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Abstract. In this paper, we propose a novel image dehazing framework
with frequency and spatial dual guidance. In contrast to most exist-
ing deep learning-based image dehazing methods that primarily exploit
the spatial information and neglect the distinguished frequency infor-
mation, we introduce a new perspective to address image dehazing by
jointly exploring the information in the frequency and spatial domains.
To implement frequency and spatial dual guidance, we delicately de-
velop two core designs: amplitude guided phase module in the frequency
domain and global guided local module in the spatial domain. Specif-
ically, the former processes the global frequency information via deep
Fourier transform and reconstructs the phase spectrum under the guid-
ance of the amplitude spectrum, while the latter integrates the above
global frequency information to facilitate the local feature learning in
the spatial domain. Extensive experiments on synthetic and real-world
datasets demonstrate that our method outperforms the state-of-the-art
approaches both visually and quantitatively. Our code is released pub-
licly at https://github.com/yuhuUSTC/FSDGN
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1 Introduction

Haze is a common atmospheric phenomenon, which is composed of tiny water
droplets or ice crystals suspended in the air near the ground. Images captured in
hazy environments usually have noticeable visual quality degradation in object
appearance and contrast. The goal of image dehazing is to restore a clean scene
from a hazy image. The performance of high-level computer vision tasks such as
object detection [I0J27] and scene understanding [44[43] are considerably influ-
enced by the input images captured in hazy scenes. Thus, throughout the last
decade, restoring clear photographs from hazy ones has been a focus of research
in the computational photography and vision communities.

Estimating the clean image from a single hazy input is an ill-posed and
challenging problem. Conventional approaches rely on the physical scattering
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Fig. 1. Visualization on the relationship between the haze degradation and the char-
acteristics of amplitude spectrum and phase spectrum in the frequency domain. We
denote the image with clear image amplitude and hazy image phase as SynClear, and
the image with hazy image amplitude and clear image phase as SynHazy.
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Fig. 2. The t-SNE map of hazy, clear, SynHazy, and SynClear images. Obviously,
clear and SynClear images are tightly connected and coupled, indicating more similar
distributions. Similarly, hazy and SynHazy images are clustered together.
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model [35] and regularize the solution space using a variety of crisp image pri-
ors [BITIT6EIT5]. However, these hand-crafted image priors are created based on
specific observations, which may not be reliable to model the intrinsic features
of images or estimate the transmission map in the physical scattering model.

Inspired by the success of deep learning, numerous deep learning-based ap-
proaches [6I26/4T132)37ITRIBO/T3I49] have been developed recently to learn the
translation from hazy image to clear image in an end-to-end manner. Although
these methods have made remarkable progress in image dehazing tasks, they have
a main limitation: they primarily exploit the spatial information and neglect the
distinguished frequency information. Compared to spatial domain processing,
the difference between hazy and clear image pairs in the frequency domain is
physically definite. Thus, finding the correlation between haze degradation and
frequency is of great importance for understanding the dehazing problem.
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In this paper, we reveal the relationship between the haze degradation and the
characteristics of the amplitude and phase spectrums in the frequency domain
(see Fig. . Specifically, we first transform a spatial domain image to frequency-
domain amplitude and phase spectrums by fast Fourier transform, and then
exchange the amplitude and phase spectrums of hazy and clear image pairs.
Finally, the exchanged spectrums are transformed back to get Synclear and
SynHazy images by inverse fast Fourier transform. From Fig. [I, we can see
that: (1) Clear and SynClear images have the same amplitude spectrum but
different phase spectrums, and they look similar; (2) Clear and SynHazy images
have the same phase spectrum but different amplitude spectrums, and they look
different. This observation leads to the conclusion that: (1) the degradation
property induced by haze is mainly manifested in the amplitude spectrum; and
(2) the difference between phase spectrums of hazy and clear image pairs is
small.

To further explain and testify this conclusion, we show the t-SNE map of 50
groups of hazy, clear, SynClear, and SynHazy images in Fig. [2| It is apparent
that clear and SynClear images are clustered together, indicating highly similar
distributions. This also applies to hazy and SynHazy images.

