upon a mask ensemble and testing on random masks.
The mean and std are obtained upon 100 testing trials.

Models PSNR (dB) SSIM

SRN [11] 32.24±0.10 0.9121±0.0010

Spectral ViT [1] 31.62±0.09 0.9282±0.0010

SwinIR [3] 33.49±0.10 0.9501±0.0010

SRN+GST (Ours) 33.02±0.01 0.9285±0.0001

Spectral ViT+GST (Ours) 32.15±0.01 0.9330±0.0001

SwinIR+GST (Ours) 34.15±0.01 0.9548±0.0001

where ⊙ is a Hadamard product and the shift is the reverse operation applied
in the forward process (see Eq. (1) in the manuscript for more details).

The model is composed of a 1) main body, which is simultaneously bridged
by a global skip connection, 2) a head operation and 3) a tail operation, both
of which are conducted by a CONV-ReLU structure. Let xhead and xbody be the
output of the head operation and the main body, respectively. We have

xbody = fJ
res(f

J−1
res (...(f1

res(xhead))...)), (2)

where J = 16 concatenated residual blocks share the same structure, i.e., fres(x)
= x+ (CONV(ReLU(CONV(x)))).

3 Alternating Reconstruction Backbones

The performance and the robustness toward masks of the deep reconstruction
networks largely depend on their constructions. Thus, we validate the effective-
ness of the proposed method upon backbones with different architectures.

SwinIR Backbone. In this supplementary material, we consider transformer
architectures as the backbone. Specifically, transformer acquires modeling ability
from attention mechanism [10], which has been proved to behave quite differently
from the traditional ConvNets [9].

Given the initialized input xin by Eq. (1), we firstly implement the backbone
by Swin transformer structure [4], which computes the spatial self-attention.
It is composed of three modules: (1) shallow feature extraction by a CONV3×3
layer, i.e., xSF = CONV(xin), (2) deep feature extraction module consisting of K
concatenated residual Swin transformer blocks, i.e, xDF = fDF(xSF) where fDF(·) =
fK
RSTB(f

K−1
RSTB (...(f1

RSTB(·))...)), and (3) a reconstruction module by a CONV3×3 layer,
i.e., x̂ = CONV(xDF).

For each residual Swin transformer block fRSTB(·), we have L Swin transformer
layers, which conducts window-based MSA and MLP

x = fW-MSA(fLN(x)) + x, x = fMLP(fLN(x)) + x, (3)
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where the details of the fW-MSA(·), fMLP(·), and fLN(·) could be found in [4]. In the
experiment, we set the K = 4, L = 6. For all the blocks, we let the embedding
dimension to be 60 and number of heads to be 6.1

Spectral ViT. We also provide another type of vision transformer, which
exchanges the previous spatial self-attention with the spectral self-attention.
Specifically, it treats the feature map of each embedding channel as a token.
Given the query Q, key K and value V, we have output X

X = VAttn(K,Q), where Attn(K,Q) = softmax(KTQ/δ), (4)

where δ denotes a learnable scalar. For more details please refer to [1].

Comparison. We summarize the performance of different backbones under mis-
calibration scenario many-to-many in Table 1. For detailed illustration of the
miscalibration setting, please refer to manuscript Section 4.1. Notably, the in-
tegration of the backbone into our method is implemented by training the full
model upon a mask dataset M in a bilevel optimization framework.

By comparison, one can draw the following conclusions. (1) For the met-
ric comparison, our method brings performance gain ∆PSNR = 0.78dB, 0.53dB,
and 0.66dB, respectively, for different backbones. (2) The proposed method en-
ables high-fidelity reconstruction with the highest confidence. Specifically, in
many-to-many case, PSNRstd > 0.1dB. Our method achieves 10× the randomness
control, indicating a better epistemic modeling capacity (Please see Section 5).

4 Spectral Fidelity.

In this work, we adopt two methods to demonstrate the spectral fidelity of the
reconstruction results.

