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Abstract. Images captured under incorrect exposures unavoidably suf-
fer from mixed degradations of lightness and structures. Most existing
deep learning-based exposure correction methods separately restore such
degradations in the spatial domain. In this paper, we present a new
perspective for exposure correction with spatial-frequency interaction.
Specifically, we first revisit the frequency properties of different expo-
sure images via Fourier transform where the amplitude component con-
tains most lightness information and the phase component is relevant
to structure information. To this end, we propose a deep Fourier-based
Exposure Correction Network (FECNet) consisting of an amplitude sub-
network and a phase sub-network to progressively reconstruct the rep-
resentation of lightness and structure components. To facilitate learning
these two representations, we introduce a Spatial-Frequency Interaction
(SFI) block in two formats tailored to these two sub-networks, which
interactively process the local spatial features and the global frequency
information to encourage the complementary learning. Extensive experi-
ments demonstrate that our method achieves superior results than other
approaches with fewer parameters and can be extended to other image
enhancement tasks, validating its potential in wide-range applications.
Code will be available at https://github.com/KevinJ-Huang/FECNet.

Keywords: Exposure Correction, Fourier Transform, Spatial-Frequency
Interaction

1 Introduction

With the wide-range applications of camera devices, images can be captured
under scenes with varying exposures, which could result in unsatisfactory visual
results including lightness and structure distortions. Thus, it is necessary to
correct such exposures of these images, which not only improves their visual
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Fig. 1. (a) We swap the amplitude and phase components of different expo-
sures of the same context. The recombined result of the amplitude of underexposure
and the phase of overexposure (UnderAmp-Overpha) has similar lightness appearance
with underexposure, while the recombined result of the amplitude of overexposure and
the phase of underexposure (OverAmp-Underpha) has similar lightness appearance
with overexposure. (b) The t-SNE [28] for images of overexposure, underex-
posure, UnderAmp-Overpha, and OverAmp-Underpha. The distributions of
images in UnderAmp-Overpha and Underexposure are matched, while the distribu-
tions of images in OverAmp-Underpha and Overexposure are matched, which indicate
that the swapped amplitude components include the most lightness information.

qualities but also benefits other sub-sequential high-level vision tasks such as
image detection and segmentation [41, 46].

The mixed degradations of both lightness and structure components may lead
to difficulties in conducting exposure correction [26], which may cause structure
distortions and ineffective lightness adjustments [2, 25]. To solve this problem,
since different exposures share similar structure representations but different
lightness depictions [22], it is natural to decompose and restore the lightness
and structure components of the input image, respectively. Retinex theory-based
methods [42, 51, 16] decompose images into illumination and reflectance com-
ponents, and then separately recover the lightness and structure information.
Multi-scale decomposition-based approaches [2, 23, 25] intend to decompose and
recover the coarse-scale lightness and fine-scale structures in a progressive man-
ner. With the advanced design of deep neural networks, recent techniques have
significantly improved the visual quality. However, most of them rarely explore
the potential solutions in the frequency domain, which is quite crucial for im-
proving the image quality [13, 20].

In this work, we introduce a novel Fourier-based perspective to conduct ex-
posure correction, which facilitates utilizing and restoring the frequency-domain
information. From [43], the amplitude and phase components of Fourier space
correspond to the style and semantic information of an image. This property can
be extended in exposure correction, i.e., the amplitude component of an image
reflects the lightness representation, while the phase component corresponds to
structures and is less related to lightness. As shown in Fig. 1, we first swap the
amplitude and phase components of different exposures of the same context.
The recombined result of the amplitude of underexposure and the phase of over-
exposure has similar lightness appearance with underexposure, while the other
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Fig. 2. (a) The visualization for the amplitude and phase components of
the same context. We apply the iFFT to the phase and amplitude to compare
them in the spatial domain. The amplitude representations differ significantly between
different exposures, while the phase representations are very similar across exposures
and present structure representation. (b) The t-SNE of amplitude and phase
of different exposures. The distributions of phase representations across different
exposures are matched, while distributions of amplitude representations across different
exposures vary greatly. It means that the phase component includes the most structure
information and is less affected by lightness.

behaves conversely. This implies that the swapped amplitude components in-
clude the most lightness information, and the phase component may correspond
to the structure representation and is less affected by lightness.