Based on the above observation and conclusion, we propose a novel Frequency
and Spatial Dual-Guidance Network (FSDGN) for single-image dehazing. From a
new perspective, we address image dehazing by jointly exploring the information
in the frequency and spatial domains. To implement the frequency and spatial
dual guidance, we delicately develop two core designs, i.e., Amplitude Guided
Phase (AGP) module in the frequency domain and Global Guided Local (GGL)
module in the spatial domain. Specifically, the AGP module processes the global
frequency information via deep Fourier transform and reconstruct the phase
spectrum under the guidance of the amplitude spectrum, while the GGL module
integrates the above global frequency information to facilitate the local feature
learning in the spatial domain. Thanks to the frequency property observation and
our finely constructed modules, our method achieves state-of-the-art (SOTA)
performance efficiently. In Fig. |3 several SOTA models are shown in terms of
performance, parameters, and FLOPs.

In conclusion, the main contributions of our work are as follows:

— We reveal the correlation between haze degradation and the statistical prop-
erties of amplitude and phase spectrums, and integrate the frequency and
spatial information for image dehazing.

— We propose a novel Frequency and Spatial Dual-Guidance Network for effec-
tively generating high-quality haze-free images by completely utilizing dual
guidance in both the frequency and spatial domains. To the best of our
knowledge, we are the first to introduce amplitude and phase spectrums for
the image dehazing task.

— We propose the tailor designed GGL and AGP modules for the spatial-
domain and frequency-domain guidance, respectively.

— Extensive experiments demonstrate that our method outperforms state-of-
the-art approaches with fewer parameters and FLOPs.
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Fig. 3. Trade-off between PSNR, number of parameters, and FLOPs. FLOPs are cal-
culated with an input size 256 x 256.

2 Related Work

Single Image Dehazing. In recent years, we have witnessed significant ad-
vances in single image dehazing. Existing methods can be roughly categorized
into two classes: physical-based methods and deep learning-based methods.

Physical-based methods depend on the physical model [35] and the hand-
craft priors from empirical observations, such as dark channel prior [19], color
line prior [I6], color attenuation prior [57], sparse gradient prior [§], maximum
reflectance prior [55], and non-local prior [5]. However, the density of haze can be
affected by various factors including temperature, altitude, and humidity, which
make the haze formation at individual spatial locations space-variant and non-
homogeneous. Therefore, the haze usually cannot be accurately characterized by
merely a single transmission map.

Different from the physical-based methods, deep learning-based methods em-
ploy convolution neural networks to learn the image prior [6/26/40/54I31133] or
directly learn hazy-to-clear translation [4TJ32I38/T4IT222IT33 7495114756117
For example, AOD-Net [26] produces the recovered images by reformulating the
physical scattering model. MSBDN [I3] proposes a boosted decoder to progres-
sively restore the haze-free images. Ye et al. [5I] developed perceiving and mod-
eling density for uneven haze distribution to increase its generalization ability on
real-world hazy images. AECR-Net [49] introduces the contrastive regularization
to exploit both the information of hazy images and clear images as negative and
positive samples, respectively. The above techniques have shown outstanding
performance on image dehazing. However, they only utilize the information in
the spatial domain, which cannot sufficiently model the characteristics of haze
degradation. It is necessary to mention that DW-GAN [I7] also employs the
frequency information, but it works in the wavelet domain and exploits the low-
high frequency property. Instead, our method works in the Fourier domain and
reveals the relationship between amplitude-phase and haze degradation.
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Applications of Fourier Transform. In recent years, some algorithms
[I150/39/46I58I3407] have been proposed to extract the information from the
frequency domain to address different tasks. For instance, DeepRFT [34] applies
the convolution operations to the real and imaginary parts of the spectrum in
the frequency domain to restore the blurry images. FDIT [7] decomposes the
images into low-frequency and high-frequency components to enhance the im-
age generation process. However, existing frequency-based methods neglect to
build the relationship between the frequency property and the image degrada-
tion. Different from these existing techniques, we further discover the correlation
between haze degradation and the characteristics of amplitude and phase spec-
trums in the frequency domain and tailor design the AGP module to exploit this
observation.