Firstly, given the prediction x̂ ∈ RH×W×Nλ , we treat each spectral channel
as a R.V. (random variable) of HW dimensions and calculate the channel-wise
correlations. For each hyperspectral image with Nλ = 28, a correlation matrix
of 28×28 could be visualized. We compare these matrices by the references and
the predictions in Fig. 1. The more consistent they are, the higher spectral
fidelity we achieve. By observation, the correlation matrices by the predictions
show highly similar visual patterns as the reference, indicating that the proposed
method effectively captures long-range spectra dependencies. We also notice that
there might be minor differences at the centers of the matrices between the
visualizations. Rectifying this part is pretty challenging as the model need to
precisely distinguish the difference between each adjacent spectral pairs.

Secondly, we quantitatively compare the spectral fidelity of different methods
upon density curves. As three examples demonstrated in Fig. 2, we first crop a
small spatial patch from the prediction (exampled by the RGB reference on
the right most column), then we draw the density curve by pixel intensities in
that small patch. Finally, the correlations between the reference curve and that

1 For implementation please refer to https://github.com/JingyunLiang/SwinIR.

https://github.com/JingyunLiang/SwinIR
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Fig. 1. RGB references of the benchmark simulation test set (top line) and spectral
correlation coefficient visualizations by the reference (middle line) as well as the pro-
posed method (bottom line). Each correlation coefficient map is of the size 28×28.
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Fig. 2. Spectral correlation to the ground truth on exampled locations. Spatial patches
(patch a,b,c as plotted in the right most column RGB references, please zoom in for
better visualization) are chosen to ensure the monochromaticity. Density curves are
computed upon the predictions by different methods within the chosen patch.

from the predictions are computed. Higher correlation values indicate a higher
spectral fidelity for the cropped patch. The small patch is chosen to ensure the
monochromaticity (wavelength). For example, if we choose the patch whose color
lies in blue∼cyan range (bottom-right RGB reference in Fig. 2), the energy of
the density would concentrate in the 450nm∼500nm.

Table 2. Averaged spectral correlations (↑) to the reference. For each scene, we com-
pute the averaged correlation values upon density curves corresponding to five selected
patches. Please refer to examples in Fig. 2 for a detailed computational procedure.

Methods Scene1 Scene2 Scene3 Scene4 Scene5 Scene6 Scene7 Scene8 Scene9 Scene10 Avg.

GSM [2] 0.9903 0.9674 0.9751 0.9435 0.9891 0.9904 0.9951 0.9700 0.9870 0.8926 0.9701
SRN [11] 0.9910 0.9701 0.9753 0.9429 0.9898 0.9910 0.9959 0.9865 0.9870 0.9000 0.9730
Ours 0.9956 0.9910 0.9921 0.9458 0.9925 0.9982 0.9969 0.9867 0.9903 0.9004 0.9790

To globally compare the spectral fidelity, we randomly choose five monochro-
matic patch of each scene and compute an averaged correlation value upon five
density curves. We report the correlation values of ten scenes in Table 2 and
demonstrate the superiority of the proposed method, as compared to GSM [2]
and SRN [11].
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Fig. 3. Three exampled epistemic uncertainty visualizations by GSM [2] and the pro-
posed method. For each example, we demonstrate averaged reconstruction results on
selected wavelengths (i.e., 567.5nm, 471.6nm, and 614.4nm) in top line, and the epis-
temic uncertainty in the bottom line.

5 Epistemic Uncertainty

As illustrated in Section 4.2 of the manuscript, the proposed method demon-
strates low epistemic uncertainty by approximating the mask distribution. In
this section, we provide more visualizations and analyses on epistemic uncer-
tainty in Fig. 3. Specifically, we test the well-trained models upon random real
masks and repeat 100 trials. Both GSM and the proposed method are trained
upon the same mask set M for a fair comparison. For each exampled hyperspec-
tral images, we compare the averaged reconstruction and epistemic uncertainty
on a selected spectral channel. Notably, in low-frequency regions, both methods
show high confidence, while in high-frequency regions (i.e., edges), the proposed
method presents a much-lower epistemic uncertainty, which would potentially
benefit the down-stream applications like object detection or segmentation upon
hyperspectral images.