To validate this, as shown in Fig. 2, we apply the inverse Fast Fourier Trans-
form (iFFT) [31] to the phase and amplitude components to visualize them in
the spatial domain. The appearance of the phase representation is more similar
to the structure representation, and the distribution of the phase components is
less affected by lightness. To this end, the phase component is more related to
structures that are less affected by lightness in the spatial domain. Therefore,
following existing works that separately restore lightness and structure degrada-
tions, we intend to restore the amplitude and phase components progressively.

Based on the above analysis, we propose a Fourier-based Exposure Correction
Network (FECNet), as shown in Fig. 3. It consists of an amplitude sub-network
and a phase sub-network that are arranged sequentially. Specifically, the am-
plitude sub-network learns to restore the amplitude representation to improve
the lightness appearance, while the phase sub-network learns to reconstruct the
phase representation that refines the structures. To guide the learning of these
two sub-networks, in addition to the constraint of the ground truth, we supervise
them with corresponding amplitude and phase components of the ground truth.

To further facilitate the representation learning of the amplitude and phase,
we introduce a Spatial-Frequency Interaction (SFI) block (see Fig. 5). It is tai-
lored in two formats (amplitude and phase) with two sub-networks as the basic
units to learn the corresponding representation, and the SFI block of each for-
mat is composed of a frequency branch and a spatial branch to complement
the global and local information. On the one hand, for the amplitude or phase
sub-network, the amplitude/phase format of SFI processes the corresponding
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amplitude/phase component in the Fourier space and bypasses the other com-
ponent. On the other hand, since the Fourier transform allows the image-wide
receptive field to cover the whole image [11, 21], the frequency-domain repre-
sentation focuses on global attributions. Meanwhile, the local attribution can
be learned in the spatial branch by normal convolutions. To this end, we inter-
act with these two branches to obtain the complementary information, which
benefits the learning of corresponding representations.

Moreover, our proposed FECNet is lightweight and can be extended to other
enhancement tasks like low-light image enhancement and retouching, showing
its potential in wide-range applications. In summary, our contributions include:

1. We introduce a new perspective for exposure correction by restoring the rep-
resentation of different components in the frequency domain. Particularly, we
propose a Fourier-based Exposure Correction Network (FECNet) consisting
of an amplitude sub-network and a phase sub-network, which restores the
amplitude and phase representations that correspond to improving lightness
and refining structures progressively.

2. Tailored with the learning of the amplitude and phase sub-networks, we
design a Spatial-Frequency Interaction (SFI) block in two formats that cor-
respond to the two sub-networks as their basic units. The interaction of
spatial and frequency information helps integrate the global and local rep-
resentations that provide complementary information.

3. Our FECNet is lightweight, and we validate its effectiveness on several
datasets. Furthermore, we extend our method to other enhancement tasks,
including low-light enhancement and retouching, which demonstrate its su-
periority ability in wide-range applications.

2 Related Work

2.1 Exposure Correction

Exposure correction has been studied for a long time. Several conventional meth-
ods apply histogram adjustment for correcting the lightness and contrast [36, 1,
33, 48]. Another line of works is based on the Retinex theory [22], which improves
the lightness through enhancing the illumination component, and regularizes the
reflectance component to recover the texture [16, 24, 35, 6, 49].