3 Method

3.1 Motivation

Our main inspiration comes from observing the relationship between haze degra-
dation and the characteristics of Fourier amplitude and phase spectrums in the
frequency domain. As shown in Fig. [T] and analyzed above, we get the conclu-
sion that the degradation property mainly manifests in the amplitude spectrum,
while the phase spectrum just has a slight difference between hazy image and
corresponding clear image. Moreover, the illumination contrast of an image is
represented by the amplitude spectrum, while the texture structure information
is represented by the phase spectrum [36/45]. Therefore, our conclusion is also
consistent with this theory, for the reason that haze mainly affects the illumina-
tion contrast of an image, while the structural information is immune to haze
degradation. In addition, the artifacts in SynClear image show that slight dif-
ference exists between the phase spectrums of clear and hazy image pairs and
it is related to the global distribution of haze. Thus, the amplitude spectrum’s
learned residual can be utilized as a guide to restore the phase spectrum. Ac-
cording to these observations, we design the Amplitude Guided Phase (AGP)
module to deal with amplitude and phase spectrums and exploit the spectrum’s
learned residual to guide phase restoration in the frequency domain.

Our second insight is the discrepancy between global and local modeling for
image dehazing in the spatial domain. We explain their difference through the
limited receptive field of CNN-based network. Receptive field can be defined as
the region around a pixel that contributes to the output at that pixel [4]25]. Due
to the convolution operator’s intrinsic limitations, the network has a limited re-
ceptive field, particularly in the early layers. Consequently, existing CNN-based
methods fail to accurately model the long-range dependency of an image and the
context for comprehending the haze’s global distribution. Specifically for image
dehazing, when the dense haze block gets larger than the receptive field, the pix-
els that fall into the haze block can’t get enough information to remove the haze.
Undoubtedly, understanding the content globally is essential for reconstructing
a high-quality clear image from its hazy counterpart. Based on this insight, we
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design the Global Guided Local (GGL) module to enable local modeling part
with global information.
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Fig. 4. Overview of the proposed network architecture for image dehazing. (a) The
whole framework consists of a frequency branch and a spatial branch with the proposed
(b) AGP module in the frequency domain and (c¢) GGL module in the spatial domain.

3.2 Frequency and Spatial Dual-Guidance Network

The two-branch-designed network has been successfully applied in various image
restoration methods [953]. Because each branch concentrates on its own infor-
mation processing procedure, it might extract distinct representations of the
same input. Further, if we can use such distinct information wisely and intro-
duce proper guidance between these two branches, comprehensive information
from two branches can significantly boost the performance of image dehazing.
Based on this idea, we design our two-branch neural network.

Our proposed network is based on the U-Net [42] architecture. As shown
in Fig E[, the network includes two branches, a frequency/global branch and a
spatial/local branch. For an input hazy image I, frequency branch outputs J /,
spatial branch outputs the final dehazed image J,,; and J is the corresponding
ground-truth image. Specifically, for the frequency branch, the feature passes the
delicately designed Amplitude Guided Phase (AGP) module. The AGP module
performs in the frequency domain, which is global information. Besides, in order
to fully exploit the restored global information and introduce global guidance
for local feature learning, we introduce Global Guided Local (GGL) module to
provide global information for the learning of local features at every stage of the
U-Net architecture. Besides the specially designed modules mentioned above, we
also use dense connection [23] and skip connection [20] in our network.
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Fig. 5. Features from the same stage of global branch and local branch. (a) Clear image,
(b) feature without applying GGL and AGP modules (local feature), (c) feature (b) +
AGP module (global feature), and (d) feature (b) + GGL module (local feature with
global feature guidance).