6 Ablation Study

In this paper, three scenarios are introduced: 1) one-to-one setting, which is
the traditional setting considered by previous reconstruction methods, 2) one-
to-many miscalibration, 3) many-to-many miscalibration. Notably, the third
scenario enables a complete mask distribution modeling, for which reason we
put more emphasize on it and provide the ablation study accordingly in the
manuscript. Following that, Table 3 conducts the same ablation experiments
under the traditional setting (one-to-one). For miscalibration (one-to-many), we
also do verification and report the performance in Table 4. The ablated models
include

– w/o GST: we remove the graph-based self-tuning (GST) network from the
proposed method. Actually it degrades into the reconstruction backbone
SRN [11] applied under corresponding scenarios.

– w/o Bi-Opt: we simultaneously optimize all of the parameters by the lower-
level loss function, i.e., Eq. (7) in the manuscript, based on the original
training set.
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Table 3. Ablation study of the proposed method under the traditional setting (one-
to-one).

Settings PSNR(dB) SSIM

w/o GST 33.17 0.9288

w/o Bi-Opt 32.73 0.9193

w/o GCN 33.23 0.9286

Ours (full model) 33.22 0.9292

Table 4. Ablation study of the proposed method under the setting of miscalibration
(one-to-many) among 100 testing trials.

Settings PSNR(dB) SSIM

w/o GST 30.17±0.63 0.8865±0.0108

w/o Bi-Opt 30.30±0.06 0.8843±0.0011

w/o GCN 30.13±0.07 0.8849±0.0011

Ours (full model) 30.60±0.08 0.8881±0.0013

– w/o GCN: for the self-tuning network, we exchange the GCN with a convolu-
tional layer carrying more parameters for a fair comparison.

As shown in the Table 3 and Table 4, both the GST module and bilevel
optimization strategy contribute significantly for the final performance boost.
While the ablated model w/o GCN in self-tuning network works comparably with
the Ours (full model) under the traditional setting by PSNR, it falls behind
regarding SSIM, indicating a sub-optimal reconstruction ability.

7 Model Discussion

Fixed variance. In the manuscript, we showcase that the fixed variance with
distinct values only achieves sub-optimal performance compared with the self-
tuning variance. In Fig. 5 (b), we also plot the SSIM curve (green) with different
values of the fixed variance. Besides, the original PSNR curve (green) is shown
in Fig. 5 (a).
Self-tuning variance under different priors. Due to the limitation of time
and computational resource, we only discussed the self-tuning variance under
three most representative noise priors in the manuscript, i.e., N (0.006, 0.005),
N (0.006, 0.1) and N (0.0, 1.0). In this section, we demonstrate additional results
corresponding to more noise priors. Similar to the performance curves plotted in
Fig. 7 (a) in the manuscript, we report the corresponding performances by red
curves in Fig. 5, verifying the superiority of the self-tuning variance. In Fig. 4, we
visualize both the noise prior and the subsequent variational noise distributions.
The similarity between all subplots – the learned variational noise distribution
gets a smaller variance than the given prior – validates the effectiveness of mask
uncertainty modeling.
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(a) 𝒩(0.006, 0.005) (b) 𝒩(0.006, 0.1) (c) 𝒩(0.0, 0.1) (d) 𝒩(0.0, 0.3)

(e) 𝒩(0.0, 0.5) (f) 𝒩(0.0, 0.7) (g) 𝒩(0.0, 0.9) (h) 𝒩(0.0, 1.0)

Fig. 4. Learned variational noise distribution under different priors. Eight different pri-
ors (red) are adopted in the experiment. By comparison, variational noise distributions
(blue) are characterized by smaller variance. Please refer to the red curves in Fig. 5 for
corresponding reconstruction performance comparison.

(a) (b)

Fig. 5. Performance comparison between fixed variance (green) and self-tuning vari-
ance (red). The PSNR is compared in (a) and SSIM is compared in (b). Reconstruction
using self-tuning variance outperforms that using fixed variance with different values.

In Fig. 6, we explore the convergence of the gϕ(m) during the training phase
of our best model. For pre-training phase of reconstruction network (first 20
epochs as mentioned in the manuscript), the range of gϕ(m) remains invariant.
An interesting observation is that the fluctuation of the gϕ(m) value is accompa-
nied by fluctuation of the reconstruction performance, indicating the underlying
impact of the self-tuning variance. During the last 200 epochs (including training
and validation epochs), a converged gϕ(m) contributes to a steady performance
improvement.