In recent years, deep learning-based methods have been developed for expo-
sure correction [9, 27, 39, 26, 45]. Most exposure correction works are dedicated to
enhancing underexposure images. Based on the Retinex theory, RetinexNet [42]
and KinD [51] decompose the image into illumination and reflectance com-
ponents and then restore them in a data-driven manner. As another form of
component decomposition, DRBN [44] decomposes features into different band
representations and then recursively recovers them. More recently, targeting at
correcting both underexposure and overexposure images, MSEC [2] proposes
to correct varieties of exposures with a pyramid structure to restore different-
scale components in a coarse-to-fine manner. CMEC [30] employs an encoder to
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map different exposures to an exposure-invariant space with the assistance of a
transformer for exposure correction. However, existing methods rarely consider
correcting exposures by frequency-domain representations. Compared with these
methods, our algorithm focuses on processing information in the Fourier space
to recover frequency representations, which is a new perspective in this area.

2.2 Fourier Transform in Neural Networks

Recently, information processing in the Fourier space of frequency domain has
attracted increasing attentions [11, 34, 43, 10, 37], which is capable of capturing
global frequency representation effectively [21]. A line of works leverages the
Fourier transform to improve the generalization of neural networks. For exam-
ple, FDA [47] develops a data augmentation strategy by swapping the amplitude
and phase components in the Fourier space across images, enabling the network
to learn robust representations for image segmentation. Similarly, Xu et al. [43]
proposed a Fourier-based augmentation strategy with the combing of a mix-up
for generalized image classification. Another line of works employs the Fourier
transform to improve the representation ability of neural networks. For instance,
GFNet [34] attempts to transform features to the Fourier space before fully-
connected layers to improve the network stability. FFC [10] introduces paired
spatial-frequency transforms and devises several new layers in the Fourier space.
Besides, a few works adopt Fourier-based loss functions for image restoration [13]
and image translation [20], achieving pleasant visual results. Motivated by the
success of these works, we propose a deep Fourier-based exposure correction net-
work, which learns to recover different components of frequency representations.

3 Method

3.1 Motivation and Background

Images captured under improper exposures often suffer from unsatisfactory vi-
sual problems, including lightness and structure distortions. Previous works
rarely restore these distortions in the frequency domain, which has been proved
crucial for improving the visual qualities [13]. To this end, we design a deep
Fourier-based exposure correction network to capture and restore the frequency
representations effectively.

Firstly, we revisit the operation and property of the Fourier transform. Given
a single channel image x with the shape of H × W , the Fourier transform F
converts to the Fourier space as a complex component X, which is expressed as:

F(x)(u, v) = X(u, v) =
1√
HW

H−1
∑

h=0

W−1
∑

w=0

x(h,w)e−j2π( h

H
u+ w

W
v), (1)

and F−1 denotes the inverse Fourier transform. Since an image or feature may
contain multiple channels, we separately apply Fourier transform to each channel
in our work with the FFT [31].
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Fig. 3. The overview of our proposed FECNet consisting of an amplitude sub-network
that restores the amplitude representation and a phase sub-network that restores
the phase representation. The phase sub-network takes the recombined results of
F−1(A(Xout1),P(Xin)) as the input, with the lightness changing residual of the ampli-
tude sub-network to guide its learning. Both sub-networks employ the corresponding
amplitude and phase components of the ground truth as the supervision signal, and
the two formats of the SFI block are set as their basic units correspondingly.

In the Fourier space, each complex component X(u, v) can be represented
by the amplitude component A(X(u, v)) and the phase component P(X(u, v)),
which provides an intuitive analysis of the frequency components [13]. These two
components are expressed as:

A(X(u, v)) =
√

R2(X(u, v)) + I2(X(u, v)),

P(X(u, v)) = arctan[
I(X(u, v))