3.3 Amplitude Guided Phase Module

Phase conveys more information regarding image structure than amplitude does
and is highly immune to noise and contrast distortions [36/45]. Along with this
theory, we further find that the degradation caused by haze mainly manifests
in the amplitude spectrum, and the phase spectrum is affected slightly. In other
words, haze primarily changes the illumination contrast of an image, and the
structure of an image is influenced mildly due to reduced visibility of the whole
image. Based on our discovery, we propose the Amplitude Guided Phase (AGP)
module. Let 2 and AGP(z) denote the input and output of the AGP mod-
ule. AGP module first transforms the spatial domain feature x to its frequency
domain Fourier transformation F(z), formulated as follows:

H—-1W-1 ] N
F@) o) =S 3 a(h,w)e 2 i), (1)
h=0 w=0
The frequency-domain feature F(x) is denoted as F(x) = R(x) + jZ(z), where
R(x) and Z(x) represent the real and imaginary part of F(x). Then the real and
imaginary parts are converted to amplitude and phase spectrums, which can be
formulated as:
Ale) (u,v) = [R(@)(w,v) + (@) (u, )] 2

Z(2) (u,v) ] (2)
R(@)(w,0) | *

P(z)(u,v) = arctan [

where A(z) is the amplitude spectrum, P(z) is the phase spectrum. Given that
amplitude is severely distorted, we first restore the amplitude using a 1 x 1
convolution. Then, the residual A,.s(x) of the restored amplitude A (z) and the
raw amplitude A(z) is expressed as follows:

Al () (u,0) = A()(u,0) @ ki,
Ares(z)(u,v) = A (z)(u,v) — A(z)(u, v),

here, ® denotes the convolution operator. In this paper, we denote ks as the
convolution filter with kernel size of s x s pixel for simplicity. Further, we apply
the attention map Atten(z) of residual amplitude A,.s(x) to compensate for the
slight phase change, formulated by:

Azften(:v) (u,v) = Softmax [GAP (Ares(x)(u,v))],
P (z)(u,v) = [Atten(z)(u,v) © P(z)(u,v)] ® k1 + P(z)(u,v),

®3)

(4)
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where, GAP means the global average pooling and ® denotes the element-wise
product operation. After the recovery in amplitude and phase, we turn them
back to real and imaginary parts by:

R’ (@) (u,v) = A'(x) (u,v) cos P’ () (u, ), )
T (z)(u,v) = A (z)(u,v)sinP (z)(u,v).

Finally, we transform the frequency domain feature F (z) = R () + jZ (z)
back to the spatial domain feature AGP(x) by inverse Fourier transform. Besides
the frequency transformation, we keep a 3 x 3 convolution branch in the spatial
domain to stabilize the training of the AGP module.

In Fig. we show features produced under different settings. The local
branch b generates artifacts and fails to model the global architecture, but with
finer details in some regions. Compared with feature b, global feature ¢ models
the low-frequency representations (illumination, color and contrast) and gener-
ates globally visual pleasing results with the consistent overall structure of the
scene. This well proves the validity and importance of our AGP module.

3.4 Global Guided Local Module

In order to gain global context modeling ability, some image restoration methods
employ transformer/non-local [29/52]. But the considerable computational com-
plexity of aforementioned global modeling strategy usually hampers its efficient
usage. In contrast, we possess a global context modeling ability by exploiting
frequency characteristics.

Due to the limited receptive field in the early layers of the local branch, the
network fails to capture long-range dependency and has no enough information
to remove the haze in local regions. Therefore, we propose Global Guided Local
(GGL) module. In the GGL module, we incorporate the features from the same
stage in the encoder and decoder of the global branch to guide the local feature
in the corresponding encoder stage of the local branch. Similar to SFT [48], we
inject the local feature with the scaling and shifting of global feature. Concretely,
we first concatenate the two global features G7 and G7.., 4, from the n-th

encoder
stage of the encoder and decoder and perform a simple convolution to get G™.

G" =Cat (Gchodera Ggecoder) X k37 (6)

where, Cat denotes the concatenation operation. Then, we use the global feature
G™ to guide the local feature L™ from the n-th stage of the encoder in the spatial
branch. We first inject the local featureL™ with the scaling operation of G™ to
get Out?, ;. as:

Outteqre = (G" @ k1@ k1) ©® L™. (7)

Then, with the obtained Out”, We introduce the shifting operation of G™

scale’

to get the output of the n-th GGL module as:

Outn = (Gn %) le ® kl) + OUt?cale' (8)
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In this way, our method not only focuses on details by the stack of convolution
but also introduces global information to enrich the global context structure.