8 Dataset

HSI data set.We adopt the training set provided in [6] and follow the same data
augmentation operations. Specifically, the training set contains 205 1024×1024×28
training samples, all of which sources from the CAVE dataset [12]. Our model is
trained on 256×256×28 patches randomly cropped from these 205 samples. For
a fair comparison with the other deep reconstruction networks, we create a val-
idation data set by randomly splitting 40 hyperspectral images from the above
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Fig. 6. Observation on gϕ(m) during training. The gϕ(m) gradually converge to a
smaller range with more epochs of training. Meanwhile, a better reconstruction perfor-
mance can be observed. Both training epochs and validation epochs are jointly counted.

205 samples. Therefore, no new HSI data is introduced for our model training.
For the model testing, ten simulation hyperspectral images corresponding to 10
scenes shown in Fig. 1 are used for quantitative and perceptual comparison,
following previous works [6,2,11,8,5].

(a) (b)

Fig. 7. Histograms of two real masks applied in this work. (a) sources from [6] and
(b) sources from [7]. Both masks are produced by the same fabrication process. Bin
number is set to 2000 for both histograms.

Mask set. Two 660×660 real masks following the same fabrication process are
employed in this work. Fig. 7 demonstrates the histograms of both masks. As
mentioned in the manuscript, the training mask set M is built by randomly
cropping 256×256 patches from the first real mask [6]. For simulation data,
testing masks are collected from both real masks. Notably, there is no overlap
between training and testing mask sets. For real HSI reconstruction, no
testing mask set is available. The second 660×660 real mask [7] is directly applied
for testing purpose, indicating the miscalibration scenario.

9 Many-to-many Reconstruction

In this section, we provide two simulation example of reconstruction results by
different methods, i.e., TSA-Net [6], GSM [2], SRN [11] and ours, under the
scenario of miscalibration (many-to-many) in Fig. 8 and Fig. 9, respectively. No-
tably, we randomly select one unseen testing mask for visualization. For total ten
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simulation testing hyerspectral images, please refer to the zip file by following
the directory of simulation results > many to many.

10 One-to-many Reconstruction

In this section, we provide one real example of reconstruction result by different
methods, i.e., TSA-Net [6], GSM [2], SRN [11] and ours, under the scenario of
miscalibration (one-to-many) in Fig. 10. Notably, we randomly select one unseen
testing mask for visualization. For total ten simulation testing hyperspectral
images, please refer to the zip file by following the directory of simulation

results > one to many. For total five real data results, please refer to the zip
file by following the directory of realdata results > one to many.

11 Same mask Reconstruction

In this section, we provide one simulation example of reconstruction result by
different methods, i.e., TSA-Net [6], GSM [2], SRN [11] and ours, under the tra-
ditional setting in Fig. 11. For total ten simulation testing hyperspectral images,
please refer to the zip file by following the directory of simulation results

> one to one. For total five real data results, please refer to the zip file by
following the directory of realdata results > one to one.
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Fig. 8. Exampled simulation reconstruction result under the miscalibration setting of
many-to-many. The proposed method, TSA-Net [6], GSM [2], and SRN [11] are com-
pared. Among diverse spectral channels, the proposed method contains least blurring
and distortion by comparison. Zoom in for better visualization.
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Fig. 9. Exampled simulation reconstruction result under the miscalibration setting of
many-to-many. The proposed method, TSA-Net [6], GSM [2], and SRN [11] are com-
pared. Among diverse spectral channels, the proposed method contains least blurring
and distortion by comparison. Zoom in for better visualization.
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Fig. 10. Exampled real reconstruction result under miscalibration (one-to-many). The
proposed method, TSA-Net [6], GSM [2], and SRN [11] are compared. Our method
enables least artifact while TSA-Net suffers from the shot noise, GSM endures the low
brightness, and SRN gives distorted results. Zoom in for better visualization.
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Fig. 11. Exampled simulation reconstruction result under the traditional setting. The
proposed method, TSA-Net [6], GSM [2], and SRN [11] are compared. The proposed
method works better in high frequency regions. Zoom in for better visualization.
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