R(X(u, v))
],

(2)

where R(x) and I(x) represent the real and imaginary parts of X(u, v).
According to the Fourier theory, the amplitude component A reflects the

style information of an image in the frequency domain, while the phase com-
ponent P represents the semantic information [43, 47]. For exposure correction,
we explore whether A and P could correspond to the frequency-domain rep-
resentations of lightness and structure components. To visualize the amplitude
and phase components, we swap the amplitude and phase components of differ-
ent exposures of the same context, then we observe the phenomenon as shown
in Fig. 1. Denoting the underexposure and overexposure image as xunder and
xover, and their Fourier representations as Xunder and Xover, respectively. The
recombined result F−1(A(Xunder),P(Xover)) has similar lightness appearance
with xunder, while F−1(A(Xover),P(Xunder)) behaves conversely. Furthermore,
we convert the amplitude (phase) components of xunder and xover to spatial do-
main by replacing the amplitude (phase) components with a constant c, and we
observe the phenomenon in Fig. 2. The appearance of the converted phase rep-
resentation looks like more similar to structures than the converted amplitude
one. Besides, the difference between the converted result F−1(c,P(Xunder)) and
F−1(c,P(Xover)) is small, while the difference between F−1(A(Xunder), c) and
F−1(A(Xover), c) is larger. It proves the phase component responds more to the
structure information and is less affected by the lightness.
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(a) xin (b) xout1 (c) xout2 (d) |(f)− (b)| (e) |(f)− (c)| (f) xnormal

Fig. 4. Visualization of different components in FECNet. As can be seen, with the
amplitude sub-network, the overall lightness representations are improved. After the
processing of the phase sub-network, the structures are refined with lower residual
error. | · | denotes the “absolute” operation. Darker areas in the residual map denote
lower errors.

Based on the above observations, we can draw the conclusion that the am-
plitude component of an image reflects the lightness representation, while the
phase component corresponds to the structures and is less affected by lightness.
Following existing works that respectively restore degradations of lightness and
structures, we restore the amplitude and phase components progressively, which
facilitate the recovering the frequency representations of lightness and structures
that benefit improving the image quality.

3.2 Deep Fourier-based Exposure Correction Network

Based on the above analysis, we design a simple but effective FECNet net as
shown in Fig. 3. The entire network consists of two sub-networks: an amplitude
sub-network and a phase sub-network, progressively restoring the amplitude and
phase representations. Specifically, both sub-networks employ the SFI block as
the basic unit, which will be described in Sec. 3.3.

We design an encoder-decoder format for the amplitude sub-network, con-
sisting of five SFI blocks of its amplitude format. Let us denote xin and xout1

as the input and output of the amplitude sub-network, xnormal represents the
ground truth normal exposure image, and their representations in Fourier space
are denoted as Xin, Xout1 and Xnormal, respectively. To guarantee this sub-
network learns the amplitude representation, it is supervised by the recombined
component F−1(A(Xnormal),P(Xin)), as well as the amplitude component of
the ground truth A(Xnormal). The loss function for this sub-network Ls1 is ex-
pressed as:

Ls1 = ||xout1−F−1(A(Xnormal),P(Xin))||1+α||A(Xout1)−A(Xnormal)||1, (3)

where || · ||1 denotes the mean absolutely error, α is the weight factor and we set
it as 0.2.

While for the phase sub-network, we formulate it sequentially with four
SFI blocks of its phase format. Specifically, we use the recombined component
F−1(A(Xout1),P(Xin)) as the input of this sub-network instead of xout1, avoid-
ing introduce the altered phase component [47]. In addition, since the distortion
of structures are relevant to the lightness changing [22, 24], and the residual
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Fig. 5. The illustration of the amplitude format of the SFI block, which consists of a
frequency branch and a spatial branch. The frequency branch processes the amplitude
component and bypasses the phase component, while the spatial one utilizes a residual
block. There exist interactions across representations of these two branches for com-
plementary information. The phase format of the SFI block is similar except for the
frequency branch, and we illustrate it in the supplementary material.

of the amplitude sub-network can represent the lightness changing, we utilize
the residual between xout1 and xin to guide the learning of this sub-network.
It is implemented by concatenating this residual with the features in the phase
sub-network, following by a 1 × 1 convolution to integrate them. Denoting the
output of the phase sub-network as xout2, we set the loss function Ls2 for this
sub-network as:

Ls2 = ||xout2 − xnormal||1 + β||P(Xout2)− P(Xnormal)||1, (4)

where β is the weight factor and we set it as 0.1. The phase sub-network can
learn the recovery of the phase representation, and xout2 is the final output of
FECNet. In this way, the FECNet is able to conduct exposure correction in a
coarse to fine manner as shown in Fig. 4.