In Fig. 5| feature (d) is produced by introducing global information guidance
to local feature (b). Obviously, after the GGL module, feature (d) is not only
well structured but also have fine details and less artifacts. This means that
feature (d) combines the strong point of local feature (b) and global feature (c),
as we ideally expected.

3.5 Frequency and spatial dual supervision Losses

The training loss of our FSDGN is comprised of both spatial and frequency
domain losses. In addition to the spatial domain Charbonnier loss [24] L.pq, the
frequency domain loss L. consists of Lgpmp and Lyh, for supervision from the
ground-truth amplitude and phase spectrums during training.

Lona = \/out (8) = T @) + e+ /(' (@) = J (2))* + 5, )
9 U/2—-1v -1
Lomo = g 30 3 ([Mouths = 1Ahuo | +[[14],., = 14k ). (10)
u=0 v=0
U/2—-1v-—1

2
Lo = g 2 2 ([lPostls = 1P

Note, in our implementation, ¢ = 1 x e~!? and the summation for u is only
performed up to U/2 — 1, since 50% of all frequency components are redundant.
Thus, the total loss L of our network is denoted as:

1 + H}Pl‘u,v - |P|u,v

1). (11)

L= Echa + ﬁ (ﬁamp + ['pha) 9 (12)

where 3 is weight factor and set to 0.1 empirically.

4 Experiments

In this section, we first introduce the datasets and implement details of our ex-
periment. Then, we make a comprehensive comparison with existing methods
quantitatively and visually. Experiments on the public synthetic dataset RE-
SIDE [28] and two different type real-word datasets demonstrate the superiority
of the proposed FSDGN. Furthermore, extensive ablation studies and statistical
analysis are conducted to justify the effectiveness of the core modules of FSDGN.

4.1 Experiment Setup

Datasets. We evaluate the proposed method on synthetic and real-world datasets.
For synthetic scenes, we employ RESIDE[28] dataset. The subset Indoor Train-
ing Set (ITS) of RESIDE contains a total of 13990 hazy indoor images, generated
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from 1399 clear images. The subset Synthetic Objective Testing Set (SOTS) of
RESIDE consists of 500 indoor hazy images and 500 outdoor ones. We apply
ITS and SOTS indoor as our training and testing sets. In addition, we adopt
two real-world datasets: Dense-Haze [1] and NH-HAZE [2], to evaluate the ro-
bustness of our method in the real-world scenarios. Dense-Haze consists of dense
and homogeneous hazy scenes, whereas NH-HAZE consists of nonhomogeneous
hazy scenes. Both of the two datasets consist of 55 paired images.

Implementation Details. Our FSDGN is implemented by PyTorch with
an NVIDIA RTX 2080Ti. We use ADAM as the optimizers with 5, = 0.9,
and B = 0.999, and the initial learning rate is set to 2 x 10=%. The learning
rate is adjusted by the cosine annealing strategy [21]. In the training stage, we
empirically set the total number of iteration to 600k. The batch and patch sizes
are set to 16 and 256 x 256, respectively.

Table 1. Quantitative comparison with SOTA methods on synthetic and real-world
dehazing datasets.

SOTS [28] |Dense-Haze [1]|NH-HAZE [2]

Method PSNR SSIM [PSNR_SSIM [PSNR Ssiv | | arem (M)|GFLOPs
DCP [19] 15.09 0.7649 [10.06 0.3856 | 10.57 0.5196 - -
DehazeNet [6] [20.64 0.7995 |13.84 0.4252 |16.62 0.5238| 0.01M -
AOD-Net [26] |19.82 0.8178|13.14 0.4144 [15.40 0.5693 | 0.002M 0.1
GridDehazeNet [32]| 32.16 0.9836 | 13.31 0.3681 | 13.80 0.5370| 0.96M 215

FFA-Net [37] 36.39 0.9886 | 14.39 0.4524 | 19.87 0.6915 4.68M 288.1
MSBDN [13] 33.79 0.9840|15.37 0.4858 |19.23 0.7056| 31.35M 41.5