The overall network comprised of these two sub-networks is training in an
end-to-end manner, and the overall loss Ltotal is the combination of Ls1 and Ls2,
which is formulated as:

Ltotal = Ls2 + λLs1, (5)

where λ is the weight factor and is empirically set as 0.5.

3.3 Spatial-Frequency Interaction Block

To further facilitate learning the amplitude and phase representations, we pro-
pose the SFC block in two formats as the basic unit of the two sub-networks cor-
respondingly. According to Fourier theory [21], processing information in Fourier
space is capable of capturing the global frequency representation in the frequency
domain. In contrast, the normal convolution focuses on learning local represen-
tations in the spatial domain. In this way, we propose the interactive block to
combine these two representations, which can learn more representative features.
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Fig. 6. Feature visualization of different representations in the SFI block. As can be
seen, since features after interaction can obtain complementary representations from
each other, features with and without interaction across the frequency branch and
spatial branch are quite different. ff1 is more spatial invariant and fs1 keeps more
spatial information, while f ′

f1 obtains the spatial information and the details in f ′

s1 are
enhanced.

We illustrate the amplitude format of the SFI block as shown in Fig. 5.
Specifically, it comprises a spatial branch and a frequency branch for processing
spatial and frequency representations. Denoting fi as the input features of SFI
block, the spatial branch first adopts a residual block with 3 × 3 convolution
layers to process information in the spatial domain and obtain fs1. While the
frequency branch uses a 1 × 1 convolution to process fi first that obtains ff0,
and then adopts Fourier transform to convert it to the Fourier space as Ff0 by
Eq. 1. To process frequency-domain representation Ff0, we adopt the operation
Op(·) that consists of 1× 1 convolution layers on its amplitude component, and
then recompose the operated result with the phase component that obtain ff1,
which is expressed as:

ff1 = F−1(Op(A(Ff0)),P(Ff0)). (6)

Thus, ff1 is the processed result of the frequency-domain representation. Next,
we interact the features from spatial branch fs1 and frequency branch ff1 as:

f ′

s1 = fs1 +W1(ff1),

f ′

f1 = ff1 +W2(fs1),
(7)

where both W1(·) and W2(·) denote the 3 × 3 convolution operation, f ′

s1 and
f ′

f1 are the output of the interacted spatial branch and frequency branch. As
illustrated in Fig. 6, both f ′

s1 and f ′

f1 get the complementary representation,
which benefits for these two branches to obtain more representational features.
The following spatial and frequency branches are formulated in the same way as
above and output the results fs2 and ff2, respectively.

Finally, we concatenate fs2 and ff2 and then apply a 1×1 convolution oper-
ation to integrate them as fo, which is the output of SFI block. Similarly, in the
phase format of the SFI block, we replace the operation on the amplitude com-
ponent in Eq. 6 with the phase component, while other parts keep unchanged.
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Table 1. Quantitative results of different methods on the ME and SICE datasets in
terms of PSNR and SSIM. #Param denotes the number of parameters.

ME SICE

Method Under Over Average Under Over Average #Param

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CLAHE [36] 16.77 0.6211 14.45 0.5842 15.38 0.5990 12.69 0.5037 10.21 0.4847 11.45 0.4942 -

RetinexNet [42] 12.13 0.6209 10.47 0.5953 11.14 0.6048 12.94 0.5171 12.87 0.5252 12.90 0.5212 0.84M

Zero-DCE [15] 14.55 0.5887 10.40 0.5142 12.06 0.5441 16.92 0.6330 7.11 0.4292 12.02 0.5311 0.079M

DPED [19] 13.14 0.5812 20.06 0.6826 15.91 0.6219 16.83 0.6133 7.99 0.4300 12.41 0.5217 0.39M

DRBN [44] 19.74 0.8290 19.37 0.8321 19.52 0.8309 17.96 0.6767 17.33 0.6828 17.65 0.6798 0.53M

SID [8] 19.37 0.8103 18.83 0.8055 19.04 0.8074 19.51 0.6635 16.79 0.6444 18.15 0.6540 7.40M

RUAS [38] 13.43 0.6807 6.39 0.4655 9.20 0.5515 16.63 0.5589 4.54 0.3196 10.59 0.4393 0.003M

MSEC [2] 20.52 0.8129 19.79 0.8156 20.35 0.8210 19.62 0.6512 17.59 0.6560 18.58 0.6536 7.04M

CMEC [30] 22.23 0.8140 22.75 0.8336 22.54 0.8257 17.68 0.6592 18.17 0.6811 17.93 0.6702 5.40M

FECNet (Ours) 22.96 0.8598 23.22 0.8748 23.12 0.8688 22.01 0.6737 19.91 0.6961 20.96 0.6849 0.15M

(a) Input (b) RetinexNet (c) DRBN (d) MSEC

(e) SID (f) CMEC (g) Ours (h) GT

Fig. 7. Visualization results on the ME dataset of underexposure correction. There
exist color and lightness shift as well as artifact generation problems in other methods,
while our method can simultaneously achieve good context and lightness recovery.

4 Experiment

4.1 Settings

Datasets.We train our network on two representative multiple exposure datasets,
including the multiple exposure (ME) dataset proposed in MSEC [2] and SICE
dataset [7]. The ME dataset contains exposure images of 5 exposure levels, in-
cluding 17675 images for training, 750 images for validation, and 5905 images for
testing. For the SICE dataset, we derive the middle-level exposure subset as the
ground truth and the corresponding second and last-second exposure subsets are
set as underexposed and overexposed images, respectively. We adopt 1000 images
for training, 24 images for validation and 60 images for testing respectively.

Implementation Details. The implement of our proposed method is based
on PyTorch framework with one NVIDIA 3090 GPU. During the training, we
adopt the Adam optimizer with the patch size of 384×384 and batch size of 4.
For the ME and SICE datasets, the total number of epochs is set as 120 and
240, respectively. The initial learning rate of our FECNet is 1e−4, which decays
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(a) Input (b) RetinexNet (c) DRBN (d) MSEC

(e) SID (f) CMEC (g) Ours (h) GT

Fig. 8. Visualization results on the ME dataset of overexposure correction. As can be
seen, the context and lightness can be well recovered in our method.

(a) Input (b) DRBN (c) MSEC (d) Ours (e) GT

(f) Input (g) DRBN (h) MSEC (i) Ours (j) GT

Fig. 9. Visualization results on the SICE dataset of (top) underexposure correction
and (bottom) overexposure correction.

by a factor value of 0.5 every 40 epochs and 80 epochs for the ME and SICE
datasets. We adopt the commonly used metrics PSNR and SSIM for evaluation.

Table 2. Ablation study of investigating different settings of FECNet on the SICE
dataset.

Option (a) (b) (c) (d) (e) (f) FECNet

PSNR 19.98 20.03 19.35 20.78 20.67 20.77 20.96
SSIM 0.6698 0.6712 0.6643 0.6795 0.6773 0.6809 0.6849

4.2 Performance Evaluation

In this paper, we compare our algorithm with several state-of-the-art exposure
correction methods, including MSEC [2], DRBN [44], SID [8], RetinexNet [42],
Zero-DCE [15], CMEC [30] and RUAS [38]. We provide more comparison results
with other methods in the supplementary material.
Quantitative Evaluation. The quantitative results are shown in Table 1. For
the ME dataset, following MSEC, we average the results of the exposures of the
first two levels and the remaining levels of exposures as the underexposure and
overexposure results, respectively. As can be observed, our method achieves the
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Table 3. Ablation study of investigating the loss functions on the SICE dataset. (a)
denotes removing the second term of Ls1 on the base of Ltotal.