KDDN [22] 34.72 0.9845|14.28 0.4074 |17.39 0.5897 5.99M -
AECR-Net [49] |37.17 0.9901 | 15.80 0.4660 |19.88 0.7173 2.61M 43.0
Ours 38.63 0.9903|16.91 0.5806|19.99 0.7306| 2.73M 19.6

4.2 Comparison with State-of-the-art Methods

We compare our FSDGN with the SOTA methods qualitatively and quanti-
tatively, including one prior-based algorithm (DCP [19]) and six deep learning-
based methods (DehazeNet [6], AOD-Net [26], GridDehazeNet [32], FFA-Net [37],
MSBDN [13] and AECR-Net [49]). The results are produced by using publicly
available source codes with recommended parameters. To evaluate the perfor-
mance of our method, we employ two widely used metrics for quantitative com-
parisons, including the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity index (SSIM).

Results on Synthetic Dataset. Table[I]compares the quantitative results
of different methods on SOTS dataset [27], which indicates our FSDGN achieves
the best performance with 38.36dB PSNR and 0.9903 SSIM. To further demon-
strate the effectiveness of our method, we also show the visual comparison with
other techniques on the typical hazy images sampled from the SOTS dataset in
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Fig. [f] Compared with the ground truths, it is evident that the results of DCP,
AODNet and DehazeNet not only fail to remove the dense haze but also suffer
from severe color distortion (see the table and wall in Fig. [6[b)-(d)). Different
from these three techniques, GridDehazeNet [32], FFA-Net [37], MSBDN [13]
and AECR-Net [49] perform the hazy-to-clear image translation in an end-to-
end manner. Undeniably, they mitigate the color distortion problem and achieve
the restored images with higher PSNR and SSIM. However, they cannot com-
pletely remove the haze in their results (e.g. the red square in Fig. @(e), the wall
in Fig. @(f) and the gap between chairs in Fig. Ekg)), and produce color shift (see
the desktop in Fig. @(h)) In contrast, our FSDGN generates the highest-fidelity
dehazed results that also look perceptually close to the reference ground truths.

ﬁiﬂﬁi}@wmﬂmﬁ
oo |

(c) DehazeNet (d) AOD-Net (e) GridDehazeNet

() FFA-Net (g) MSBDN (h) AECR-Net (i) Ours (i) Ground-truth
Fig. 6. Comparison of visual results on SOTS [28] dataset. Red boxes indicate the
obvious differences. Zoom in for best view.

Results on Real-world Datasets. We further compare our FSDGN with
SOTA methods on the two real-world datasets: Dense-Haze [I] and NH-HAZE [2]
datasets. Due to the dense and nonhomogeneous distribution of haze in real-
world, removing the real-world haze is more complex and challenging. As de-
scribed in Table (1] the proposed FSDGN achieves the best performance on both
datasets, outperforming the second-highest performance AECR-Net [49] with
1.11dB PSNR and 0.1146 SSIM on the Dense-Haze dataset and 0.11dB PSNR
and 0.0233 SSIM on the NH-HAZE dataset. Fig. [7] and Fig. [§] illustrate the re-
sults of the real-world haze images sampled from the Dense-Haze and NH-HAZE
datasets, respectively. The compared methods generate either color distortion or
haze-remained results. Concretely, DCP [19], AOD-Net [26], GridDehazeNet [32],
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(c) DehazeNet (d) AOD-Net (e) GridDehazeNet

T T = = ==
(f) FFA-Net (g) MSBDN (h) AECR-Net (i) Ours (j) Ground-truth

Fig. 7. Comparison of visual results on Dense-Haze [I] dataset. Zoom in for best view.

(c) DehazeNet

(f) FFA-Net (9) MBDN (h) AECR-Net (i) Ours ()] Groudtruth
Fig. 8. Comparison of visual results on NH-HAZE [2] dataset. Zoom in for best view.

FFA-Net [37] and AECR-Net [49] produce the serious color deviation and texture
loss in the restored images. Besides, apparent thick haze residual is remained in
the results of DCP [19], DehazeNet [6], GridDehazeNet [32] and MSBDN [13].
In contrast, our model generates the natural and visually desirable results.