Options Baseline Ls2 Baseline+Ls1 (a) Ltotal

PSNR/SSIM 20.01/0.6682 20.03/0.6713 20.83/0.6827 20.43/0.6785 20.96/0.6849

Table 4. Ablation study of investigating the SFI block on the SICE dataset. 2-SPB
represents both branches are set to the spatial branches, and 2-FRB represents both
branches are set to the frequency branches.

Option 2-SPB 2-FRB w/o Interaction SFI block

PSNR/SSIM 18.57/0.6593 18.64/0.6602 19.82/0.6676 20.96/0.6849

best performance among these methods. Specifically, MSEC significantly out-
performs other methods except ours due to its well-designed architecture, while
our FECNet has superior results than MSEC using its 2.1% network parameters,
demonstrating the effectiveness and efficiency of our methods.
Qualitative Evaluation. In addition, we provide the visualization results of
the ME dataset in Fig. 7 and Fig. 8, and the results of the SICE dataset in Fig. 9,
respectively. It can be seen that our FECNet produces the more pleasing results
with corrected lightness and color appearance while maintaining the detailed
structures. We provide more visualization results in the supplementary material.

4.3 Ablation Studies

In this section, we conduct the experiments to demonstrate the effectiveness of
our method. More ablation studies are provided in supplementary materials.
Investigation of FECNet. To demonstrate the effectiveness of the overall set-
ting of FECNet, we set several settings as ablations and present the results in
Table 2. Particularly, (a) denotes removing the amplitude sub-network in FEC-
Net; (b) represents removing the phase sub-network in FECNet; (c) denotes
recovering the phase representation first and then restoring the amplitude rep-
resentation; (d) represents swapping the two formats of SFI block in the two
sub-networks; (e) denotes replacing the input of the phase sub-network with
the output of the amplitude sub-network; (f) represents removing the lightness
residual guidance for the phase sub-network.

As can be seen, both amplitude and phase sub-networks are effective for
exposure correction, and the sequential order of arranging them are important,
demonstrating the reasonableness of recovering the amplitude component first
and then refine the phase component. In addition, the two formats of SFI block
are proved to be coupled with these two sub-networks. For the input of the phase
sub-network, the recombination with the phase component of the original input
is more effective than the amplitude sub-network output. The residual map of
the amplitude sub-net also helps improve performance.
Investigation of Losses. To validate the effectiveness of loss functions, we
conduct experiments with different losses. The baseline set the L1 loss on the final
output, and we present results in Table 3. As can be seen, without the constraint
of Ls1, the performance drops significantly, while the amplitude constraint and
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(e) KinD(a) RetinexNet (d) DRBN(c) GLADNet(b) EnlightenGAN

(i) Ours(g) KinD++(f) RUAS (j) GT(h) DSN

Fig. 10. Visualization results on the LOL dataset.

Table 5. Quantitative results of different methods on the LOL dataset in terms of
PSNR and SSIM. #Param denotes the number of parameters.

Method LIME RetinexNet MBLLEN EnGAN GLADNet KinD DRBN RUAS KinD++ DSN FECNet (Ours)

PSNR 17.18 16.77 17.56 17.48 19.72 20.38 18.65 16.41 21.80 22.04 23.44

SSIM 0.5621 0.4249 0.7293 0.6737 0.6803 0.8248 0.8008 0.5001 0.8285 0.8334 0.8383

#Param - 0.84M 0.45M 8.37M 1.13M 8.54M 0.58M 0.003M 8.23M 4.42M 0.15M

phase constraint in Ls1 and Ls2 are also proved to be effective, demonstrating
the reasonableness of the supervision manner.
Investigation of SFI block. We validate the effectiveness of the design of
the SFI block in Table 4. As can be seen, both replacing the spatial branch
with frequency branch or replacing the frequency branch with spatial branch
results in a significant performance drop. While interacting these two branches
can further improve performance remarkably, demonstrating the effectiveness of
integrating these two complementary representations.

4.4 Extensions on Other Image Enhancement Tasks

To demonstrate the potential of our FECNet, we extend it to other image en-
hancement tasks, including low-light image enhancement and image retouching.
Extension on low-light image enhancement. Low-light image enhancement
mainly focuses on lighting the darkness of a scene and removing the ampli-
fied noise. We adopt LOL dataset [42] to train and evaluate different meth-
ods, consisting of 485 images for training and 15 images for testing. Several
low-light image enhancement methods are selected for comparison: LIME [16],
RetinexNet [42], MBLLEN [12], DRBN [44], KinD [51], GLADNet [3], En-
GAN [4], RUAS [38], KinD++ [50] and DSN [52]. The quantitative and quali-
tative results are shown in Table 5 and Fig 10, respectively. As can be seen, our
FECNet achieves the best performance both quantitatively and qualitatively.

Extension on image retouching. Image retouching aims to improve the color
and lightness of an image to the expert manipulated effect. In this task, we
apply the MIT-FiveK dataset [5] that is adopted by CSRNet [17], which con-
tains 4500 images for training and 500 images for testing. Specifically, we com-
pare our FECNet with several methods, including CSRNet [17], HDRNet [14]
DUPE [40], Distort-Recover [32], White-box [18], DeepLPF [29] and DSN [52].
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Table 6. Quantitative results of different methods on the MIT-FiveK dataset in terms
of PSNR and SSIM. #Param denotes the number of parameters.

Method White-Box Distort-Recover HDRNet DUPE DeepLPF CSRNet DSN FECNet (Ours)

PSNR 18.59 19.54 22.65 20.22 23.21 23.69 23.84 24.18
SSIM 0.7973 0.7998 0.8802 0.8287 0.8863 0.8951 0.9002 0.9030

#Param 8.17M 247.25M 0.46M 0.95M 0.80M 0.034M 4.42M 0.15M

(a) DeepLPF (b) CSRNet (c) DSN (d) Ours (e) GT

(f) DeepLPF (g) CSRNet (h) DSN (i) Ours (j) GT

Fig. 11. Visualization results on the MIT-FiveK dataset. Images processed by other
methods exist color and lightness shift and the details cannot be well recovered, while
our method can obtain better visual qualities.

We give the quantitative evaluation in Table 6, and present the visualization re-
sults in Fig. 11. It can be seen that the generated results of our FECNet achieves
the best performance with high quantitative performance and visual effects.

5 Conclusion

In this paper, we develop a new perspective for exposure correction with spatial-
frequency information interaction in the spatial and frequency domain. We pro-
pose a deep Fourier-based Exposure Correction network (FECNet), which con-
sists of two sub-networks: amplitude sub-network and phase sub-network. Specif-
ically, the former aims to restore the amplitude, thus improving the lightness,
while the latter is responsible for phase reconstruction, corresponding to refining
structures. We further design a Spatial-Frequency Interaction (SFI) block as the
basic unit of the FECNet to facilitate the learning of these two components with
complementary representations. Extensive experimental results show that our
method achieves superior performance for exposure correction. Moreover, the
proposed approach can be extended to other image enhancement tasks, demon-
strating its potential usage in wide-range applications. Although there exists
color shift problem in some cases, we believe that the dynamic mechanism could
be leveraged to relieve this issue. Considering that the mainstream of related
works is still based on the spatial domain, we hope that the validity of our work
will provide some insights into this community.
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