Note that we don’t compare the results on Real-world datasets with work-
shop methods. For the reason that workshop methods achieve high performance
at the cost of huge parameters. For example, the model size of DW-GAN [I7] is
51.51M, much larger than ours. The champion model iPAL-AtJ on NTIRE 2019
Challenge [3] has a parameter of 46.17M.

Table 2. Ablation study on our FSDGN. AlIG™ represents the model consisting of two
global branches without spatial guidance.

Label[AlIL GGL AGP AlIG™ Lf,.|PSNR (dB) SSIM Params (M)
a v 37.41 0.9889 2.573
b v v 38.02  0.9899 2.580
c v v 38.34  0.9901 2.725
d v 37.56  0.9893 2.876
e v v 38.19  0.9901 2.883
f v v v 38.51 0.9902 2.731
g v v v v 38.63  0.9903 2.731
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Fig. 9. Visualization of output images, histogram of color images, texture images,
and histogram of gray images. (a) Input hazy image, (b) output of the local branch
(without spatial guidance), (c¢) output of the global branch (with additional AGP
module compared to the local branch), (d) output of our model (with AGP and GGL
modules), and (e) ground-truth clear image.

4.3 Ablation Studies

In this section, we perform several ablation studies to analysis the effectiveness
of the proposed method. In order to verify the effect of two global branches,
we further introduce the AIlG model, which applies the AGP module in both
branches and involves no local features. Different models are denoted as fol-
lows: (a) AlIL: The same as our FSDGN except for the AGP and GGL module.
Namely, two spatial branches without spatial guidance and frequency loss. (b)
AlIL4+GGL: Two spatial branches, with spatial guidance. (¢) AIL+AGP: A
spatial branch and a frequency branch. (d) AllG: Two global branches, without
spatial guidance. () AlG4+GGL: Two global branches, with spatial guidance.
(f) AIIL4+GGL+AGP: A global branch and a local branch, with spatial guid-
ance. (g) (Ours)AllL4+GGL+AGP+Ly,.: Our final setting in this method.
The performance of these models are summarized in Table 2]

Effectiveness of the AGP module. Compared to the AlIL model, the
AlIL4+AGP model possesses a significant performance improvement of 0.93 PSNR
with negligible parameters increasing. This indicates that the AGP module is
an indispensable component of our network, representing the global information
and, more importantly, correlating with the haze degradation.

Effectiveness of the GGL module. Compared to the AIIL model, the
ANL+GGL model improves the performance from 37.41 to 38.02 PSNR. In ad-
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dition, the improvement of the model from AllG to AllG4+GGL increases the
PSNR by 0.63 dB.

More comparisons. AllL and AllG models extract all local information
and global information, respectively. Experiments show that combining the global
and local information is superior to using just one. Besides, the comparison be-
tween model f and g demonstrates that the introduction of the frequency loss
Ly is beneficial for performance improvement.

To further explain and prove the superiority of our proposed modules, we
present the statistical distributions in Fig. [0] Specifically, the first row is the
hazy image, the output of different models, and the ground truth, respectively.
The second row is the histogram of the above images, which represents the illu-
mination and color distribution. The third row describes the textures of the first
row produced by the LBP operator, and the bottom row is the histogram of the
corresponding gray image, indicating the texture, light, and contrast changes.
Undeniably both the local and global branch outputs remove the haze and pre-
serve textures well with the visually pleasing image. However, it is easy to find
the discrepancies in their histograms compared with the ground truth. It is evi-
dent that our FSDGN achieves a more similar distribution to the ground truth
compared with the global or local branch (e.g. the red circles in the second row
and the green circles in the bottom row of Fig. E[)

5 Conclusion

In this paper, we revisit the haze degradation in the frequency domain via Fourier
transform. Based on the frequency analysis, we propose a novel image dehaz-
ing framework, termed as Frequency and Spatial Dual-Guidance Network, to
explore potentials in the frequency and spatial dual domains. Specifically, we in-
troduce two core designs to equip the proposed network, i.e., the Global Guided
Local module and Amplitude Guided Phase module for the spatial-domain and
frequency-domain guidance, respectively. Extensive experiments validate that
the proposed method achieves state-of-the-art performance on both synthetic
and real hazy images in an efficient way.
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